Abstract

Utilizing a new scheme with a single-photon-sensitive intensified CCD camera and a femtosecond laser, we have measured signal–idler correlations over the full cone of degenerate type I spontaneous parametric downconversion, thereby establishing wave-vector correlations in two dimensions. We discuss the key features of the camera that are important for its use in twin-photon correlation measurements.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer-Verlag, Berlin, 2000).
  2. A. Zeilinger, “Experiment and the foundations of quantum physics,” Rev. Mod. Phys. 71, S288–S297 (1999).
    [CrossRef]
  3. L. Mandel, “Quantum effects in one-photon and two-photon interference,” Rev. Mod. Phys. 71, S274–S282 (1999).
    [CrossRef]
  4. F. De Martini, M. Fortunato, P. Tombesi, and D. Vitali, “Generating entangled superpositions of macroscopically distinguishable states within a parametric oscillator,” Phys. Rev. A 60, 1636–1651 (1999).
    [CrossRef]
  5. D. Klyshko, Photons & Nonlinear Optics (Gordon & Breach, New York, 1988).
  6. D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
    [CrossRef]
  7. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
    [CrossRef] [PubMed]
  8. Perkin-Elmer Optoelectronics, “Single photon counting module SPCM-AQR series datasheet,” (Perkin-Elmer Corporation, Norwalk, Conn., 2001).
  9. B. M. Jost, A. V. Sergienko, A. F. Abouraddy, B. E. A. Saleh, and M. C. Teich, “Spatial correlations of spontaneously down-converted photon pairs detected with a single-photon-sensitive CCD camera,” Opt. Express 3, 81–88 (1998), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  10. C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High efficiency entangled photon pair collection in type II parametric fluorescence,” Phys. Rev. A 64, 023802 (2001).
    [CrossRef]

2001 (2)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[CrossRef] [PubMed]

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High efficiency entangled photon pair collection in type II parametric fluorescence,” Phys. Rev. A 64, 023802 (2001).
[CrossRef]

1999 (3)

A. Zeilinger, “Experiment and the foundations of quantum physics,” Rev. Mod. Phys. 71, S288–S297 (1999).
[CrossRef]

L. Mandel, “Quantum effects in one-photon and two-photon interference,” Rev. Mod. Phys. 71, S274–S282 (1999).
[CrossRef]

F. De Martini, M. Fortunato, P. Tombesi, and D. Vitali, “Generating entangled superpositions of macroscopically distinguishable states within a parametric oscillator,” Phys. Rev. A 60, 1636–1651 (1999).
[CrossRef]

1998 (1)

1970 (1)

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[CrossRef]

Abouraddy, A. F.

Burnham, D. C.

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[CrossRef]

De Martini, F.

F. De Martini, M. Fortunato, P. Tombesi, and D. Vitali, “Generating entangled superpositions of macroscopically distinguishable states within a parametric oscillator,” Phys. Rev. A 60, 1636–1651 (1999).
[CrossRef]

Fortunato, M.

F. De Martini, M. Fortunato, P. Tombesi, and D. Vitali, “Generating entangled superpositions of macroscopically distinguishable states within a parametric oscillator,” Phys. Rev. A 60, 1636–1651 (1999).
[CrossRef]

Jost, B. M.

Kurtsiefer, C.

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High efficiency entangled photon pair collection in type II parametric fluorescence,” Phys. Rev. A 64, 023802 (2001).
[CrossRef]

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[CrossRef] [PubMed]

Mandel, L.

L. Mandel, “Quantum effects in one-photon and two-photon interference,” Rev. Mod. Phys. 71, S274–S282 (1999).
[CrossRef]

Oberparleiter, M.

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High efficiency entangled photon pair collection in type II parametric fluorescence,” Phys. Rev. A 64, 023802 (2001).
[CrossRef]

Saleh, B. E. A.

Sergienko, A. V.

Teich, M. C.

Tombesi, P.

F. De Martini, M. Fortunato, P. Tombesi, and D. Vitali, “Generating entangled superpositions of macroscopically distinguishable states within a parametric oscillator,” Phys. Rev. A 60, 1636–1651 (1999).
[CrossRef]

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[CrossRef] [PubMed]

Vitali, D.

F. De Martini, M. Fortunato, P. Tombesi, and D. Vitali, “Generating entangled superpositions of macroscopically distinguishable states within a parametric oscillator,” Phys. Rev. A 60, 1636–1651 (1999).
[CrossRef]

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[CrossRef] [PubMed]

Weinberg, D. L.

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[CrossRef]

Weinfurter, H.

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High efficiency entangled photon pair collection in type II parametric fluorescence,” Phys. Rev. A 64, 023802 (2001).
[CrossRef]

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[CrossRef] [PubMed]

A. Zeilinger, “Experiment and the foundations of quantum physics,” Rev. Mod. Phys. 71, S288–S297 (1999).
[CrossRef]

Nature (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. A (2)

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High efficiency entangled photon pair collection in type II parametric fluorescence,” Phys. Rev. A 64, 023802 (2001).
[CrossRef]

F. De Martini, M. Fortunato, P. Tombesi, and D. Vitali, “Generating entangled superpositions of macroscopically distinguishable states within a parametric oscillator,” Phys. Rev. A 60, 1636–1651 (1999).
[CrossRef]

Phys. Rev. Lett. (1)

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[CrossRef]

Rev. Mod. Phys. (2)

A. Zeilinger, “Experiment and the foundations of quantum physics,” Rev. Mod. Phys. 71, S288–S297 (1999).
[CrossRef]

L. Mandel, “Quantum effects in one-photon and two-photon interference,” Rev. Mod. Phys. 71, S274–S282 (1999).
[CrossRef]

Other (3)

D. Klyshko, Photons & Nonlinear Optics (Gordon & Breach, New York, 1988).

D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer-Verlag, Berlin, 2000).

Perkin-Elmer Optoelectronics, “Single photon counting module SPCM-AQR series datasheet,” (Perkin-Elmer Corporation, Norwalk, Conn., 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. The key elements are a femtosecond laser and an intensified CCD camera, which are synchronized. The prism symbolizes the filtering system used to remove the fundamental (λ) from the frequency-doubled pump (λ/2). In reality, this system consists of four harmonic separators and two prisms that compensate for one another’s space–time distortions on the pump pulse. The filter in front of the camera selects signal and idler photons at or near degeneracy, at wavelength λ. SHG, second-harmonic generator.

Fig. 2
Fig. 2

(a) Single CCD frame, showing two active pixels (filled circles) and their relative angle ϕ subtended at the center (square) of the type I downconversion ring. This center is determined from (b) the superposition of multiple frames. The type I downconversion ring is clearly seen in this superposition of 90,000 single-frame measurements.

Fig. 3
Fig. 3

(a) Histogram of angles ϕ subtended at the center of the ring by the two photons detected simultaneously and (b) a histogram with a more accurately determined center, which shows a slight improvement of the signal-to-noise ratio. The sharp peak at 180° shows the correlation of the true signal and idler photons. The noise floor is due to detected pairs when one photon originates from stray light.

Fig. 4
Fig. 4

Superposition of pairs that are contained in the narrow peak at 180° of the histogram shown in Fig. 3(b), representing the quantum-correlated pairs. Note that they lie evenly distributed over the ring.

Metrics