Abstract

Ultraviolet laser pulses were found to introduce and destroy point defects that play a key role in the generation of second-order optical nonlinearities by thermal poling in high-purity silica glasses. The characteristics of the generation process depended largely on not only SiOH, O2, and H2 content of the glasses but also the sequence of thermal poling and the pulse irradiation. There were two different kinds of nonlinearity: one localized in a thin layer near the sample surface (near-surface) and a bulk one spreading throughout the sample. The near-surface and bulk nonlinearities are associated with SiO- and SiSi, respectively.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16, 1732–1734 (1991).
    [CrossRef] [PubMed]
  2. N. Mukherjee, R. A. Myers, and S. R. J. Brueck, “Dynamics of second-harmonic generation in fused silica,” J. Opt. Soc. Am. B 11, 665–669 (1994).
    [CrossRef]
  3. P. G. Kazansky, A. Kamal, and P. St. J. Russell, “Erasure of thermally poled second-order nonlinearity in fused silica by electron implantation,” Opt. Lett. 18, 1141–1143 (1993).
    [CrossRef] [PubMed]
  4. P. G. Kazansky, V. Pruneri, and P. St. J. Russell, “Blue-light generation by quasi-phase-matched frequency doubling in thermally poled optical fibers,” Opt. Lett. 20, 843–845 (1995).
    [CrossRef] [PubMed]
  5. H. Nasu, H. Okamoto, A. Muto, J. Matsuoka, and K. Kamiya, “Influence of the OH content on second-harmonic generation from electrically polarized SiO2 glasses” Jpn. J. Appl. Phys. 32, L406–L407 (1993).
    [CrossRef]
  6. L. J. Henry, A. D. DeVilbiss, and T. E. Tsai, “Effect of preannealing on the level of second-harmonic generation and defect site achieved in poled low-water fused silica,” J. Opt. Soc. Am. B 12, 2037–2045 (1995).
    [CrossRef]
  7. K. Tanaka, K. Kashima, K. Hirao, N. Soga, S. Yamagata, A. Mito, and H. Nasu, “Highly efficient optical second harmonic generation in poled Ti-doped silica glasses,” Jpn. J. Appl. Phys. 34, 175–176 (1995).
    [CrossRef]
  8. H. Nasu, H. Okamoto, K. Kurachi, J. Matsuoka, K. Kamiya, A. Mito, and H. Hosono, “Second-harmonic generation from electrically poled SiO2 glasses: effects of OH concentration, defects, and poling conditions,” J. Opt. Soc. Am. B 12, 644–649 (1995).
    [CrossRef]
  9. T. Fujiwara, M. Takahashi, and A. Ikushima, “Second-harmonic generation in germanosilicate glass poled with ArF laser irradiation,” Appl. Phys. Lett. 71, 1032–1034 (1997).
    [CrossRef]
  10. P. G. Kazansky, A. Kamal, and P. St. J. Russell, “High second-order nonlinearities induced in lead silicate glass by electron-beam irradiation,” Opt. Lett. 18, 693–695 (1993).
    [CrossRef] [PubMed]
  11. A. Kameyama, E. Muroi, A. Yokotani, K. Kurosawa, and P. R. Herman, “X ray radiation effects on second-harmonic generation in thermally poled silica glass,” J. Opt. Soc. Am. B 14, 1088–1092 (1997).
    [CrossRef]
  12. A. Kameyama, A. Yokotani, and K. Kurosawa, “Erasing process of thermally poled optical nonlinearities in silica glasses with KrF excimer laser pulses,” Jpn. J. Appl. Phys. 37, Suppl. 37-1, 65–67 (1998).
    [CrossRef]
  13. A. Kameyama, A. Yokotani, and K. Kurosawa, “Identifica-tion of defects associated with second-order optical nonlinearity in thermally poled high-purity silica glasses,” J. Appl. Phys. 89, 4707–4713 (2001).
    [CrossRef]
  14. N. Kuzuu, Y. Matsumoto, and M. Murahara, “Characteristics of ArF-excimer-laser-induced 1.9-eV emission bands in type-III and soot-remelted silicas,” Phys. Rev. B 48, 6952–6956 (1993).
    [CrossRef]
  15. N. Kuzuu, Y. Komatsu, and M. Murahara, “Energy-density and repetition-rate dependence of the KrF-excimer-laser-induced 1.9-eV emission band in type-III fused silicas,” Phys. Rev. B 47, 3078–3082 (1993).
    [CrossRef]
  16. R. J. Pressley, Handbook of Lasers with Selected Data on Optical Technology (Chemical Rubber, Cleveland, Ohio, 1972).
  17. J. Jerphangnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
    [CrossRef]
  18. Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985).
  19. S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hara, “Various types of non-bridging oxygen hole center in high-purity silica glass,” J. Appl. Phys. 68, 1212–1217 (1990).
    [CrossRef]
  20. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16–48 (1998).
    [CrossRef]
  21. A. Muto, K. Hagimoto, and C. Takahashi, “Determination of the third-order optical nonlinear susceptibility of fused silica using optical harmonic generation methods,” Nonlinear Opt. 13, 3–18 (1995).
  22. N. Kuzuu and M. Murahara, “Effects of synthesis conditions on existence and nonexistence of the ArF excimer laser and x-ray induced B2α band in type-III fused silicas,” Phys. Rev. B 52, 3241–3247 (1995).
    [CrossRef]

2001 (1)

A. Kameyama, A. Yokotani, and K. Kurosawa, “Identifica-tion of defects associated with second-order optical nonlinearity in thermally poled high-purity silica glasses,” J. Appl. Phys. 89, 4707–4713 (2001).
[CrossRef]

1998 (2)

A. Kameyama, A. Yokotani, and K. Kurosawa, “Erasing process of thermally poled optical nonlinearities in silica glasses with KrF excimer laser pulses,” Jpn. J. Appl. Phys. 37, Suppl. 37-1, 65–67 (1998).
[CrossRef]

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16–48 (1998).
[CrossRef]

1997 (2)

A. Kameyama, E. Muroi, A. Yokotani, K. Kurosawa, and P. R. Herman, “X ray radiation effects on second-harmonic generation in thermally poled silica glass,” J. Opt. Soc. Am. B 14, 1088–1092 (1997).
[CrossRef]

T. Fujiwara, M. Takahashi, and A. Ikushima, “Second-harmonic generation in germanosilicate glass poled with ArF laser irradiation,” Appl. Phys. Lett. 71, 1032–1034 (1997).
[CrossRef]

1995 (6)

L. J. Henry, A. D. DeVilbiss, and T. E. Tsai, “Effect of preannealing on the level of second-harmonic generation and defect site achieved in poled low-water fused silica,” J. Opt. Soc. Am. B 12, 2037–2045 (1995).
[CrossRef]

K. Tanaka, K. Kashima, K. Hirao, N. Soga, S. Yamagata, A. Mito, and H. Nasu, “Highly efficient optical second harmonic generation in poled Ti-doped silica glasses,” Jpn. J. Appl. Phys. 34, 175–176 (1995).
[CrossRef]

H. Nasu, H. Okamoto, K. Kurachi, J. Matsuoka, K. Kamiya, A. Mito, and H. Hosono, “Second-harmonic generation from electrically poled SiO2 glasses: effects of OH concentration, defects, and poling conditions,” J. Opt. Soc. Am. B 12, 644–649 (1995).
[CrossRef]

P. G. Kazansky, V. Pruneri, and P. St. J. Russell, “Blue-light generation by quasi-phase-matched frequency doubling in thermally poled optical fibers,” Opt. Lett. 20, 843–845 (1995).
[CrossRef] [PubMed]

A. Muto, K. Hagimoto, and C. Takahashi, “Determination of the third-order optical nonlinear susceptibility of fused silica using optical harmonic generation methods,” Nonlinear Opt. 13, 3–18 (1995).

N. Kuzuu and M. Murahara, “Effects of synthesis conditions on existence and nonexistence of the ArF excimer laser and x-ray induced B2α band in type-III fused silicas,” Phys. Rev. B 52, 3241–3247 (1995).
[CrossRef]

1994 (1)

1993 (5)

P. G. Kazansky, A. Kamal, and P. St. J. Russell, “Erasure of thermally poled second-order nonlinearity in fused silica by electron implantation,” Opt. Lett. 18, 1141–1143 (1993).
[CrossRef] [PubMed]

H. Nasu, H. Okamoto, A. Muto, J. Matsuoka, and K. Kamiya, “Influence of the OH content on second-harmonic generation from electrically polarized SiO2 glasses” Jpn. J. Appl. Phys. 32, L406–L407 (1993).
[CrossRef]

P. G. Kazansky, A. Kamal, and P. St. J. Russell, “High second-order nonlinearities induced in lead silicate glass by electron-beam irradiation,” Opt. Lett. 18, 693–695 (1993).
[CrossRef] [PubMed]

N. Kuzuu, Y. Matsumoto, and M. Murahara, “Characteristics of ArF-excimer-laser-induced 1.9-eV emission bands in type-III and soot-remelted silicas,” Phys. Rev. B 48, 6952–6956 (1993).
[CrossRef]

N. Kuzuu, Y. Komatsu, and M. Murahara, “Energy-density and repetition-rate dependence of the KrF-excimer-laser-induced 1.9-eV emission band in type-III fused silicas,” Phys. Rev. B 47, 3078–3082 (1993).
[CrossRef]

1991 (1)

1990 (1)

S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hara, “Various types of non-bridging oxygen hole center in high-purity silica glass,” J. Appl. Phys. 68, 1212–1217 (1990).
[CrossRef]

1970 (1)

J. Jerphangnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

Brueck, S. R. J.

DeVilbiss, A. D.

Fujiwara, T.

T. Fujiwara, M. Takahashi, and A. Ikushima, “Second-harmonic generation in germanosilicate glass poled with ArF laser irradiation,” Appl. Phys. Lett. 71, 1032–1034 (1997).
[CrossRef]

Hagimoto, K.

A. Muto, K. Hagimoto, and C. Takahashi, “Determination of the third-order optical nonlinear susceptibility of fused silica using optical harmonic generation methods,” Nonlinear Opt. 13, 3–18 (1995).

Hara, Y.

S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hara, “Various types of non-bridging oxygen hole center in high-purity silica glass,” J. Appl. Phys. 68, 1212–1217 (1990).
[CrossRef]

Henry, L. J.

Herman, P. R.

Hirao, K.

K. Tanaka, K. Kashima, K. Hirao, N. Soga, S. Yamagata, A. Mito, and H. Nasu, “Highly efficient optical second harmonic generation in poled Ti-doped silica glasses,” Jpn. J. Appl. Phys. 34, 175–176 (1995).
[CrossRef]

Hosono, H.

Ikushima, A.

T. Fujiwara, M. Takahashi, and A. Ikushima, “Second-harmonic generation in germanosilicate glass poled with ArF laser irradiation,” Appl. Phys. Lett. 71, 1032–1034 (1997).
[CrossRef]

Jerphangnon, J.

J. Jerphangnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

Kamal, A.

Kameyama, A.

A. Kameyama, A. Yokotani, and K. Kurosawa, “Identifica-tion of defects associated with second-order optical nonlinearity in thermally poled high-purity silica glasses,” J. Appl. Phys. 89, 4707–4713 (2001).
[CrossRef]

A. Kameyama, A. Yokotani, and K. Kurosawa, “Erasing process of thermally poled optical nonlinearities in silica glasses with KrF excimer laser pulses,” Jpn. J. Appl. Phys. 37, Suppl. 37-1, 65–67 (1998).
[CrossRef]

A. Kameyama, E. Muroi, A. Yokotani, K. Kurosawa, and P. R. Herman, “X ray radiation effects on second-harmonic generation in thermally poled silica glass,” J. Opt. Soc. Am. B 14, 1088–1092 (1997).
[CrossRef]

Kamiya, K.

H. Nasu, H. Okamoto, K. Kurachi, J. Matsuoka, K. Kamiya, A. Mito, and H. Hosono, “Second-harmonic generation from electrically poled SiO2 glasses: effects of OH concentration, defects, and poling conditions,” J. Opt. Soc. Am. B 12, 644–649 (1995).
[CrossRef]

H. Nasu, H. Okamoto, A. Muto, J. Matsuoka, and K. Kamiya, “Influence of the OH content on second-harmonic generation from electrically polarized SiO2 glasses” Jpn. J. Appl. Phys. 32, L406–L407 (1993).
[CrossRef]

Kashima, K.

K. Tanaka, K. Kashima, K. Hirao, N. Soga, S. Yamagata, A. Mito, and H. Nasu, “Highly efficient optical second harmonic generation in poled Ti-doped silica glasses,” Jpn. J. Appl. Phys. 34, 175–176 (1995).
[CrossRef]

Kazansky, P. G.

Komatsu, Y.

N. Kuzuu, Y. Komatsu, and M. Murahara, “Energy-density and repetition-rate dependence of the KrF-excimer-laser-induced 1.9-eV emission band in type-III fused silicas,” Phys. Rev. B 47, 3078–3082 (1993).
[CrossRef]

Kurachi, K.

Kurosawa, K.

A. Kameyama, A. Yokotani, and K. Kurosawa, “Identifica-tion of defects associated with second-order optical nonlinearity in thermally poled high-purity silica glasses,” J. Appl. Phys. 89, 4707–4713 (2001).
[CrossRef]

A. Kameyama, A. Yokotani, and K. Kurosawa, “Erasing process of thermally poled optical nonlinearities in silica glasses with KrF excimer laser pulses,” Jpn. J. Appl. Phys. 37, Suppl. 37-1, 65–67 (1998).
[CrossRef]

A. Kameyama, E. Muroi, A. Yokotani, K. Kurosawa, and P. R. Herman, “X ray radiation effects on second-harmonic generation in thermally poled silica glass,” J. Opt. Soc. Am. B 14, 1088–1092 (1997).
[CrossRef]

Kurtz, S. K.

J. Jerphangnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

Kuzuu, N.

N. Kuzuu and M. Murahara, “Effects of synthesis conditions on existence and nonexistence of the ArF excimer laser and x-ray induced B2α band in type-III fused silicas,” Phys. Rev. B 52, 3241–3247 (1995).
[CrossRef]

N. Kuzuu, Y. Komatsu, and M. Murahara, “Energy-density and repetition-rate dependence of the KrF-excimer-laser-induced 1.9-eV emission band in type-III fused silicas,” Phys. Rev. B 47, 3078–3082 (1993).
[CrossRef]

N. Kuzuu, Y. Matsumoto, and M. Murahara, “Characteristics of ArF-excimer-laser-induced 1.9-eV emission bands in type-III and soot-remelted silicas,” Phys. Rev. B 48, 6952–6956 (1993).
[CrossRef]

Matsumoto, Y.

N. Kuzuu, Y. Matsumoto, and M. Murahara, “Characteristics of ArF-excimer-laser-induced 1.9-eV emission bands in type-III and soot-remelted silicas,” Phys. Rev. B 48, 6952–6956 (1993).
[CrossRef]

Matsuoka, J.

H. Nasu, H. Okamoto, K. Kurachi, J. Matsuoka, K. Kamiya, A. Mito, and H. Hosono, “Second-harmonic generation from electrically poled SiO2 glasses: effects of OH concentration, defects, and poling conditions,” J. Opt. Soc. Am. B 12, 644–649 (1995).
[CrossRef]

H. Nasu, H. Okamoto, A. Muto, J. Matsuoka, and K. Kamiya, “Influence of the OH content on second-harmonic generation from electrically polarized SiO2 glasses” Jpn. J. Appl. Phys. 32, L406–L407 (1993).
[CrossRef]

Mito, A.

K. Tanaka, K. Kashima, K. Hirao, N. Soga, S. Yamagata, A. Mito, and H. Nasu, “Highly efficient optical second harmonic generation in poled Ti-doped silica glasses,” Jpn. J. Appl. Phys. 34, 175–176 (1995).
[CrossRef]

H. Nasu, H. Okamoto, K. Kurachi, J. Matsuoka, K. Kamiya, A. Mito, and H. Hosono, “Second-harmonic generation from electrically poled SiO2 glasses: effects of OH concentration, defects, and poling conditions,” J. Opt. Soc. Am. B 12, 644–649 (1995).
[CrossRef]

Mukherjee, N.

Munekuni, S.

S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hara, “Various types of non-bridging oxygen hole center in high-purity silica glass,” J. Appl. Phys. 68, 1212–1217 (1990).
[CrossRef]

Murahara, M.

N. Kuzuu and M. Murahara, “Effects of synthesis conditions on existence and nonexistence of the ArF excimer laser and x-ray induced B2α band in type-III fused silicas,” Phys. Rev. B 52, 3241–3247 (1995).
[CrossRef]

N. Kuzuu, Y. Matsumoto, and M. Murahara, “Characteristics of ArF-excimer-laser-induced 1.9-eV emission bands in type-III and soot-remelted silicas,” Phys. Rev. B 48, 6952–6956 (1993).
[CrossRef]

N. Kuzuu, Y. Komatsu, and M. Murahara, “Energy-density and repetition-rate dependence of the KrF-excimer-laser-induced 1.9-eV emission band in type-III fused silicas,” Phys. Rev. B 47, 3078–3082 (1993).
[CrossRef]

Muroi, E.

Muto, A.

A. Muto, K. Hagimoto, and C. Takahashi, “Determination of the third-order optical nonlinear susceptibility of fused silica using optical harmonic generation methods,” Nonlinear Opt. 13, 3–18 (1995).

H. Nasu, H. Okamoto, A. Muto, J. Matsuoka, and K. Kamiya, “Influence of the OH content on second-harmonic generation from electrically polarized SiO2 glasses” Jpn. J. Appl. Phys. 32, L406–L407 (1993).
[CrossRef]

Myers, R. A.

Nagasawa, K.

S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hara, “Various types of non-bridging oxygen hole center in high-purity silica glass,” J. Appl. Phys. 68, 1212–1217 (1990).
[CrossRef]

Nasu, H.

H. Nasu, H. Okamoto, K. Kurachi, J. Matsuoka, K. Kamiya, A. Mito, and H. Hosono, “Second-harmonic generation from electrically poled SiO2 glasses: effects of OH concentration, defects, and poling conditions,” J. Opt. Soc. Am. B 12, 644–649 (1995).
[CrossRef]

K. Tanaka, K. Kashima, K. Hirao, N. Soga, S. Yamagata, A. Mito, and H. Nasu, “Highly efficient optical second harmonic generation in poled Ti-doped silica glasses,” Jpn. J. Appl. Phys. 34, 175–176 (1995).
[CrossRef]

H. Nasu, H. Okamoto, A. Muto, J. Matsuoka, and K. Kamiya, “Influence of the OH content on second-harmonic generation from electrically polarized SiO2 glasses” Jpn. J. Appl. Phys. 32, L406–L407 (1993).
[CrossRef]

Ohki, Y.

S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hara, “Various types of non-bridging oxygen hole center in high-purity silica glass,” J. Appl. Phys. 68, 1212–1217 (1990).
[CrossRef]

Okamoto, H.

H. Nasu, H. Okamoto, K. Kurachi, J. Matsuoka, K. Kamiya, A. Mito, and H. Hosono, “Second-harmonic generation from electrically poled SiO2 glasses: effects of OH concentration, defects, and poling conditions,” J. Opt. Soc. Am. B 12, 644–649 (1995).
[CrossRef]

H. Nasu, H. Okamoto, A. Muto, J. Matsuoka, and K. Kamiya, “Influence of the OH content on second-harmonic generation from electrically polarized SiO2 glasses” Jpn. J. Appl. Phys. 32, L406–L407 (1993).
[CrossRef]

Pruneri, V.

Russell, P. St. J.

Shimogaichi, Y.

S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hara, “Various types of non-bridging oxygen hole center in high-purity silica glass,” J. Appl. Phys. 68, 1212–1217 (1990).
[CrossRef]

Skuja, L.

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16–48 (1998).
[CrossRef]

Soga, N.

K. Tanaka, K. Kashima, K. Hirao, N. Soga, S. Yamagata, A. Mito, and H. Nasu, “Highly efficient optical second harmonic generation in poled Ti-doped silica glasses,” Jpn. J. Appl. Phys. 34, 175–176 (1995).
[CrossRef]

Takahashi, C.

A. Muto, K. Hagimoto, and C. Takahashi, “Determination of the third-order optical nonlinear susceptibility of fused silica using optical harmonic generation methods,” Nonlinear Opt. 13, 3–18 (1995).

Takahashi, M.

T. Fujiwara, M. Takahashi, and A. Ikushima, “Second-harmonic generation in germanosilicate glass poled with ArF laser irradiation,” Appl. Phys. Lett. 71, 1032–1034 (1997).
[CrossRef]

Tanaka, K.

K. Tanaka, K. Kashima, K. Hirao, N. Soga, S. Yamagata, A. Mito, and H. Nasu, “Highly efficient optical second harmonic generation in poled Ti-doped silica glasses,” Jpn. J. Appl. Phys. 34, 175–176 (1995).
[CrossRef]

Tohmon, R.

S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hara, “Various types of non-bridging oxygen hole center in high-purity silica glass,” J. Appl. Phys. 68, 1212–1217 (1990).
[CrossRef]

Tsai, T. E.

Yamagata, S.

K. Tanaka, K. Kashima, K. Hirao, N. Soga, S. Yamagata, A. Mito, and H. Nasu, “Highly efficient optical second harmonic generation in poled Ti-doped silica glasses,” Jpn. J. Appl. Phys. 34, 175–176 (1995).
[CrossRef]

Yamanaka, T.

S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hara, “Various types of non-bridging oxygen hole center in high-purity silica glass,” J. Appl. Phys. 68, 1212–1217 (1990).
[CrossRef]

Yokotani, A.

A. Kameyama, A. Yokotani, and K. Kurosawa, “Identifica-tion of defects associated with second-order optical nonlinearity in thermally poled high-purity silica glasses,” J. Appl. Phys. 89, 4707–4713 (2001).
[CrossRef]

A. Kameyama, A. Yokotani, and K. Kurosawa, “Erasing process of thermally poled optical nonlinearities in silica glasses with KrF excimer laser pulses,” Jpn. J. Appl. Phys. 37, Suppl. 37-1, 65–67 (1998).
[CrossRef]

A. Kameyama, E. Muroi, A. Yokotani, K. Kurosawa, and P. R. Herman, “X ray radiation effects on second-harmonic generation in thermally poled silica glass,” J. Opt. Soc. Am. B 14, 1088–1092 (1997).
[CrossRef]

Appl. Phys. Lett. (1)

T. Fujiwara, M. Takahashi, and A. Ikushima, “Second-harmonic generation in germanosilicate glass poled with ArF laser irradiation,” Appl. Phys. Lett. 71, 1032–1034 (1997).
[CrossRef]

J. Appl. Phys. (3)

A. Kameyama, A. Yokotani, and K. Kurosawa, “Identifica-tion of defects associated with second-order optical nonlinearity in thermally poled high-purity silica glasses,” J. Appl. Phys. 89, 4707–4713 (2001).
[CrossRef]

J. Jerphangnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hara, “Various types of non-bridging oxygen hole center in high-purity silica glass,” J. Appl. Phys. 68, 1212–1217 (1990).
[CrossRef]

J. Non-Cryst. Solids (1)

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16–48 (1998).
[CrossRef]

J. Opt. Soc. Am. B (4)

Jpn. J. Appl. Phys. (3)

H. Nasu, H. Okamoto, A. Muto, J. Matsuoka, and K. Kamiya, “Influence of the OH content on second-harmonic generation from electrically polarized SiO2 glasses” Jpn. J. Appl. Phys. 32, L406–L407 (1993).
[CrossRef]

K. Tanaka, K. Kashima, K. Hirao, N. Soga, S. Yamagata, A. Mito, and H. Nasu, “Highly efficient optical second harmonic generation in poled Ti-doped silica glasses,” Jpn. J. Appl. Phys. 34, 175–176 (1995).
[CrossRef]

A. Kameyama, A. Yokotani, and K. Kurosawa, “Erasing process of thermally poled optical nonlinearities in silica glasses with KrF excimer laser pulses,” Jpn. J. Appl. Phys. 37, Suppl. 37-1, 65–67 (1998).
[CrossRef]

Nonlinear Opt. (1)

A. Muto, K. Hagimoto, and C. Takahashi, “Determination of the third-order optical nonlinear susceptibility of fused silica using optical harmonic generation methods,” Nonlinear Opt. 13, 3–18 (1995).

Opt. Lett. (4)

Phys. Rev. B (3)

N. Kuzuu, Y. Matsumoto, and M. Murahara, “Characteristics of ArF-excimer-laser-induced 1.9-eV emission bands in type-III and soot-remelted silicas,” Phys. Rev. B 48, 6952–6956 (1993).
[CrossRef]

N. Kuzuu, Y. Komatsu, and M. Murahara, “Energy-density and repetition-rate dependence of the KrF-excimer-laser-induced 1.9-eV emission band in type-III fused silicas,” Phys. Rev. B 47, 3078–3082 (1993).
[CrossRef]

N. Kuzuu and M. Murahara, “Effects of synthesis conditions on existence and nonexistence of the ArF excimer laser and x-ray induced B2α band in type-III fused silicas,” Phys. Rev. B 52, 3241–3247 (1995).
[CrossRef]

Other (2)

R. J. Pressley, Handbook of Lasers with Selected Data on Optical Technology (Chemical Rubber, Cleveland, Ohio, 1972).

Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup for thermally poled silica glass plates. The samples were 20 mm in diameter and 1.5 mm in thickness.

Fig. 2
Fig. 2

Experimental setup for measuring second-harmonic generation intensity. ND, neutral density; PMT, photomultiplier tube.

Fig. 3
Fig. 3

SHG intensity plotted against the Nd:YAG laser incident angle in a sample of content class 1 (a) irradiated by UV laser pulses and then thermally poled and (b) irradiated by UV laser pulses during thermal poling. The χ33(2) values are 0.51 and 0.39 pm/V, respectively.

Fig. 4
Fig. 4

The χ33(2) value as a function of UV laser pulse number in a sample of content class 1 (a) irradiated by UV laser pulses and then thermally poled and (b) irradiated by UV laser pulses during thermal poling. The laser fluence was 12 mJ/cm2.

Fig. 5
Fig. 5

SHG intensity plotted against the Nd:YAG laser incident angle in a sample of content class 2. Curve (a) is the measured value and has been decomposed into curve (b) of the near-surface nonlinearity contribution and curve (c) of the bulk nonlinearity contribution. The χ33(2) values are 0.20 pm/V and 0.07 pm/V for the near-surface and bulk nonlinearities, respectively.

Fig. 6
Fig. 6

The χ33(2) value as a function of UV laser pulse number in a sample of content class 2. Curve (a) with solid circles shows the value of the near-surface nonlinearity and curve (b) with solid squares shows the value of the bulk one. The laser fluence was 12 mJ/cm2.

Fig. 7
Fig. 7

The χ33(2) value in a sample of content class 3 as a function of UV laser pulse number. Curve (a) with solid circles shows the value of the near-surface nonlinearity and curve (b) with solid squares shows the value of the bulk one. The laser fluence was 12 mJ/cm2.

Fig. 8
Fig. 8

●, χ33(2) values and ■, 1.9-eV luminescence intensities plotted as a function of number of UV laser pulses (60 mJ/cm2 fluence) observed in a sample of content class 1 [χ33(2)=0.51 pm/V].

Tables (1)

Tables Icon

Table 1 χ33(2) Values of Samplesa

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δk(θ)=4π(n2ω cos θ2ω-nω cos θω)/λ=4π[(n2ω2-sin2 θ)1/2-(nω2-sin2 θ)1/2]/λ,
L=2π(j-i)/[Δk(θi)-Δk(θj)].
SiO·+H2SiOH+H·.
SiH+HOSiSiSi+H2O.

Metrics