Abstract

We analyze different methods for controlling positions of guided modes of planar photonic-crystal waveguides. Methods based both on rearrangements of holes in the photonic-crystal lattice and on changes of hole sizes are presented. The ability to tune frequencies of guided modes within a frequency bandgap is necessary to achieve efficient guiding of light within a waveguide, as well as to match frequencies of eigenmodes of different photonic-crystal-based devices for the purpose of good coupling between them. We observe and explain the appearance of acceptor-type modes in donor-type waveguides.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef] [PubMed]
  2. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton University, Princeton, NJ, 1995).
  3. T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near infrared wavelengths,” Nature 383, 692–702 (1996).
    [CrossRef]
  4. S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
    [CrossRef]
  5. R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band-gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
    [CrossRef]
  6. A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
    [CrossRef] [PubMed]
  7. A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488–4492 (2000).
    [CrossRef]
  8. S. Kuchinsky, D. C. Allen, N. F. Borelli, and J. C. Cotteverte, “3D localization in a channel waveguide in a photonic crystal with 2D periodicity,” Opt. Commun. 175, 147–152 (2000).
    [CrossRef]
  9. S. G. Johnson, P. R. Villeneuve, S. H. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
    [CrossRef]
  10. M. Lončar, T. Doll, J. Vučković, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1402–1411 (2000).
    [CrossRef]
  11. T. Sondergaard, A. Bjarklev, M. Kristensen, J. Erland, and J. Broeng, “Designing finite-height two-dimensional photonic crystal waveguides,” Appl. Phys. Lett. 77, 785–787 (2000).
    [CrossRef]
  12. M. D. B. Charlton, S. W. Roberts, and G. J. Parker, “Guided mode analysis, and fabrication of a 2-dimensional visible photonic band structure confined within a planar semiconductor waveguide,” Mater. Sci. Eng., B 49, 155–165 (1997).
    [CrossRef]
  13. A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, “Design of photonic crystal optical waveguides with singlemode propagation in the photonic bandgap,” Electron. Lett. 36, 1376–1378 (2000).
    [CrossRef]
  14. T. Baba, N. Fukaya, and J. Yonekura, “Observation of light propagation in photonic crystal optical waveguides with bends,” Electron. Lett. 35, 654–655 (1999).
    [CrossRef]
  15. M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, “Lightwave propagation through a 120° sharply bent single-line defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
    [CrossRef]
  16. M. Lončar, D. Nedeljković, T. Doll, J. Vučković, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
    [CrossRef]
  17. S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos, “Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5-μm wavelength,” Opt. Lett. 25, 1297–1299 (2000).
    [CrossRef]
  18. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1995).
  19. S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B 54, 11245–11251 (1996).
    [CrossRef]
  20. Y. Xu, R. K. Lee, and A. Yariv, “Adiabatic coupling between conventional dielectric waveguides and waveguides with discrete translational symmetry,” Opt. Lett. 25, 755–757 (2000).
    [CrossRef]
  21. H. Benisty, “Modal analysis of optical guides with two-dimensional photonic band-gap boundaries,” J. Appl. Phys. 79, 7483–7492 (1996).
    [CrossRef]

2000 (10)

A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488–4492 (2000).
[CrossRef]

S. Kuchinsky, D. C. Allen, N. F. Borelli, and J. C. Cotteverte, “3D localization in a channel waveguide in a photonic crystal with 2D periodicity,” Opt. Commun. 175, 147–152 (2000).
[CrossRef]

S. G. Johnson, P. R. Villeneuve, S. H. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

M. Lončar, T. Doll, J. Vučković, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1402–1411 (2000).
[CrossRef]

T. Sondergaard, A. Bjarklev, M. Kristensen, J. Erland, and J. Broeng, “Designing finite-height two-dimensional photonic crystal waveguides,” Appl. Phys. Lett. 77, 785–787 (2000).
[CrossRef]

M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, “Lightwave propagation through a 120° sharply bent single-line defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
[CrossRef]

M. Lončar, D. Nedeljković, T. Doll, J. Vučković, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos, “Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5-μm wavelength,” Opt. Lett. 25, 1297–1299 (2000).
[CrossRef]

A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, “Design of photonic crystal optical waveguides with singlemode propagation in the photonic bandgap,” Electron. Lett. 36, 1376–1378 (2000).
[CrossRef]

Y. Xu, R. K. Lee, and A. Yariv, “Adiabatic coupling between conventional dielectric waveguides and waveguides with discrete translational symmetry,” Opt. Lett. 25, 755–757 (2000).
[CrossRef]

1999 (2)

T. Baba, N. Fukaya, and J. Yonekura, “Observation of light propagation in photonic crystal optical waveguides with bends,” Electron. Lett. 35, 654–655 (1999).
[CrossRef]

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

1997 (1)

M. D. B. Charlton, S. W. Roberts, and G. J. Parker, “Guided mode analysis, and fabrication of a 2-dimensional visible photonic band structure confined within a planar semiconductor waveguide,” Mater. Sci. Eng., B 49, 155–165 (1997).
[CrossRef]

1996 (4)

T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near infrared wavelengths,” Nature 383, 692–702 (1996).
[CrossRef]

H. Benisty, “Modal analysis of optical guides with two-dimensional photonic band-gap boundaries,” J. Appl. Phys. 79, 7483–7492 (1996).
[CrossRef]

S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B 54, 11245–11251 (1996).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

1994 (1)

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band-gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
[CrossRef]

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Adibi, A.

A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, “Design of photonic crystal optical waveguides with singlemode propagation in the photonic bandgap,” Electron. Lett. 36, 1376–1378 (2000).
[CrossRef]

Alerhand, O. L.

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band-gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
[CrossRef]

Allen, D. C.

S. Kuchinsky, D. C. Allen, N. F. Borelli, and J. C. Cotteverte, “3D localization in a channel waveguide in a photonic crystal with 2D periodicity,” Opt. Commun. 175, 147–152 (2000).
[CrossRef]

Baba, T.

T. Baba, N. Fukaya, and J. Yonekura, “Observation of light propagation in photonic crystal optical waveguides with bends,” Electron. Lett. 35, 654–655 (1999).
[CrossRef]

Benisty, H.

H. Benisty, “Modal analysis of optical guides with two-dimensional photonic band-gap boundaries,” J. Appl. Phys. 79, 7483–7492 (1996).
[CrossRef]

Bjarklev, A.

T. Sondergaard, A. Bjarklev, M. Kristensen, J. Erland, and J. Broeng, “Designing finite-height two-dimensional photonic crystal waveguides,” Appl. Phys. Lett. 77, 785–787 (2000).
[CrossRef]

Borelli, N. F.

S. Kuchinsky, D. C. Allen, N. F. Borelli, and J. C. Cotteverte, “3D localization in a channel waveguide in a photonic crystal with 2D periodicity,” Opt. Commun. 175, 147–152 (2000).
[CrossRef]

Brand, S.

T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near infrared wavelengths,” Nature 383, 692–702 (1996).
[CrossRef]

Broeng, J.

T. Sondergaard, A. Bjarklev, M. Kristensen, J. Erland, and J. Broeng, “Designing finite-height two-dimensional photonic crystal waveguides,” Appl. Phys. Lett. 77, 785–787 (2000).
[CrossRef]

Charlton, M. D. B.

M. D. B. Charlton, S. W. Roberts, and G. J. Parker, “Guided mode analysis, and fabrication of a 2-dimensional visible photonic band structure confined within a planar semiconductor waveguide,” Mater. Sci. Eng., B 49, 155–165 (1997).
[CrossRef]

Chen, J. C.

A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Chow, E.

Chutinan, A.

A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488–4492 (2000).
[CrossRef]

Cotteverte, J. C.

S. Kuchinsky, D. C. Allen, N. F. Borelli, and J. C. Cotteverte, “3D localization in a channel waveguide in a photonic crystal with 2D periodicity,” Opt. Commun. 175, 147–152 (2000).
[CrossRef]

De La Rue, R. M.

T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near infrared wavelengths,” Nature 383, 692–702 (1996).
[CrossRef]

Devenyi, A.

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band-gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
[CrossRef]

Doll, T.

M. Lončar, T. Doll, J. Vučković, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1402–1411 (2000).
[CrossRef]

M. Lončar, D. Nedeljković, T. Doll, J. Vučković, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

Erland, J.

T. Sondergaard, A. Bjarklev, M. Kristensen, J. Erland, and J. Broeng, “Designing finite-height two-dimensional photonic crystal waveguides,” Appl. Phys. Lett. 77, 785–787 (2000).
[CrossRef]

Fan, S. H.

S. G. Johnson, P. R. Villeneuve, S. H. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B 54, 11245–11251 (1996).
[CrossRef]

Fukaya, N.

T. Baba, N. Fukaya, and J. Yonekura, “Observation of light propagation in photonic crystal optical waveguides with bends,” Electron. Lett. 35, 654–655 (1999).
[CrossRef]

Joannopoulos, J. D.

S. G. Johnson, P. R. Villeneuve, S. H. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos, “Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5-μm wavelength,” Opt. Lett. 25, 1297–1299 (2000).
[CrossRef]

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B 54, 11245–11251 (1996).
[CrossRef]

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band-gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
[CrossRef]

Johnson, S. G.

S. G. Johnson, P. R. Villeneuve, S. H. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos, “Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5-μm wavelength,” Opt. Lett. 25, 1297–1299 (2000).
[CrossRef]

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

Kash, K.

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band-gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
[CrossRef]

Kolodziejski, L.

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

Kosaka, H.

M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, “Lightwave propagation through a 120° sharply bent single-line defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
[CrossRef]

Krauss, T. F.

T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near infrared wavelengths,” Nature 383, 692–702 (1996).
[CrossRef]

Kristensen, M.

T. Sondergaard, A. Bjarklev, M. Kristensen, J. Erland, and J. Broeng, “Designing finite-height two-dimensional photonic crystal waveguides,” Appl. Phys. Lett. 77, 785–787 (2000).
[CrossRef]

Kuchinsky, S.

S. Kuchinsky, D. C. Allen, N. F. Borelli, and J. C. Cotteverte, “3D localization in a channel waveguide in a photonic crystal with 2D periodicity,” Opt. Commun. 175, 147–152 (2000).
[CrossRef]

Kurland, I.

A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Lee, R. K.

A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, “Design of photonic crystal optical waveguides with singlemode propagation in the photonic bandgap,” Electron. Lett. 36, 1376–1378 (2000).
[CrossRef]

Y. Xu, R. K. Lee, and A. Yariv, “Adiabatic coupling between conventional dielectric waveguides and waveguides with discrete translational symmetry,” Opt. Lett. 25, 755–757 (2000).
[CrossRef]

Lin, S. Y.

Loncar, M.

M. Lončar, D. Nedeljković, T. Doll, J. Vučković, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

M. Lončar, T. Doll, J. Vučković, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1402–1411 (2000).
[CrossRef]

Meade, R. D.

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band-gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
[CrossRef]

Mekis, A.

A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Nedeljkovic, D.

M. Lončar, D. Nedeljković, T. Doll, J. Vučković, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

Noda, S.

A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488–4492 (2000).
[CrossRef]

Parker, G. J.

M. D. B. Charlton, S. W. Roberts, and G. J. Parker, “Guided mode analysis, and fabrication of a 2-dimensional visible photonic band structure confined within a planar semiconductor waveguide,” Mater. Sci. Eng., B 49, 155–165 (1997).
[CrossRef]

Pearsall, T. P.

M. Lončar, D. Nedeljković, T. Doll, J. Vučković, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

Roberts, S. W.

M. D. B. Charlton, S. W. Roberts, and G. J. Parker, “Guided mode analysis, and fabrication of a 2-dimensional visible photonic band structure confined within a planar semiconductor waveguide,” Mater. Sci. Eng., B 49, 155–165 (1997).
[CrossRef]

Scherer, A.

A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, “Design of photonic crystal optical waveguides with singlemode propagation in the photonic bandgap,” Electron. Lett. 36, 1376–1378 (2000).
[CrossRef]

M. Lončar, D. Nedeljković, T. Doll, J. Vučković, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

M. Lončar, T. Doll, J. Vučković, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1402–1411 (2000).
[CrossRef]

Smith, D. A.

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band-gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
[CrossRef]

Sondergaard, T.

T. Sondergaard, A. Bjarklev, M. Kristensen, J. Erland, and J. Broeng, “Designing finite-height two-dimensional photonic crystal waveguides,” Appl. Phys. Lett. 77, 785–787 (2000).
[CrossRef]

Tokushima, M.

M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, “Lightwave propagation through a 120° sharply bent single-line defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
[CrossRef]

Tomita, A.

M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, “Lightwave propagation through a 120° sharply bent single-line defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
[CrossRef]

Villeneuve, P. R.

S. G. Johnson, P. R. Villeneuve, S. H. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B 54, 11245–11251 (1996).
[CrossRef]

Vuckovic, J.

M. Lončar, D. Nedeljković, T. Doll, J. Vučković, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

M. Lončar, T. Doll, J. Vučković, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1402–1411 (2000).
[CrossRef]

Xu, Y.

Y. Xu, R. K. Lee, and A. Yariv, “Adiabatic coupling between conventional dielectric waveguides and waveguides with discrete translational symmetry,” Opt. Lett. 25, 755–757 (2000).
[CrossRef]

A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, “Design of photonic crystal optical waveguides with singlemode propagation in the photonic bandgap,” Electron. Lett. 36, 1376–1378 (2000).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Yamada, H.

M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, “Lightwave propagation through a 120° sharply bent single-line defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
[CrossRef]

Yariv, A.

A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, “Design of photonic crystal optical waveguides with singlemode propagation in the photonic bandgap,” Electron. Lett. 36, 1376–1378 (2000).
[CrossRef]

Y. Xu, R. K. Lee, and A. Yariv, “Adiabatic coupling between conventional dielectric waveguides and waveguides with discrete translational symmetry,” Opt. Lett. 25, 755–757 (2000).
[CrossRef]

Yonekura, J.

T. Baba, N. Fukaya, and J. Yonekura, “Observation of light propagation in photonic crystal optical waveguides with bends,” Electron. Lett. 35, 654–655 (1999).
[CrossRef]

Appl. Phys. Lett. (3)

T. Sondergaard, A. Bjarklev, M. Kristensen, J. Erland, and J. Broeng, “Designing finite-height two-dimensional photonic crystal waveguides,” Appl. Phys. Lett. 77, 785–787 (2000).
[CrossRef]

M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, “Lightwave propagation through a 120° sharply bent single-line defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
[CrossRef]

M. Lončar, D. Nedeljković, T. Doll, J. Vučković, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

Electron. Lett. (2)

A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, “Design of photonic crystal optical waveguides with singlemode propagation in the photonic bandgap,” Electron. Lett. 36, 1376–1378 (2000).
[CrossRef]

T. Baba, N. Fukaya, and J. Yonekura, “Observation of light propagation in photonic crystal optical waveguides with bends,” Electron. Lett. 35, 654–655 (1999).
[CrossRef]

J. Appl. Phys. (2)

H. Benisty, “Modal analysis of optical guides with two-dimensional photonic band-gap boundaries,” J. Appl. Phys. 79, 7483–7492 (1996).
[CrossRef]

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band-gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
[CrossRef]

J. Lightwave Technol. (1)

Mater. Sci. Eng., B (1)

M. D. B. Charlton, S. W. Roberts, and G. J. Parker, “Guided mode analysis, and fabrication of a 2-dimensional visible photonic band structure confined within a planar semiconductor waveguide,” Mater. Sci. Eng., B 49, 155–165 (1997).
[CrossRef]

Nature (1)

T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near infrared wavelengths,” Nature 383, 692–702 (1996).
[CrossRef]

Opt. Commun. (1)

S. Kuchinsky, D. C. Allen, N. F. Borelli, and J. C. Cotteverte, “3D localization in a channel waveguide in a photonic crystal with 2D periodicity,” Opt. Commun. 175, 147–152 (2000).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B (4)

S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B 54, 11245–11251 (1996).
[CrossRef]

A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488–4492 (2000).
[CrossRef]

S. G. Johnson, P. R. Villeneuve, S. H. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

Phys. Rev. Lett. (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Other (2)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton University, Princeton, NJ, 1995).

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of the single-line defect waveguide. Unit-cell and boundary conditions used in the FDTD calculation are indicated.

Fig. 2
Fig. 2

Band diagram for the TE-like (vertically even) modes of the Si slab perforated with a triangular lattice of air holes. Parameters used in the analysis are r=0.3a (hole radius), t=0.55a (slab thickness), and nSi=3.5 (refractive index of Si).

Fig. 3
Fig. 3

ωβ relation for the guided modes in the single-line defect waveguide (type 0) for (a) r/a=0.3 and (b) r/a=0.4. The inset shows the amplitude of the E field (cross section) in the case of one leaky mode. The straight solid line represents the light line. Modes above the light line, in the light-gray region, will leak energy into the air (leaky modes). Dark gray areas are the regions in which extended states of the PPC slab exist. Guiding can occur in the white regions only.

Fig. 4
Fig. 4

Different types of waveguides. By moving PPC mirrors that surround (a) a single-line defect waveguide along the direction indicated by arrows (ΓX direction) we can form (b) a type 1 waveguide. (c) Unperturbed PPC lattice. If we offset the gray holes along the ΓJ direction for amount d, we can form (d) a new type of waveguide (type 2). By controlling the parameter d, we can control the positions of the guided modes of the structure.

Fig. 5
Fig. 5

Dispersion relations for the guided modes of the type 1 and type 2 waveguides for different values of controlling parameters, M and d, respectively. Arrows indicate positions of the modes as we change the controlling parameters. (a) Type 1 waveguide. The width of the waveguide (center-to-center distance between two holes adjacent to the waveguide) is defined as a3/2(1+M/6). M=6 yields single-line defect waveguide. (b) Type 2 waveguide. Position of the modes as a function of the parameter d, offset along the ΓJ direction.

Fig. 6
Fig. 6

Amplitude of the electric field at the X point in the unperturbed PPC in the case of (a) the dielectric and (b) the air bands. The intensity bar is also shown. (c) A type 2 waveguide for d=0.5a (black holes). The regions in which air replaces dielectric (A) and vice versa (B) as we move holes around are also indicated. Black holes on the left-hand side and open holes on the right-hand side represent positions of the holes in the unperturbed PPC.

Fig. 7
Fig. 7

(a), (b) Field pattern of mode 1 in the type 1 waveguide for M=5. (c), (d) Field pattern of mode 1 in the type 2 waveguide, for d=0.5a. (a) and (c) show field profiles at the middle of the slab, and (b) and (d) show field profiles at the positions indicated by dashed lines in (a) and (c), respectively. An intensity bar is also shown. Field patterns are shown for β=π/a.

Fig. 8
Fig. 8

(a) Scanning electron microscopy micrograph of the fabricated type 3 waveguide. Dispersion relations of (b) the laterally even and (c) the laterally odd modes as a function of the size of the holes adjacent to the waveguide.

Fig. 9
Fig. 9

Dispersion relations for the modes guided in (a) the type 4 and (b) the type 5 waveguides, as a function of the radius of the defect holes (rdefect). Arrows indicate positions of the modes for different values of rdefect. Scanning electron microscopy micrographs of the fabricated structures are shown in the insets. (c) Dispersion diagram for TM-like guided modes supported in type 4 and type 5 waveguides.

Fig. 10
Fig. 10

(a), (b) Field patterns of mode 1 in the type 4 waveguide with rdefect=0.2a. (c), (d) Field patterns of the guided mode in the type 5 waveguide with rdefect=0.45a. (a) and (c) show field profiles at the middle of the slab, and (b) and (d) show field profiles at the positions indicated by dashed lines in the (a) and (c), respectively. Field patterns are shown for β=π/a.

Metrics