Abstract

Surface structure and relaxation phenomena have been investigated for thermally poled 20WO3·80TeO2 glass, which is known to show a large second-order nonlinear susceptibility. X-ray photoelectron spectroscopy reveals that the penetration of Na+ into the anode-side surface of 20WO3·80TeO2 glass occurred during poling, since the poling was performed with the 20WO3·80TeO2 glass sandwiched in between two commercial borosilicate glasses containing Na+. The agreement between dependence of second-harmonic intensity on etched thickness at anode-side surface and the concentration profile of Na+ suggests that the penetration of Na+ predominantly contributes to the second-harmonic generation. The decay of second-harmonic intensity at room temperature is describable in terms of the single exponential function except for the glass poled at higher temperature, for which the stretched exponential function is applicable. The activation energy for the decay of second-harmonic intensity of the glass poled at 260 °C is 47 kJ·mol-1. This value presumably corresponds to the diffusion of Na+ ions.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. C. Long, R. A. Myers, and S. R. J. Brueck, “Measurement of the linear electro-optic coefficient in poled amorphous silica,” Opt. Lett. 19, 1819–1821 (1994).
    [CrossRef] [PubMed]
  2. O. Sugihara, T. Hirama, H. Fujimura, and N. Okamoto, “Second-order nonlinear optical properties from poled silicate channel-waveguide,” Opt. Rev. 3, 150–152 (1996).
    [CrossRef]
  3. P. G. Kazansky, A. Kamal, and P. S. J. Russell, “Erasure of thermally poled second-order nonlinearity in fused silica by electron implantation,” Opt. Lett. 18, 1141–1143 (1993).
    [CrossRef] [PubMed]
  4. H. Nasu, H. Okamoto, A. Mito, J. Matsuoka, and K. Kamiya, “Influence of the OH content on second harmonic generation from electrically polarized SiO2 glasses,” Jpn. J. Appl. Phys., Part 2 32, L180–L181 (1993).
    [CrossRef]
  5. T. G. Alley, R. A. Myers, and S. R. J. Brueck, “An ion exchange model for extended-duration thermal poling of bulk fused silica,” in Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, Vol. 17 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 293–295.
  6. H. Imai, S. Horinouchi, N. Asakuma, K. Fukao, D. Matsuki, H. Hirashima, and K. Sasaki, “Effects of introduction of sodium and water on second-order nonlinearity in poled synthetic silica glass,” J. Appl. Phys. 15, 5415–5418 (1998).
    [CrossRef]
  7. A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, “Induction and relaxation of optical second-order nonlinearity in tellurite glasses,” J. Appl. Phys. 85, 2046–2051 (1999).
    [CrossRef]
  8. M. Qiu, F. Pi, G. Orriols, and M. Bibche, “Signal damping of second-harmonic generation in poled soda-lime silicate glass,” J. Opt. Soc. Am. B 15, 1362–1365 (1998).
    [CrossRef]
  9. F. C. Garcia, I. C. S. Carvalho, E. Hering, and W. Margulis, “Inducing a large second-order optical nonlinearity in soft glasses by poling,” Appl. Phys. Lett. 72, 3252–3254 (1998).
    [CrossRef]
  10. K. Tanaka, K. Kashima, K. Hirao, N. Soga, A. Mito, and H. Nasu, “Second-harmonic generation in poled tellurite glasses,” Jpn. J. Appl. Phys., Part 2 32, L843–L845 (1993).
    [CrossRef]
  11. K. Tanaka, A. Narazaki, and K. Hirao, “Large optical second-order nonlinearity of poled WO3–TeO2 glass,” Opt. Lett. 25, 251–253 (2000).
    [CrossRef]
  12. K. Tanaka, A. Narazaki, Y. Yonezaki, and K. Hirao, “Poling-induced structural change and second-order nonlinearity of Na+-doped Nb2O5–TeO2 glass,” J. Phys.: Condens. Matter 12, L513–L518 (2000).
  13. Y. Himei, Y. Miura, T. Nanba, and A. Osaka, “X-ray photoelectron spectroscopy of alkali tellurite glasses,” J. Non-Cryst. Solids 211, 64–71 (1997).
    [CrossRef]
  14. N. Mochida, K. Takahashi, K. Nakata, and S. Shibusawa, “Properties and structure of the binary tellurite glasses containing mono- and di-valent cations,” J. Ceram. Soc. Jpn. 86, 316–326 (1978).
  15. H. Bürger, W. Vogel, and V. Kozhukharov, “IR transmission and properties of glasses in the TeO2–[RnOm, RnXm, Rn(SO4)m, Rn(PO3)m and B2O3] systems,” Infrared Phys. 25, 395–409 (1985).
    [CrossRef]
  16. A. Heuer, S. C. Kuebler, U. Tracht, H. W. Spiess, and K. Okun, “Structure and dynamics of glasses and glass formers,” Mater. Res. Soc. Symp. Proc. 455, 105–116 (1997).
    [CrossRef]
  17. A. Narazaki, K. Tanaka, K. Hirao, T. Hashimoto, H. Nasu, and K. Kamiya, “IR and XPS studies on the surface struc-ture of poled ZnO–TeO2 glasses with second-order nonlinearity,” J. Am. Ceram. Soc. 84, 214–217 (2001).
    [CrossRef]
  18. A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, “Effect of poling temperature on optical second harmonic intensity of sodium zinc tellurite glasses,” J. Appl. Phys. 83, 3986–3990 (1998).
    [CrossRef]
  19. A. Pan and A. Ghosh, “Activation energy and conductivity relaxation of sodium tellurite glasses,” Phys. Rev. B 59, 899–904 (1999).
    [CrossRef]
  20. T. Komatsu, R. Ike, R. Sato, and K. Matusita, “Mixed alkali effect in tellurite glasses and change in fragility,” Phys. Chem. Glasses 36, 216–221 (1995).

2001

A. Narazaki, K. Tanaka, K. Hirao, T. Hashimoto, H. Nasu, and K. Kamiya, “IR and XPS studies on the surface struc-ture of poled ZnO–TeO2 glasses with second-order nonlinearity,” J. Am. Ceram. Soc. 84, 214–217 (2001).
[CrossRef]

2000

K. Tanaka, A. Narazaki, and K. Hirao, “Large optical second-order nonlinearity of poled WO3–TeO2 glass,” Opt. Lett. 25, 251–253 (2000).
[CrossRef]

K. Tanaka, A. Narazaki, Y. Yonezaki, and K. Hirao, “Poling-induced structural change and second-order nonlinearity of Na+-doped Nb2O5–TeO2 glass,” J. Phys.: Condens. Matter 12, L513–L518 (2000).

1999

A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, “Induction and relaxation of optical second-order nonlinearity in tellurite glasses,” J. Appl. Phys. 85, 2046–2051 (1999).
[CrossRef]

A. Pan and A. Ghosh, “Activation energy and conductivity relaxation of sodium tellurite glasses,” Phys. Rev. B 59, 899–904 (1999).
[CrossRef]

1998

A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, “Effect of poling temperature on optical second harmonic intensity of sodium zinc tellurite glasses,” J. Appl. Phys. 83, 3986–3990 (1998).
[CrossRef]

H. Imai, S. Horinouchi, N. Asakuma, K. Fukao, D. Matsuki, H. Hirashima, and K. Sasaki, “Effects of introduction of sodium and water on second-order nonlinearity in poled synthetic silica glass,” J. Appl. Phys. 15, 5415–5418 (1998).
[CrossRef]

F. C. Garcia, I. C. S. Carvalho, E. Hering, and W. Margulis, “Inducing a large second-order optical nonlinearity in soft glasses by poling,” Appl. Phys. Lett. 72, 3252–3254 (1998).
[CrossRef]

M. Qiu, F. Pi, G. Orriols, and M. Bibche, “Signal damping of second-harmonic generation in poled soda-lime silicate glass,” J. Opt. Soc. Am. B 15, 1362–1365 (1998).
[CrossRef]

1997

Y. Himei, Y. Miura, T. Nanba, and A. Osaka, “X-ray photoelectron spectroscopy of alkali tellurite glasses,” J. Non-Cryst. Solids 211, 64–71 (1997).
[CrossRef]

A. Heuer, S. C. Kuebler, U. Tracht, H. W. Spiess, and K. Okun, “Structure and dynamics of glasses and glass formers,” Mater. Res. Soc. Symp. Proc. 455, 105–116 (1997).
[CrossRef]

1996

O. Sugihara, T. Hirama, H. Fujimura, and N. Okamoto, “Second-order nonlinear optical properties from poled silicate channel-waveguide,” Opt. Rev. 3, 150–152 (1996).
[CrossRef]

1995

T. Komatsu, R. Ike, R. Sato, and K. Matusita, “Mixed alkali effect in tellurite glasses and change in fragility,” Phys. Chem. Glasses 36, 216–221 (1995).

1994

1993

P. G. Kazansky, A. Kamal, and P. S. J. Russell, “Erasure of thermally poled second-order nonlinearity in fused silica by electron implantation,” Opt. Lett. 18, 1141–1143 (1993).
[CrossRef] [PubMed]

H. Nasu, H. Okamoto, A. Mito, J. Matsuoka, and K. Kamiya, “Influence of the OH content on second harmonic generation from electrically polarized SiO2 glasses,” Jpn. J. Appl. Phys., Part 2 32, L180–L181 (1993).
[CrossRef]

K. Tanaka, K. Kashima, K. Hirao, N. Soga, A. Mito, and H. Nasu, “Second-harmonic generation in poled tellurite glasses,” Jpn. J. Appl. Phys., Part 2 32, L843–L845 (1993).
[CrossRef]

1985

H. Bürger, W. Vogel, and V. Kozhukharov, “IR transmission and properties of glasses in the TeO2–[RnOm, RnXm, Rn(SO4)m, Rn(PO3)m and B2O3] systems,” Infrared Phys. 25, 395–409 (1985).
[CrossRef]

1978

N. Mochida, K. Takahashi, K. Nakata, and S. Shibusawa, “Properties and structure of the binary tellurite glasses containing mono- and di-valent cations,” J. Ceram. Soc. Jpn. 86, 316–326 (1978).

Asakuma, N.

H. Imai, S. Horinouchi, N. Asakuma, K. Fukao, D. Matsuki, H. Hirashima, and K. Sasaki, “Effects of introduction of sodium and water on second-order nonlinearity in poled synthetic silica glass,” J. Appl. Phys. 15, 5415–5418 (1998).
[CrossRef]

Bibche, M.

Brueck, S. R. J.

Bürger, H.

H. Bürger, W. Vogel, and V. Kozhukharov, “IR transmission and properties of glasses in the TeO2–[RnOm, RnXm, Rn(SO4)m, Rn(PO3)m and B2O3] systems,” Infrared Phys. 25, 395–409 (1985).
[CrossRef]

Carvalho, I. C. S.

F. C. Garcia, I. C. S. Carvalho, E. Hering, and W. Margulis, “Inducing a large second-order optical nonlinearity in soft glasses by poling,” Appl. Phys. Lett. 72, 3252–3254 (1998).
[CrossRef]

Fujimura, H.

O. Sugihara, T. Hirama, H. Fujimura, and N. Okamoto, “Second-order nonlinear optical properties from poled silicate channel-waveguide,” Opt. Rev. 3, 150–152 (1996).
[CrossRef]

Fukao, K.

H. Imai, S. Horinouchi, N. Asakuma, K. Fukao, D. Matsuki, H. Hirashima, and K. Sasaki, “Effects of introduction of sodium and water on second-order nonlinearity in poled synthetic silica glass,” J. Appl. Phys. 15, 5415–5418 (1998).
[CrossRef]

Garcia, F. C.

F. C. Garcia, I. C. S. Carvalho, E. Hering, and W. Margulis, “Inducing a large second-order optical nonlinearity in soft glasses by poling,” Appl. Phys. Lett. 72, 3252–3254 (1998).
[CrossRef]

Ghosh, A.

A. Pan and A. Ghosh, “Activation energy and conductivity relaxation of sodium tellurite glasses,” Phys. Rev. B 59, 899–904 (1999).
[CrossRef]

Hashimoto, T.

A. Narazaki, K. Tanaka, K. Hirao, T. Hashimoto, H. Nasu, and K. Kamiya, “IR and XPS studies on the surface struc-ture of poled ZnO–TeO2 glasses with second-order nonlinearity,” J. Am. Ceram. Soc. 84, 214–217 (2001).
[CrossRef]

Hering, E.

F. C. Garcia, I. C. S. Carvalho, E. Hering, and W. Margulis, “Inducing a large second-order optical nonlinearity in soft glasses by poling,” Appl. Phys. Lett. 72, 3252–3254 (1998).
[CrossRef]

Heuer, A.

A. Heuer, S. C. Kuebler, U. Tracht, H. W. Spiess, and K. Okun, “Structure and dynamics of glasses and glass formers,” Mater. Res. Soc. Symp. Proc. 455, 105–116 (1997).
[CrossRef]

Himei, Y.

Y. Himei, Y. Miura, T. Nanba, and A. Osaka, “X-ray photoelectron spectroscopy of alkali tellurite glasses,” J. Non-Cryst. Solids 211, 64–71 (1997).
[CrossRef]

Hirama, T.

O. Sugihara, T. Hirama, H. Fujimura, and N. Okamoto, “Second-order nonlinear optical properties from poled silicate channel-waveguide,” Opt. Rev. 3, 150–152 (1996).
[CrossRef]

Hirao, K.

A. Narazaki, K. Tanaka, K. Hirao, T. Hashimoto, H. Nasu, and K. Kamiya, “IR and XPS studies on the surface struc-ture of poled ZnO–TeO2 glasses with second-order nonlinearity,” J. Am. Ceram. Soc. 84, 214–217 (2001).
[CrossRef]

K. Tanaka, A. Narazaki, Y. Yonezaki, and K. Hirao, “Poling-induced structural change and second-order nonlinearity of Na+-doped Nb2O5–TeO2 glass,” J. Phys.: Condens. Matter 12, L513–L518 (2000).

K. Tanaka, A. Narazaki, and K. Hirao, “Large optical second-order nonlinearity of poled WO3–TeO2 glass,” Opt. Lett. 25, 251–253 (2000).
[CrossRef]

A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, “Induction and relaxation of optical second-order nonlinearity in tellurite glasses,” J. Appl. Phys. 85, 2046–2051 (1999).
[CrossRef]

A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, “Effect of poling temperature on optical second harmonic intensity of sodium zinc tellurite glasses,” J. Appl. Phys. 83, 3986–3990 (1998).
[CrossRef]

K. Tanaka, K. Kashima, K. Hirao, N. Soga, A. Mito, and H. Nasu, “Second-harmonic generation in poled tellurite glasses,” Jpn. J. Appl. Phys., Part 2 32, L843–L845 (1993).
[CrossRef]

Hirashima, H.

H. Imai, S. Horinouchi, N. Asakuma, K. Fukao, D. Matsuki, H. Hirashima, and K. Sasaki, “Effects of introduction of sodium and water on second-order nonlinearity in poled synthetic silica glass,” J. Appl. Phys. 15, 5415–5418 (1998).
[CrossRef]

Horinouchi, S.

H. Imai, S. Horinouchi, N. Asakuma, K. Fukao, D. Matsuki, H. Hirashima, and K. Sasaki, “Effects of introduction of sodium and water on second-order nonlinearity in poled synthetic silica glass,” J. Appl. Phys. 15, 5415–5418 (1998).
[CrossRef]

Ike, R.

T. Komatsu, R. Ike, R. Sato, and K. Matusita, “Mixed alkali effect in tellurite glasses and change in fragility,” Phys. Chem. Glasses 36, 216–221 (1995).

Imai, H.

H. Imai, S. Horinouchi, N. Asakuma, K. Fukao, D. Matsuki, H. Hirashima, and K. Sasaki, “Effects of introduction of sodium and water on second-order nonlinearity in poled synthetic silica glass,” J. Appl. Phys. 15, 5415–5418 (1998).
[CrossRef]

Kamal, A.

Kamiya, K.

A. Narazaki, K. Tanaka, K. Hirao, T. Hashimoto, H. Nasu, and K. Kamiya, “IR and XPS studies on the surface struc-ture of poled ZnO–TeO2 glasses with second-order nonlinearity,” J. Am. Ceram. Soc. 84, 214–217 (2001).
[CrossRef]

H. Nasu, H. Okamoto, A. Mito, J. Matsuoka, and K. Kamiya, “Influence of the OH content on second harmonic generation from electrically polarized SiO2 glasses,” Jpn. J. Appl. Phys., Part 2 32, L180–L181 (1993).
[CrossRef]

Kashima, K.

K. Tanaka, K. Kashima, K. Hirao, N. Soga, A. Mito, and H. Nasu, “Second-harmonic generation in poled tellurite glasses,” Jpn. J. Appl. Phys., Part 2 32, L843–L845 (1993).
[CrossRef]

Kazansky, P. G.

Komatsu, T.

T. Komatsu, R. Ike, R. Sato, and K. Matusita, “Mixed alkali effect in tellurite glasses and change in fragility,” Phys. Chem. Glasses 36, 216–221 (1995).

Kozhukharov, V.

H. Bürger, W. Vogel, and V. Kozhukharov, “IR transmission and properties of glasses in the TeO2–[RnOm, RnXm, Rn(SO4)m, Rn(PO3)m and B2O3] systems,” Infrared Phys. 25, 395–409 (1985).
[CrossRef]

Kuebler, S. C.

A. Heuer, S. C. Kuebler, U. Tracht, H. W. Spiess, and K. Okun, “Structure and dynamics of glasses and glass formers,” Mater. Res. Soc. Symp. Proc. 455, 105–116 (1997).
[CrossRef]

Long, X. C.

Margulis, W.

F. C. Garcia, I. C. S. Carvalho, E. Hering, and W. Margulis, “Inducing a large second-order optical nonlinearity in soft glasses by poling,” Appl. Phys. Lett. 72, 3252–3254 (1998).
[CrossRef]

Matsuki, D.

H. Imai, S. Horinouchi, N. Asakuma, K. Fukao, D. Matsuki, H. Hirashima, and K. Sasaki, “Effects of introduction of sodium and water on second-order nonlinearity in poled synthetic silica glass,” J. Appl. Phys. 15, 5415–5418 (1998).
[CrossRef]

Matsuoka, J.

H. Nasu, H. Okamoto, A. Mito, J. Matsuoka, and K. Kamiya, “Influence of the OH content on second harmonic generation from electrically polarized SiO2 glasses,” Jpn. J. Appl. Phys., Part 2 32, L180–L181 (1993).
[CrossRef]

Matusita, K.

T. Komatsu, R. Ike, R. Sato, and K. Matusita, “Mixed alkali effect in tellurite glasses and change in fragility,” Phys. Chem. Glasses 36, 216–221 (1995).

Mito, A.

H. Nasu, H. Okamoto, A. Mito, J. Matsuoka, and K. Kamiya, “Influence of the OH content on second harmonic generation from electrically polarized SiO2 glasses,” Jpn. J. Appl. Phys., Part 2 32, L180–L181 (1993).
[CrossRef]

K. Tanaka, K. Kashima, K. Hirao, N. Soga, A. Mito, and H. Nasu, “Second-harmonic generation in poled tellurite glasses,” Jpn. J. Appl. Phys., Part 2 32, L843–L845 (1993).
[CrossRef]

Miura, Y.

Y. Himei, Y. Miura, T. Nanba, and A. Osaka, “X-ray photoelectron spectroscopy of alkali tellurite glasses,” J. Non-Cryst. Solids 211, 64–71 (1997).
[CrossRef]

Mochida, N.

N. Mochida, K. Takahashi, K. Nakata, and S. Shibusawa, “Properties and structure of the binary tellurite glasses containing mono- and di-valent cations,” J. Ceram. Soc. Jpn. 86, 316–326 (1978).

Myers, R. A.

Nakata, K.

N. Mochida, K. Takahashi, K. Nakata, and S. Shibusawa, “Properties and structure of the binary tellurite glasses containing mono- and di-valent cations,” J. Ceram. Soc. Jpn. 86, 316–326 (1978).

Nanba, T.

Y. Himei, Y. Miura, T. Nanba, and A. Osaka, “X-ray photoelectron spectroscopy of alkali tellurite glasses,” J. Non-Cryst. Solids 211, 64–71 (1997).
[CrossRef]

Narazaki, A.

A. Narazaki, K. Tanaka, K. Hirao, T. Hashimoto, H. Nasu, and K. Kamiya, “IR and XPS studies on the surface struc-ture of poled ZnO–TeO2 glasses with second-order nonlinearity,” J. Am. Ceram. Soc. 84, 214–217 (2001).
[CrossRef]

K. Tanaka, A. Narazaki, Y. Yonezaki, and K. Hirao, “Poling-induced structural change and second-order nonlinearity of Na+-doped Nb2O5–TeO2 glass,” J. Phys.: Condens. Matter 12, L513–L518 (2000).

K. Tanaka, A. Narazaki, and K. Hirao, “Large optical second-order nonlinearity of poled WO3–TeO2 glass,” Opt. Lett. 25, 251–253 (2000).
[CrossRef]

A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, “Induction and relaxation of optical second-order nonlinearity in tellurite glasses,” J. Appl. Phys. 85, 2046–2051 (1999).
[CrossRef]

A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, “Effect of poling temperature on optical second harmonic intensity of sodium zinc tellurite glasses,” J. Appl. Phys. 83, 3986–3990 (1998).
[CrossRef]

Nasu, H.

A. Narazaki, K. Tanaka, K. Hirao, T. Hashimoto, H. Nasu, and K. Kamiya, “IR and XPS studies on the surface struc-ture of poled ZnO–TeO2 glasses with second-order nonlinearity,” J. Am. Ceram. Soc. 84, 214–217 (2001).
[CrossRef]

H. Nasu, H. Okamoto, A. Mito, J. Matsuoka, and K. Kamiya, “Influence of the OH content on second harmonic generation from electrically polarized SiO2 glasses,” Jpn. J. Appl. Phys., Part 2 32, L180–L181 (1993).
[CrossRef]

K. Tanaka, K. Kashima, K. Hirao, N. Soga, A. Mito, and H. Nasu, “Second-harmonic generation in poled tellurite glasses,” Jpn. J. Appl. Phys., Part 2 32, L843–L845 (1993).
[CrossRef]

Okamoto, H.

H. Nasu, H. Okamoto, A. Mito, J. Matsuoka, and K. Kamiya, “Influence of the OH content on second harmonic generation from electrically polarized SiO2 glasses,” Jpn. J. Appl. Phys., Part 2 32, L180–L181 (1993).
[CrossRef]

Okamoto, N.

O. Sugihara, T. Hirama, H. Fujimura, and N. Okamoto, “Second-order nonlinear optical properties from poled silicate channel-waveguide,” Opt. Rev. 3, 150–152 (1996).
[CrossRef]

Okun, K.

A. Heuer, S. C. Kuebler, U. Tracht, H. W. Spiess, and K. Okun, “Structure and dynamics of glasses and glass formers,” Mater. Res. Soc. Symp. Proc. 455, 105–116 (1997).
[CrossRef]

Orriols, G.

Osaka, A.

Y. Himei, Y. Miura, T. Nanba, and A. Osaka, “X-ray photoelectron spectroscopy of alkali tellurite glasses,” J. Non-Cryst. Solids 211, 64–71 (1997).
[CrossRef]

Pan, A.

A. Pan and A. Ghosh, “Activation energy and conductivity relaxation of sodium tellurite glasses,” Phys. Rev. B 59, 899–904 (1999).
[CrossRef]

Pi, F.

Qiu, M.

Russell, P. S. J.

Sasaki, K.

H. Imai, S. Horinouchi, N. Asakuma, K. Fukao, D. Matsuki, H. Hirashima, and K. Sasaki, “Effects of introduction of sodium and water on second-order nonlinearity in poled synthetic silica glass,” J. Appl. Phys. 15, 5415–5418 (1998).
[CrossRef]

Sato, R.

T. Komatsu, R. Ike, R. Sato, and K. Matusita, “Mixed alkali effect in tellurite glasses and change in fragility,” Phys. Chem. Glasses 36, 216–221 (1995).

Shibusawa, S.

N. Mochida, K. Takahashi, K. Nakata, and S. Shibusawa, “Properties and structure of the binary tellurite glasses containing mono- and di-valent cations,” J. Ceram. Soc. Jpn. 86, 316–326 (1978).

Soga, N.

A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, “Induction and relaxation of optical second-order nonlinearity in tellurite glasses,” J. Appl. Phys. 85, 2046–2051 (1999).
[CrossRef]

A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, “Effect of poling temperature on optical second harmonic intensity of sodium zinc tellurite glasses,” J. Appl. Phys. 83, 3986–3990 (1998).
[CrossRef]

K. Tanaka, K. Kashima, K. Hirao, N. Soga, A. Mito, and H. Nasu, “Second-harmonic generation in poled tellurite glasses,” Jpn. J. Appl. Phys., Part 2 32, L843–L845 (1993).
[CrossRef]

Spiess, H. W.

A. Heuer, S. C. Kuebler, U. Tracht, H. W. Spiess, and K. Okun, “Structure and dynamics of glasses and glass formers,” Mater. Res. Soc. Symp. Proc. 455, 105–116 (1997).
[CrossRef]

Sugihara, O.

O. Sugihara, T. Hirama, H. Fujimura, and N. Okamoto, “Second-order nonlinear optical properties from poled silicate channel-waveguide,” Opt. Rev. 3, 150–152 (1996).
[CrossRef]

Takahashi, K.

N. Mochida, K. Takahashi, K. Nakata, and S. Shibusawa, “Properties and structure of the binary tellurite glasses containing mono- and di-valent cations,” J. Ceram. Soc. Jpn. 86, 316–326 (1978).

Tanaka, K.

A. Narazaki, K. Tanaka, K. Hirao, T. Hashimoto, H. Nasu, and K. Kamiya, “IR and XPS studies on the surface struc-ture of poled ZnO–TeO2 glasses with second-order nonlinearity,” J. Am. Ceram. Soc. 84, 214–217 (2001).
[CrossRef]

K. Tanaka, A. Narazaki, Y. Yonezaki, and K. Hirao, “Poling-induced structural change and second-order nonlinearity of Na+-doped Nb2O5–TeO2 glass,” J. Phys.: Condens. Matter 12, L513–L518 (2000).

K. Tanaka, A. Narazaki, and K. Hirao, “Large optical second-order nonlinearity of poled WO3–TeO2 glass,” Opt. Lett. 25, 251–253 (2000).
[CrossRef]

A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, “Induction and relaxation of optical second-order nonlinearity in tellurite glasses,” J. Appl. Phys. 85, 2046–2051 (1999).
[CrossRef]

A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, “Effect of poling temperature on optical second harmonic intensity of sodium zinc tellurite glasses,” J. Appl. Phys. 83, 3986–3990 (1998).
[CrossRef]

K. Tanaka, K. Kashima, K. Hirao, N. Soga, A. Mito, and H. Nasu, “Second-harmonic generation in poled tellurite glasses,” Jpn. J. Appl. Phys., Part 2 32, L843–L845 (1993).
[CrossRef]

Tracht, U.

A. Heuer, S. C. Kuebler, U. Tracht, H. W. Spiess, and K. Okun, “Structure and dynamics of glasses and glass formers,” Mater. Res. Soc. Symp. Proc. 455, 105–116 (1997).
[CrossRef]

Vogel, W.

H. Bürger, W. Vogel, and V. Kozhukharov, “IR transmission and properties of glasses in the TeO2–[RnOm, RnXm, Rn(SO4)m, Rn(PO3)m and B2O3] systems,” Infrared Phys. 25, 395–409 (1985).
[CrossRef]

Yonezaki, Y.

K. Tanaka, A. Narazaki, Y. Yonezaki, and K. Hirao, “Poling-induced structural change and second-order nonlinearity of Na+-doped Nb2O5–TeO2 glass,” J. Phys.: Condens. Matter 12, L513–L518 (2000).

Appl. Phys. Lett.

F. C. Garcia, I. C. S. Carvalho, E. Hering, and W. Margulis, “Inducing a large second-order optical nonlinearity in soft glasses by poling,” Appl. Phys. Lett. 72, 3252–3254 (1998).
[CrossRef]

Infrared Phys.

H. Bürger, W. Vogel, and V. Kozhukharov, “IR transmission and properties of glasses in the TeO2–[RnOm, RnXm, Rn(SO4)m, Rn(PO3)m and B2O3] systems,” Infrared Phys. 25, 395–409 (1985).
[CrossRef]

J. Am. Ceram. Soc.

A. Narazaki, K. Tanaka, K. Hirao, T. Hashimoto, H. Nasu, and K. Kamiya, “IR and XPS studies on the surface struc-ture of poled ZnO–TeO2 glasses with second-order nonlinearity,” J. Am. Ceram. Soc. 84, 214–217 (2001).
[CrossRef]

J. Appl. Phys.

A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, “Effect of poling temperature on optical second harmonic intensity of sodium zinc tellurite glasses,” J. Appl. Phys. 83, 3986–3990 (1998).
[CrossRef]

H. Imai, S. Horinouchi, N. Asakuma, K. Fukao, D. Matsuki, H. Hirashima, and K. Sasaki, “Effects of introduction of sodium and water on second-order nonlinearity in poled synthetic silica glass,” J. Appl. Phys. 15, 5415–5418 (1998).
[CrossRef]

A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, “Induction and relaxation of optical second-order nonlinearity in tellurite glasses,” J. Appl. Phys. 85, 2046–2051 (1999).
[CrossRef]

J. Ceram. Soc. Jpn.

N. Mochida, K. Takahashi, K. Nakata, and S. Shibusawa, “Properties and structure of the binary tellurite glasses containing mono- and di-valent cations,” J. Ceram. Soc. Jpn. 86, 316–326 (1978).

J. Non-Cryst. Solids

Y. Himei, Y. Miura, T. Nanba, and A. Osaka, “X-ray photoelectron spectroscopy of alkali tellurite glasses,” J. Non-Cryst. Solids 211, 64–71 (1997).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys.: Condens. Matter

K. Tanaka, A. Narazaki, Y. Yonezaki, and K. Hirao, “Poling-induced structural change and second-order nonlinearity of Na+-doped Nb2O5–TeO2 glass,” J. Phys.: Condens. Matter 12, L513–L518 (2000).

Jpn. J. Appl. Phys., Part 2

K. Tanaka, K. Kashima, K. Hirao, N. Soga, A. Mito, and H. Nasu, “Second-harmonic generation in poled tellurite glasses,” Jpn. J. Appl. Phys., Part 2 32, L843–L845 (1993).
[CrossRef]

H. Nasu, H. Okamoto, A. Mito, J. Matsuoka, and K. Kamiya, “Influence of the OH content on second harmonic generation from electrically polarized SiO2 glasses,” Jpn. J. Appl. Phys., Part 2 32, L180–L181 (1993).
[CrossRef]

Mater. Res. Soc. Symp. Proc.

A. Heuer, S. C. Kuebler, U. Tracht, H. W. Spiess, and K. Okun, “Structure and dynamics of glasses and glass formers,” Mater. Res. Soc. Symp. Proc. 455, 105–116 (1997).
[CrossRef]

Opt. Lett.

Opt. Rev.

O. Sugihara, T. Hirama, H. Fujimura, and N. Okamoto, “Second-order nonlinear optical properties from poled silicate channel-waveguide,” Opt. Rev. 3, 150–152 (1996).
[CrossRef]

Phys. Chem. Glasses

T. Komatsu, R. Ike, R. Sato, and K. Matusita, “Mixed alkali effect in tellurite glasses and change in fragility,” Phys. Chem. Glasses 36, 216–221 (1995).

Phys. Rev. B

A. Pan and A. Ghosh, “Activation energy and conductivity relaxation of sodium tellurite glasses,” Phys. Rev. B 59, 899–904 (1999).
[CrossRef]

Other

T. G. Alley, R. A. Myers, and S. R. J. Brueck, “An ion exchange model for extended-duration thermal poling of bulk fused silica,” in Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, Vol. 17 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 293–295.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Apparatus for measurements of second-harmonic generation. For the SHG measurement at elevated temperatures, the tellurite glass sample was placed in an electric furnace. NDs, neutral-density filters; VIS cut, visible-cut filter; MRs, mirrors; AP, aperture; PLs, polarizers; IR cut, infrared-cut filter; PM, photomultipler.

Fig. 2
Fig. 2

Dependence of second-harmonic intensity on angle of incidence, namely, the Maker-fringe pattern, for 20WO3·80TeO2 glass poled at 240 °C and 0.50 mm thick. The closed circles and solid curve denote the experimental and theoretical Maker-fringe patterns, respectively. The theoretical one was drawn with χ33(2)=1.2 pm/V and L=6.3 µm.

Fig. 3
Fig. 3

Poling temperature dependence of second-harmonic intensity for 20WO3·80TeO2 glass with a thickness of 1.00 mm.

Fig. 4
Fig. 4

Second-harmonic intensity as a function of etched thickness from the anode-side surface of 20WO3·80TeO2 glass poled at 240 °C. The sample thickness is 0.50 mm.

Fig. 5
Fig. 5

Variation of the O 1s photoelectron spectrum with a depth from the anode-side surface for 20WO3·80TeO2 glass, 0.50 mm thick, poled at 240 °C. For comparison, the spectrum of the as-annealed glass is shown at the bottom.

Fig. 6
Fig. 6

Variation of the Te 3d5/2 photoelectron spectrum with a depth from the anode-side surface for 20WO3·80TeO2 glass, 0.50 mm thick, poled at 240 °C.

Fig. 7
Fig. 7

Variation of the W 4f photoelectron spectrum with a depth from the anode-side surface for 20WO3·80TeO2 glass, 0.50 mm thick, poled at 240 °C.

Fig. 8
Fig. 8

Variation of the Na 1s photoelectron spectrum with a depth from the anode-side surface for 20WO3·80TeO2 glass, 0.50 mm thick, poled at 240 °C.

Fig. 9
Fig. 9

Reflectance spectra from 4000 to 400 cm-1 for 20WO3·80TeO2 glass, 0.50 mm thick, poled at 240 °C.

Fig. 10
Fig. 10

Relaxation behavior of second-harmonic intensity measured at room temperature for 20WO3·80TeO2 glasses poled at 240 (closed circles), 260 (closed squares) and 280 °C (closed triangles), respectively. The second-harmonic intensity is normalized by the initial intensity. The time corresponds to a period after the high voltage was removed. The solid curves were drawn by use of Eq. (1) with the fitting parameters τ and β listed in Table 2.

Fig. 11
Fig. 11

Relaxation behavior of second-harmonic intensity measured at elevated temperatures for 20WO3·80TeO2 glasses poled at 260 °C. The closed circles and triangles denote the normalized second-harmonic intensity measured at 100 and 150 °C, respectively. The experimental data were fitted by use of Eq. (1) with τ and β listed in Table 3.

Fig. 12
Fig. 12

Arrhenius plots for relaxation time τ listed in Table 3. The solid line was drawn by the method of least squares. From the slope of the line, the activation energy was calculated to be 47 kJ · mol-1.

Fig. 13
Fig. 13

Relaxation behavior of second-harmonic intensity for 20WO3·80TeO2 (closed circles), 30ZnO·70TeO2 (closed squares), and 18Na2O·82TeO2 (closed triangles) glasses. The poling was performed at 280 °C for both 20WO3·80TeO2 and 30ZnO·70TeO2 glasses. The 18Na2O·82TeO2 glass was poled at 220 °C. The experimental data were fitted by use of Eq. (1) with parameters τ and β listed in Table 4.

Tables (4)

Tables Icon

Table 1 Concentration Ratio of Na to Te for As-Annealed and Poled 20WO3·80TeO2 Glass

Tables Icon

Table 2 Relaxation Time τ and Stretched Exponential Parameter β Obtained by Fitting the Stretched Exponential Function to the Decay of Second-Harmonic Intensity Measured for Poled 20WO3·80TeO2 Glass at Room Temperature

Tables Icon

Table 3 Fitting Parameters for Decay of Second-Harmonic Intensity of Poled 20WO3·80TeO2 Glass at Elevated Temperaturesa

Tables Icon

Table 4 Relaxation Time τ and Stretched Exponential Parameter β for 20WO3·80TeO2, 30ZnO·70TeO2 and 18Na2O·82TeO2 Glassesa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f(t)=exp[-(t/τ)β],
ln τ=Ea/RT-ln A,

Metrics