Abstract

Mechanisms of the femtosecond-laser-induced refractive-index change (Δn) were investigated for fused silica and a borosilicate glass. Experiments were based on two exposure situations: (a) high repetition rate and low pulse energy and (b) low repetition rate and high pulse energy. The calculated temperature rise based on model (b) was above 1000 °C, whereas for situation (a) it was negligible. The results do not support a thermal origin of the induced Δn; rather, heat may limit the magnitude of the change. Correlation between color-center formation and Δn in both glasses suggests that defects contribute substantially to the index increase. However, annealing studies have shown that the induced Δn persisted beyond the disappearance of the color centers. Analysis of the induced stress showed that densification plays a small role in this change.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription