Abstract

We report the automated generation of high-fidelity spatiotemporally shaped femtosecond pulses using an optically addressed, reflection-mode two-dimensional spatial light modulator. The spatial light modulator has been fully characterized. We performed spatiotemporal pulse shaping by dividing a vertically expanded input pulse into many horizontal regions, each of which was independently shaped through phase-only spectral filtering. The configuration of the imaging optics determined whether real space or wave-vector shaping was performed. We performed cross correlations of shaped waveforms by using a pulse shaper to generate variably delayed pulses, demonstrating time-resolved measurement without beam splitters or delay lines.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Froehly, B. Colombeau, and M. Vampouille, “Shaping and analysis of picosecond light pulses,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1983), Vol. 20, pp. 65–153.
  2. M. Haner and W. S. Warren, “Generation of arbitrarily shaped picosecond optical pulses using an integrated electrooptic waveguide modulator,” Appl. Opt. 26, 3687–3694 (1987).
    [CrossRef] [PubMed]
  3. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
    [CrossRef]
  4. J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, and R. H. Stolen, “Spectral windowing of frequency-modulated optical pulses in a grating compressor,” Appl. Phys. Lett. 11, 87–89 (1985).
    [CrossRef]
  5. J. X. Tull, M. A. Dugan, and W. S. Warren, “High resolution, ultrafast laser pulse shaping and its application,” Adv. Magn. Opt. Reson. 20, 1–56 (1997).
    [CrossRef]
  6. E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, “Pulse compression by use of deformable mirrors,” Opt. Lett. 24, 493–495 (1999).
    [CrossRef]
  7. D. E. Leaird and A. M. Weiner, “Femtosecond optical packet generation by a direct space-to-time pulse shaper,” Opt. Lett. 24, 853–855 (1999).
    [CrossRef]
  8. K. B. Hill, K. G. Purchase, and D. J. Brady, “Pulsed-image generation and detection,” Opt. Lett. 20, 1201–1203 (1995).
    [CrossRef] [PubMed]
  9. R. Piestun and D. A. B. Miller, “Spatiotemporal control of ultrashort optical pulses by refractive–diffractive–dispersive structured optical elements,” Opt. Lett. 26, 1373–1375 (2001).
    [CrossRef]
  10. M. C. Nuss and R. L. Morrison, “Time-domain images,” Opt. Lett. 20, 740–742 (1995).
    [CrossRef] [PubMed]
  11. R. M. Koehl, T. Hattori, and K. A. Nelson, “Automated spatial and temporal shaping of femtosecond pulses,” Opt. Commun. 157, 57–61 (1998).
    [CrossRef]
  12. G. P. Wiederrecht, T. P. Dougherty, L. Dhar, K. A. Nelson, D. E. Leaird, and A. M. Weiner, “Explanation of anomalous polariton dynamics in LiTaO3,” Phys. Rev. B 51, 916–931 (1995).
    [CrossRef]
  13. R. M. Koehl and K. A. Nelson, “Coherent optical control over collective vibrations traveling at lightlike speeds,” J. Chem. Phys. 114, 1443–1446 (2001).
    [CrossRef]
  14. M. M. Wefers and K. A. Nelson, “Analysis of programmable ultrashort waveform generation using liquid-crystal spatial light modulators,” J. Opt. Soc. Am. B 12, 1343–1362 (1995).
    [CrossRef]
  15. C. Dorrer, F. Salin, F. Verluise, and J. P. Huignard, “Programmable phase control of femtosecond pulses by use of a nonpixelated spatial light modulator,” Opt. Lett. 23, 709–711 (1998).
    [CrossRef]
  16. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
  17. G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high-resolution femtosecond pulse shaper,” Appl. Phys. B 72, 627–630 (2001).
    [CrossRef]
  18. M. Hacker, G. Stobrawa, and T. Feurer, “Iterative Fourier transform algorithm for phase-only pulse shaping,” Opt. Express 9, 191–199 (2001), http://www.opticsexpress.org.
    [CrossRef] [PubMed]

2001

R. Piestun and D. A. B. Miller, “Spatiotemporal control of ultrashort optical pulses by refractive–diffractive–dispersive structured optical elements,” Opt. Lett. 26, 1373–1375 (2001).
[CrossRef]

R. M. Koehl and K. A. Nelson, “Coherent optical control over collective vibrations traveling at lightlike speeds,” J. Chem. Phys. 114, 1443–1446 (2001).
[CrossRef]

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high-resolution femtosecond pulse shaper,” Appl. Phys. B 72, 627–630 (2001).
[CrossRef]

M. Hacker, G. Stobrawa, and T. Feurer, “Iterative Fourier transform algorithm for phase-only pulse shaping,” Opt. Express 9, 191–199 (2001), http://www.opticsexpress.org.
[CrossRef] [PubMed]

2000

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

1999

1998

C. Dorrer, F. Salin, F. Verluise, and J. P. Huignard, “Programmable phase control of femtosecond pulses by use of a nonpixelated spatial light modulator,” Opt. Lett. 23, 709–711 (1998).
[CrossRef]

R. M. Koehl, T. Hattori, and K. A. Nelson, “Automated spatial and temporal shaping of femtosecond pulses,” Opt. Commun. 157, 57–61 (1998).
[CrossRef]

1997

J. X. Tull, M. A. Dugan, and W. S. Warren, “High resolution, ultrafast laser pulse shaping and its application,” Adv. Magn. Opt. Reson. 20, 1–56 (1997).
[CrossRef]

1995

1987

1985

J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, and R. H. Stolen, “Spectral windowing of frequency-modulated optical pulses in a grating compressor,” Appl. Phys. Lett. 11, 87–89 (1985).
[CrossRef]

Backus, S.

Brady, D. J.

Dhar, L.

G. P. Wiederrecht, T. P. Dougherty, L. Dhar, K. A. Nelson, D. E. Leaird, and A. M. Weiner, “Explanation of anomalous polariton dynamics in LiTaO3,” Phys. Rev. B 51, 916–931 (1995).
[CrossRef]

Dorrer, C.

Dougherty, T. P.

G. P. Wiederrecht, T. P. Dougherty, L. Dhar, K. A. Nelson, D. E. Leaird, and A. M. Weiner, “Explanation of anomalous polariton dynamics in LiTaO3,” Phys. Rev. B 51, 916–931 (1995).
[CrossRef]

Dugan, M. A.

J. X. Tull, M. A. Dugan, and W. S. Warren, “High resolution, ultrafast laser pulse shaping and its application,” Adv. Magn. Opt. Reson. 20, 1–56 (1997).
[CrossRef]

Feurer, T.

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high-resolution femtosecond pulse shaper,” Appl. Phys. B 72, 627–630 (2001).
[CrossRef]

M. Hacker, G. Stobrawa, and T. Feurer, “Iterative Fourier transform algorithm for phase-only pulse shaping,” Opt. Express 9, 191–199 (2001), http://www.opticsexpress.org.
[CrossRef] [PubMed]

Hacker, M.

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high-resolution femtosecond pulse shaper,” Appl. Phys. B 72, 627–630 (2001).
[CrossRef]

M. Hacker, G. Stobrawa, and T. Feurer, “Iterative Fourier transform algorithm for phase-only pulse shaping,” Opt. Express 9, 191–199 (2001), http://www.opticsexpress.org.
[CrossRef] [PubMed]

Haner, M.

Hattori, T.

R. M. Koehl, T. Hattori, and K. A. Nelson, “Automated spatial and temporal shaping of femtosecond pulses,” Opt. Commun. 157, 57–61 (1998).
[CrossRef]

Heritage, J. P.

J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, and R. H. Stolen, “Spectral windowing of frequency-modulated optical pulses in a grating compressor,” Appl. Phys. Lett. 11, 87–89 (1985).
[CrossRef]

Hill, K. B.

Huignard, J. P.

Kapteyn, H.

Koehl, R. M.

R. M. Koehl and K. A. Nelson, “Coherent optical control over collective vibrations traveling at lightlike speeds,” J. Chem. Phys. 114, 1443–1446 (2001).
[CrossRef]

R. M. Koehl, T. Hattori, and K. A. Nelson, “Automated spatial and temporal shaping of femtosecond pulses,” Opt. Commun. 157, 57–61 (1998).
[CrossRef]

Leaird, D. E.

D. E. Leaird and A. M. Weiner, “Femtosecond optical packet generation by a direct space-to-time pulse shaper,” Opt. Lett. 24, 853–855 (1999).
[CrossRef]

G. P. Wiederrecht, T. P. Dougherty, L. Dhar, K. A. Nelson, D. E. Leaird, and A. M. Weiner, “Explanation of anomalous polariton dynamics in LiTaO3,” Phys. Rev. B 51, 916–931 (1995).
[CrossRef]

Maginnis, K.

Miller, D. A. B.

Morrison, R. L.

Motzkus, M.

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high-resolution femtosecond pulse shaper,” Appl. Phys. B 72, 627–630 (2001).
[CrossRef]

Mourou, G.

Murnane, M.

Nelson, K. A.

R. M. Koehl and K. A. Nelson, “Coherent optical control over collective vibrations traveling at lightlike speeds,” J. Chem. Phys. 114, 1443–1446 (2001).
[CrossRef]

R. M. Koehl, T. Hattori, and K. A. Nelson, “Automated spatial and temporal shaping of femtosecond pulses,” Opt. Commun. 157, 57–61 (1998).
[CrossRef]

G. P. Wiederrecht, T. P. Dougherty, L. Dhar, K. A. Nelson, D. E. Leaird, and A. M. Weiner, “Explanation of anomalous polariton dynamics in LiTaO3,” Phys. Rev. B 51, 916–931 (1995).
[CrossRef]

M. M. Wefers and K. A. Nelson, “Analysis of programmable ultrashort waveform generation using liquid-crystal spatial light modulators,” J. Opt. Soc. Am. B 12, 1343–1362 (1995).
[CrossRef]

Nuss, M. C.

Piestun, R.

Purchase, K. G.

Reichel, F.

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high-resolution femtosecond pulse shaper,” Appl. Phys. B 72, 627–630 (2001).
[CrossRef]

Russek, U.

Salin, F.

Stobrawa, G.

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high-resolution femtosecond pulse shaper,” Appl. Phys. B 72, 627–630 (2001).
[CrossRef]

M. Hacker, G. Stobrawa, and T. Feurer, “Iterative Fourier transform algorithm for phase-only pulse shaping,” Opt. Express 9, 191–199 (2001), http://www.opticsexpress.org.
[CrossRef] [PubMed]

Stolen, R. H.

J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, and R. H. Stolen, “Spectral windowing of frequency-modulated optical pulses in a grating compressor,” Appl. Phys. Lett. 11, 87–89 (1985).
[CrossRef]

Thurston, R. N.

J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, and R. H. Stolen, “Spectral windowing of frequency-modulated optical pulses in a grating compressor,” Appl. Phys. Lett. 11, 87–89 (1985).
[CrossRef]

Tomlinson, W. J.

J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, and R. H. Stolen, “Spectral windowing of frequency-modulated optical pulses in a grating compressor,” Appl. Phys. Lett. 11, 87–89 (1985).
[CrossRef]

Tull, J. X.

J. X. Tull, M. A. Dugan, and W. S. Warren, “High resolution, ultrafast laser pulse shaping and its application,” Adv. Magn. Opt. Reson. 20, 1–56 (1997).
[CrossRef]

Vdovin, G.

Verluise, F.

Warren, W. S.

J. X. Tull, M. A. Dugan, and W. S. Warren, “High resolution, ultrafast laser pulse shaping and its application,” Adv. Magn. Opt. Reson. 20, 1–56 (1997).
[CrossRef]

M. Haner and W. S. Warren, “Generation of arbitrarily shaped picosecond optical pulses using an integrated electrooptic waveguide modulator,” Appl. Opt. 26, 3687–3694 (1987).
[CrossRef] [PubMed]

Wefers, M. M.

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

D. E. Leaird and A. M. Weiner, “Femtosecond optical packet generation by a direct space-to-time pulse shaper,” Opt. Lett. 24, 853–855 (1999).
[CrossRef]

G. P. Wiederrecht, T. P. Dougherty, L. Dhar, K. A. Nelson, D. E. Leaird, and A. M. Weiner, “Explanation of anomalous polariton dynamics in LiTaO3,” Phys. Rev. B 51, 916–931 (1995).
[CrossRef]

J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, and R. H. Stolen, “Spectral windowing of frequency-modulated optical pulses in a grating compressor,” Appl. Phys. Lett. 11, 87–89 (1985).
[CrossRef]

Wiederrecht, G. P.

G. P. Wiederrecht, T. P. Dougherty, L. Dhar, K. A. Nelson, D. E. Leaird, and A. M. Weiner, “Explanation of anomalous polariton dynamics in LiTaO3,” Phys. Rev. B 51, 916–931 (1995).
[CrossRef]

Zeek, E.

Zeidler, D.

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high-resolution femtosecond pulse shaper,” Appl. Phys. B 72, 627–630 (2001).
[CrossRef]

Adv. Magn. Opt. Reson.

J. X. Tull, M. A. Dugan, and W. S. Warren, “High resolution, ultrafast laser pulse shaping and its application,” Adv. Magn. Opt. Reson. 20, 1–56 (1997).
[CrossRef]

Appl. Opt.

Appl. Phys. B

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high-resolution femtosecond pulse shaper,” Appl. Phys. B 72, 627–630 (2001).
[CrossRef]

Appl. Phys. Lett.

J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, and R. H. Stolen, “Spectral windowing of frequency-modulated optical pulses in a grating compressor,” Appl. Phys. Lett. 11, 87–89 (1985).
[CrossRef]

J. Chem. Phys.

R. M. Koehl and K. A. Nelson, “Coherent optical control over collective vibrations traveling at lightlike speeds,” J. Chem. Phys. 114, 1443–1446 (2001).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

R. M. Koehl, T. Hattori, and K. A. Nelson, “Automated spatial and temporal shaping of femtosecond pulses,” Opt. Commun. 157, 57–61 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

G. P. Wiederrecht, T. P. Dougherty, L. Dhar, K. A. Nelson, D. E. Leaird, and A. M. Weiner, “Explanation of anomalous polariton dynamics in LiTaO3,” Phys. Rev. B 51, 916–931 (1995).
[CrossRef]

Rev. Sci. Instrum.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

Other

C. Froehly, B. Colombeau, and M. Vampouille, “Shaping and analysis of picosecond light pulses,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1983), Vol. 20, pp. 65–153.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Pulse-shaping arrangement similar to conventional 4f spectral filtering arrangements, with the differences that the incoming beam is expanded in one dimension and a two-dimensional SLM in a reflection geometry is employed. We optically addressed the SLM by imaging a conventional transmissive liquid-crystal (LC) array onto a photoconductive layer. c.l., cylindrical lens.

Fig. 2
Fig. 2

Intensity-modulated images indicating the extent of pixelation of the SLM: (a) image generated from a 1×1 pixel and (b) a 1×3 pixel binary phase pattern.

Fig. 3
Fig. 3

(a) Intensity calibration. The SLM rotated the polarization and the reflected light passed through the polarizer, converting the polarization rotation into intensity modulation. (b) Interferometric calibration. The light was split mainly into two diffraction orders and retroreflected by the SLM. One half of the SLM was scanned through the full range of phase modulation values possible while the other half of the SLM applied no phase modulation. The detector measured the interference of the two diffraction orders after they were recombined. b.s., beam splitter; c.l., cylindrical lens; 2D, two dimensional.

Fig. 4
Fig. 4

Intensity modulation (squares) and interferometric (open circles) calibration data. The gray-scale value of the pixels in the liquid-crystal mask determined the voltage applied to the individual virtual pixels on the SLM.

Fig. 5
Fig. 5

Wavelength calibration. Because of the large active area of the SLM the nonlinear character of the spectral dispersion is clearly visible and must be incorporated when addressing the SLM. The solid line represents the theoretical result based on the grating equation.

Fig. 6
Fig. 6

Setup for real-space shaping. The cylindrical lens imaged the face of the SLM onto the BBO crystal. An unshaped reference pulse was cross correlated with the shaped pulse to measure the intensity profile simultaneously for all the phase-modulated regions in the vertical direction. Abbreviations have the same meaning as listed in Fig. 3.

Fig. 7
Fig. 7

Spatially resolved cross-correlation data: (a) unshaped pulse and (b) positive and (c) negative delay sweeps in increments of ±0.022 ps/pixel. The straight lines in (b) and (c) indicate the expected time delay.

Fig. 8
Fig. 8

To determine the spatial resolution of the pulse shaper and the subsequent imaging system, regions consisting of a decreasing number of rows of pixels (53, 12, and 3) were variably delayed in time.

Fig. 9
Fig. 9

(a), (b) Complex user-defined two-dimensional pulse shapes. (c) Pseudorandom pulse shape generated by a binary phase pattern with randomly determined periods for different horizontal regions.

Fig. 10
Fig. 10

Wave-vector shaping setup. The output of the two-dimensional (2D) SLM was focused onto the BBO crystal by a horizontally aligned cylindrical lens (c.l.). Different regions in the bottom portion of the beam were shaped by the SLM, whereas a spatially confined region from the top portion of the SLM was used as a variably delayed reference pulse.

Fig. 11
Fig. 11

(a) Angle-resolved wave-vector shaping setup. Each second-harmonic wave-vector component is projected onto a CCD camera by a second cylindrical lens. (b) Result of an angle-resolved wave-vector shaping cross correlation.

Fig. 12
Fig. 12

(a) Illustration of the wave-vector imaging diagnostics. (b) Transient gratings generated as each of the seven regions coincide at equally spaced delay intervals with the reference pulse in the BBO crystal. The fringe spacing of successive interference patterns clearly increases from one region to the next. (c) The spatial Fourier transformation of (b) shows that the wave vector decreases as the wavelength of successive standing wave patterns increases.

Fig. 13
Fig. 13

Spatial Fourier transforms of transient gratings as a function of delay time. (a) Transform-limited output profile. No phase modulation was applied to any region of the beam. (b) Negatively chirped wave-vector profile. (c) Positively chirped wave-vector profile.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Φ1=±λ022cΔλ=±4510fs,

Metrics