Abstract

By measuring the sonogram of an ultrashort pulse with a two-photon detector we have demonstrated a robust and sensitive complete characterization method for 80fs pulses derived from a self-mode-locked Ti:sapphire laser. Acquisition and retrieval rates as high as 0.5 Hz are demonstrated, and the design of a rapid-acquisition configuration is described, where we discuss the use of white-light interferometry to achieve a nearly dispersionless bandpass filter. Excellent agreement is obtained between retrieved pulse data and independent experimental pulse measurements.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. M. Shuman, M. E. Anderson, J. Bromage, C. Iaconis, L. Waxer, and I. A. Walmsley, “Real-time SPIDER: ultrashort pulse characterization at 20 Hz,” Opt. Express 5, 134–143 (1999).
    [CrossRef] [PubMed]
  2. K. W. DeLong, R. Trebino, and D. J. Kane, “Comparison of ultrashort-pulse frequency-resolved-optical-gating traces for three common beam geometries,” J. Opt. Soc. Am. B 11, 1595–1608 (1994).
    [CrossRef]
  3. K. W. DeLong, D. N. Fittinghoff, R. Trebino, B. Kohler, and K. Wilson, “Pulse retrieval in frequency-resolved optical gating based on the method of generalized projections,” Opt. Lett. 19, 2152–2154 (1994).
    [CrossRef] [PubMed]
  4. V. Wong and I. A. Walmsley, “Ultrashort-pulse characterization from dynamic spectrograms by iterative phase retrieval,” J. Opt. Soc. Am. B 14, 944–949 (1997).
    [CrossRef]
  5. D. J. Kane, “Real-time measurement of ultrashort laser pulses using principal component generalized projections,” IEEE J. Sel. Top. Quantum Electron. 4, 278–284 (1998).
    [CrossRef]
  6. D. T. Reid, M. Padgett, C. McGowan, W. E. Sleat, and W. Sibbett, “Light-emitting diodes as measurement devices for femtosecond laser pulses,” Opt. Lett. 22, 233–235 (1997).
    [CrossRef] [PubMed]
  7. D. T. Reid, W. Sibbett, J. M. Dudley, L. P. Barry, B. Thomsen, and J. D. Harvey, “Commercial semiconductor devices for two photon absorption autocorrelation of ultrashort light pulses,” Appl. Opt. 37, 8142–8144 (1998).
    [CrossRef]
  8. J. K. Ranka, A. L. Gaeta, A. Baltuska, and M. S. Pshenichnikov, “Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,” Opt. Lett. 22, 1344–1346 (1997).
    [CrossRef]
  9. J. L. A. Chilla and O. E. Martinez, “Direct determination of the amplitude and the phase of femtosecond light-pulses,” Opt. Lett. 16, 39–41 (1991).
    [CrossRef] [PubMed]
  10. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 5, 1563–1572 (1988).
    [CrossRef]
  11. K. Naganuma, K. Mogi, and H. Yamada, “Group-delay measurement using the Fourier-transform of an interferometric cross-correlation generated by white-light,” Opt. Lett. 15, 393–395 (1990).
    [CrossRef] [PubMed]
  12. D. T. Reid, “Algorithm for complete and rapid retrieval of ultrashort pulse amplitude and phase from a sonogram,” IEEE J. Quantum Electron. 35, 1584–1589 (1999).
    [CrossRef]
  13. D. T. Reid, C. McGowan, M. Ebrahimzadeh, and W. Sibbett, “Characterization and modeling of a noncollinearly phase-matched femtosecond optical parametric oscillator based on KTA and operating to beyond 4 µm,” IEEE J. Quantum Electron. 33, 1–9 (1997).
    [CrossRef]
  14. P. Loza-Alvarez, W. Sibbett, and D. T. Reid, “Autocorrelation of femtosecond pulses from 415–630 nm using a GaN laser diode,” Electron. Lett. 36, 631–633 (2000).
    [CrossRef]
  15. W. Sibbett, D. T. Reid, and M. Ebrahimzadeh, “Versatile femtosecond laser sources for time-resolved studies: configurations and characterizations,” Philos. Trans. R. Soc. London, Ser. A 356, 283–296 (1998).
    [CrossRef]
  16. Optotek, Ltd.Kanata, Ontario, Canada, Part No. OPT- 676A.

2000 (1)

P. Loza-Alvarez, W. Sibbett, and D. T. Reid, “Autocorrelation of femtosecond pulses from 415–630 nm using a GaN laser diode,” Electron. Lett. 36, 631–633 (2000).
[CrossRef]

1999 (2)

D. T. Reid, “Algorithm for complete and rapid retrieval of ultrashort pulse amplitude and phase from a sonogram,” IEEE J. Quantum Electron. 35, 1584–1589 (1999).
[CrossRef]

T. M. Shuman, M. E. Anderson, J. Bromage, C. Iaconis, L. Waxer, and I. A. Walmsley, “Real-time SPIDER: ultrashort pulse characterization at 20 Hz,” Opt. Express 5, 134–143 (1999).
[CrossRef] [PubMed]

1998 (3)

D. T. Reid, W. Sibbett, J. M. Dudley, L. P. Barry, B. Thomsen, and J. D. Harvey, “Commercial semiconductor devices for two photon absorption autocorrelation of ultrashort light pulses,” Appl. Opt. 37, 8142–8144 (1998).
[CrossRef]

W. Sibbett, D. T. Reid, and M. Ebrahimzadeh, “Versatile femtosecond laser sources for time-resolved studies: configurations and characterizations,” Philos. Trans. R. Soc. London, Ser. A 356, 283–296 (1998).
[CrossRef]

D. J. Kane, “Real-time measurement of ultrashort laser pulses using principal component generalized projections,” IEEE J. Sel. Top. Quantum Electron. 4, 278–284 (1998).
[CrossRef]

1997 (4)

1994 (2)

1991 (1)

1990 (1)

1988 (1)

Anderson, M. E.

Baltuska, A.

Barry, L. P.

Bromage, J.

Chilla, J. L. A.

DeLong, K. W.

Dudley, J. M.

Ebrahimzadeh, M.

W. Sibbett, D. T. Reid, and M. Ebrahimzadeh, “Versatile femtosecond laser sources for time-resolved studies: configurations and characterizations,” Philos. Trans. R. Soc. London, Ser. A 356, 283–296 (1998).
[CrossRef]

D. T. Reid, C. McGowan, M. Ebrahimzadeh, and W. Sibbett, “Characterization and modeling of a noncollinearly phase-matched femtosecond optical parametric oscillator based on KTA and operating to beyond 4 µm,” IEEE J. Quantum Electron. 33, 1–9 (1997).
[CrossRef]

Fittinghoff, D. N.

Gaeta, A. L.

Harvey, J. D.

Heritage, J. P.

Iaconis, C.

Kane, D. J.

D. J. Kane, “Real-time measurement of ultrashort laser pulses using principal component generalized projections,” IEEE J. Sel. Top. Quantum Electron. 4, 278–284 (1998).
[CrossRef]

K. W. DeLong, R. Trebino, and D. J. Kane, “Comparison of ultrashort-pulse frequency-resolved-optical-gating traces for three common beam geometries,” J. Opt. Soc. Am. B 11, 1595–1608 (1994).
[CrossRef]

Kirschner, E. M.

Kohler, B.

Loza-Alvarez, P.

P. Loza-Alvarez, W. Sibbett, and D. T. Reid, “Autocorrelation of femtosecond pulses from 415–630 nm using a GaN laser diode,” Electron. Lett. 36, 631–633 (2000).
[CrossRef]

Martinez, O. E.

McGowan, C.

D. T. Reid, C. McGowan, M. Ebrahimzadeh, and W. Sibbett, “Characterization and modeling of a noncollinearly phase-matched femtosecond optical parametric oscillator based on KTA and operating to beyond 4 µm,” IEEE J. Quantum Electron. 33, 1–9 (1997).
[CrossRef]

D. T. Reid, M. Padgett, C. McGowan, W. E. Sleat, and W. Sibbett, “Light-emitting diodes as measurement devices for femtosecond laser pulses,” Opt. Lett. 22, 233–235 (1997).
[CrossRef] [PubMed]

Mogi, K.

Naganuma, K.

Padgett, M.

Pshenichnikov, M. S.

Ranka, J. K.

Reid, D. T.

P. Loza-Alvarez, W. Sibbett, and D. T. Reid, “Autocorrelation of femtosecond pulses from 415–630 nm using a GaN laser diode,” Electron. Lett. 36, 631–633 (2000).
[CrossRef]

D. T. Reid, “Algorithm for complete and rapid retrieval of ultrashort pulse amplitude and phase from a sonogram,” IEEE J. Quantum Electron. 35, 1584–1589 (1999).
[CrossRef]

W. Sibbett, D. T. Reid, and M. Ebrahimzadeh, “Versatile femtosecond laser sources for time-resolved studies: configurations and characterizations,” Philos. Trans. R. Soc. London, Ser. A 356, 283–296 (1998).
[CrossRef]

D. T. Reid, W. Sibbett, J. M. Dudley, L. P. Barry, B. Thomsen, and J. D. Harvey, “Commercial semiconductor devices for two photon absorption autocorrelation of ultrashort light pulses,” Appl. Opt. 37, 8142–8144 (1998).
[CrossRef]

D. T. Reid, C. McGowan, M. Ebrahimzadeh, and W. Sibbett, “Characterization and modeling of a noncollinearly phase-matched femtosecond optical parametric oscillator based on KTA and operating to beyond 4 µm,” IEEE J. Quantum Electron. 33, 1–9 (1997).
[CrossRef]

D. T. Reid, M. Padgett, C. McGowan, W. E. Sleat, and W. Sibbett, “Light-emitting diodes as measurement devices for femtosecond laser pulses,” Opt. Lett. 22, 233–235 (1997).
[CrossRef] [PubMed]

Shuman, T. M.

Sibbett, W.

P. Loza-Alvarez, W. Sibbett, and D. T. Reid, “Autocorrelation of femtosecond pulses from 415–630 nm using a GaN laser diode,” Electron. Lett. 36, 631–633 (2000).
[CrossRef]

W. Sibbett, D. T. Reid, and M. Ebrahimzadeh, “Versatile femtosecond laser sources for time-resolved studies: configurations and characterizations,” Philos. Trans. R. Soc. London, Ser. A 356, 283–296 (1998).
[CrossRef]

D. T. Reid, W. Sibbett, J. M. Dudley, L. P. Barry, B. Thomsen, and J. D. Harvey, “Commercial semiconductor devices for two photon absorption autocorrelation of ultrashort light pulses,” Appl. Opt. 37, 8142–8144 (1998).
[CrossRef]

D. T. Reid, C. McGowan, M. Ebrahimzadeh, and W. Sibbett, “Characterization and modeling of a noncollinearly phase-matched femtosecond optical parametric oscillator based on KTA and operating to beyond 4 µm,” IEEE J. Quantum Electron. 33, 1–9 (1997).
[CrossRef]

D. T. Reid, M. Padgett, C. McGowan, W. E. Sleat, and W. Sibbett, “Light-emitting diodes as measurement devices for femtosecond laser pulses,” Opt. Lett. 22, 233–235 (1997).
[CrossRef] [PubMed]

Sleat, W. E.

Thomsen, B.

Trebino, R.

Walmsley, I. A.

Waxer, L.

Weiner, A. M.

Wilson, K.

Wong, V.

Yamada, H.

Appl. Opt. (1)

Electron. Lett. (1)

P. Loza-Alvarez, W. Sibbett, and D. T. Reid, “Autocorrelation of femtosecond pulses from 415–630 nm using a GaN laser diode,” Electron. Lett. 36, 631–633 (2000).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. T. Reid, “Algorithm for complete and rapid retrieval of ultrashort pulse amplitude and phase from a sonogram,” IEEE J. Quantum Electron. 35, 1584–1589 (1999).
[CrossRef]

D. T. Reid, C. McGowan, M. Ebrahimzadeh, and W. Sibbett, “Characterization and modeling of a noncollinearly phase-matched femtosecond optical parametric oscillator based on KTA and operating to beyond 4 µm,” IEEE J. Quantum Electron. 33, 1–9 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. J. Kane, “Real-time measurement of ultrashort laser pulses using principal component generalized projections,” IEEE J. Sel. Top. Quantum Electron. 4, 278–284 (1998).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Express (1)

Opt. Lett. (5)

Philos. Trans. R. Soc. London, Ser. A (1)

W. Sibbett, D. T. Reid, and M. Ebrahimzadeh, “Versatile femtosecond laser sources for time-resolved studies: configurations and characterizations,” Philos. Trans. R. Soc. London, Ser. A 356, 283–296 (1998).
[CrossRef]

Other (1)

Optotek, Ltd.Kanata, Ontario, Canada, Part No. OPT- 676A.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of how (a) a FROG trace and (b) a sonogram trace are acquired.

Fig. 2
Fig. 2

Schematic of the frequency-bandpass filter consisting of a grating, lens, and mirror within a 2 f arrangement, enabling a slit to be placed at the Fourier plane to selectively frequency filter the outgoing pulse.

Fig. 3
Fig. 3

Group-delay dispersion measurements recorded by white-light interferometry at various lens positions (solid curves) and comparison with theoretically calculated results (dashed curves).

Fig. 4
Fig. 4

Comparison between (a) the intensity autocorrelation of the incident pulses and (b) the cross correlation between incident pulses and pulses returning from the filter adjusted for zero dispersion.

Fig. 5
Fig. 5

Schematic of the optical system used to rapidly acquire the sonogram. The pulses returning from the zero-dispersion filter and the unfiltered delay line are combined at the GaAsP photodiode, having a small crossing angle in the vertical plane, to avoid interference fringes.

Fig. 6
Fig. 6

Schematic representation of the electronic acquisition and retrieval system.

Fig. 7
Fig. 7

Schematic representation of the sonogram retrieval algorithm.

Fig. 8
Fig. 8

(a) Experimental and (b) retrieved sonogram trace with corresponding time and frequency marginals (solid curves) compared with quantities described in Eqs. (2) and (3) (crosses).

Fig. 9
Fig. 9

(a) Temporal intensity and phase of the retrieved pulse. (b) Comparison between the experimental (solid curve) and retrieved (squares) spectra along with the retrieved spectral phase (circles). (c) Comparison between the experimental (solid curve) and retrieved (squares) intensity autocorrelations.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Isono(t, Ω)=-E(ω)G(ω-Ω) exp(-iωt)dω2,
Mτ(τ)=A(2)(τ)*|F{G(ω)}|,
Mω(ω)=I(ω)*|G(ω)|2.

Metrics