Abstract

Recent experiments in mid-IR frequency conversion reveal that older Sellmeier models for zinc germanium phosphide are inadequate for predicting phase-matching loci in zinc germanium phosphide optical frequency-conversion devices. This results in compromised device performance. We conduct a complete study of the refractive indices of zinc germanium phosphide from 2 to 9 µm and calculate new Sellmeier coefficients. The phase-matching calculations based on our new refractive-index data predict much more closely the results of several different mid-IR frequency-conversion experiments.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. P. Barnes, K. E. Murray, M. G. Jani, P. G. Schunemann, and T. M. Pollak, “ZnGeP2 parametric amplifier,” J. Opt. Soc. Am. B 15, 232–238 (1998).
    [CrossRef]
  2. P. A. Budni, K. Ezzo, P. G. Schunemann, M. G. Knights, S. Minnigh, J. C. McCarthy, and T. M. Pollak, “2.8 micron pumped optical parametric oscillation in ZnGeP2,” in Advanced Solid State Lasers, G. Dube and L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 335–338.
  3. T. H. Allik, S. Chandra, P. G. Schunemann, P. A. Ketteridge, I. Lee, T. M. Pollak, and E. P. Chicklis, “3.5 micron pumped NCPM ZnGeP2 OPO,” in Advanced Solid State Lasers, W. R. Bosenburg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington D.C., 1998), pp. 230–232.
  4. F. K. Hopkins, “Nonlinear materials extend the range of high power lasers,” Laser Focus World 31(7), 87–93 (1995).
  5. A. J. LaRocca, “Atmospheric absorption,” in The Infrared Handbook, W. L. Wolfe and G. J. Zissis, eds. (Office of Naval Research, Washington, D.C., 1978), Chap. 5.
  6. P. G. Schunemann, “Nonlinear crystals provide high power for the mid-IR,” Laser Focus World 35(4), 85–90 (1999).
  7. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), p. 179.
  8. I. Malitson, “A redeterminaion of some optical properties of calcium fluoride,” Appl. Opt. 2, 1103–1107 (1963).
    [CrossRef]
  9. G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2,” Appl. Phys. Lett. 18, 301–304 (1971).
    [CrossRef]
  10. G. C. Bhar and G. Ghosh, “Temperature-dependent Sellmeier coefficients and coherence lengths for some chalcopyrite crystals,” J. Opt. Soc. Am. 69, 730–733 (1979).
    [CrossRef]
  11. Y. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, O. Ya. Zyranov, I. I. Ippolitov, A. N. Morozov, A. V. Sosnin, and G. S. Khemi’nitskii, “Efficient generation of the second harmonic of tunable CO2 laser radiation,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).
    [CrossRef]
  12. Y. M. Andreev, An. N. Bykanov, A. I. Gribenyukov, V. V. Zuev, V. D. Karyshev, A. V. Lisletsov, I. O. Kovalev, V. I. Konov, G. P. Kuz’min, A. A. Nesterenko, A. E. Osorgin, Yu. M. Stardumov, and N. I. Chapliev, “Conversion of pulsed laser radiation from the 9.3–9.6 mm range to the second harmonic in ZnGeP2 crystals,” Sov. J. Quantum Electron. 20, 410–414 (1990).
    [CrossRef]
  13. G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevskii, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, “Efficient generation of the second harmonic of CO2 laser radiation in a GaSe crystal,” Sov. J. Quantum Electron. 19, 494–498 (1989).
    [CrossRef]
  14. K. Kato, “Second harmonic and sum frequency generation in ZnGeP2,” Appl. Opt. 36, 2506–2530 (1997).
    [CrossRef] [PubMed]

1999 (1)

P. G. Schunemann, “Nonlinear crystals provide high power for the mid-IR,” Laser Focus World 35(4), 85–90 (1999).

1998 (1)

1997 (1)

1995 (1)

F. K. Hopkins, “Nonlinear materials extend the range of high power lasers,” Laser Focus World 31(7), 87–93 (1995).

1990 (1)

Y. M. Andreev, An. N. Bykanov, A. I. Gribenyukov, V. V. Zuev, V. D. Karyshev, A. V. Lisletsov, I. O. Kovalev, V. I. Konov, G. P. Kuz’min, A. A. Nesterenko, A. E. Osorgin, Yu. M. Stardumov, and N. I. Chapliev, “Conversion of pulsed laser radiation from the 9.3–9.6 mm range to the second harmonic in ZnGeP2 crystals,” Sov. J. Quantum Electron. 20, 410–414 (1990).
[CrossRef]

1989 (1)

G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevskii, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, “Efficient generation of the second harmonic of CO2 laser radiation in a GaSe crystal,” Sov. J. Quantum Electron. 19, 494–498 (1989).
[CrossRef]

1984 (1)

Y. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, O. Ya. Zyranov, I. I. Ippolitov, A. N. Morozov, A. V. Sosnin, and G. S. Khemi’nitskii, “Efficient generation of the second harmonic of tunable CO2 laser radiation,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).
[CrossRef]

1979 (1)

1971 (1)

G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2,” Appl. Phys. Lett. 18, 301–304 (1971).
[CrossRef]

1963 (1)

Abdullaev, G. B.

G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevskii, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, “Efficient generation of the second harmonic of CO2 laser radiation in a GaSe crystal,” Sov. J. Quantum Electron. 19, 494–498 (1989).
[CrossRef]

Allakhverdiev, K. R.

G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevskii, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, “Efficient generation of the second harmonic of CO2 laser radiation in a GaSe crystal,” Sov. J. Quantum Electron. 19, 494–498 (1989).
[CrossRef]

Andreev, Y. M.

Y. M. Andreev, An. N. Bykanov, A. I. Gribenyukov, V. V. Zuev, V. D. Karyshev, A. V. Lisletsov, I. O. Kovalev, V. I. Konov, G. P. Kuz’min, A. A. Nesterenko, A. E. Osorgin, Yu. M. Stardumov, and N. I. Chapliev, “Conversion of pulsed laser radiation from the 9.3–9.6 mm range to the second harmonic in ZnGeP2 crystals,” Sov. J. Quantum Electron. 20, 410–414 (1990).
[CrossRef]

Y. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, O. Ya. Zyranov, I. I. Ippolitov, A. N. Morozov, A. V. Sosnin, and G. S. Khemi’nitskii, “Efficient generation of the second harmonic of tunable CO2 laser radiation,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).
[CrossRef]

Barnes, N. P.

Bhar, G. C.

Boyd, G. D.

G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2,” Appl. Phys. Lett. 18, 301–304 (1971).
[CrossRef]

Buehler, E.

G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2,” Appl. Phys. Lett. 18, 301–304 (1971).
[CrossRef]

Bykanov, An. N.

Y. M. Andreev, An. N. Bykanov, A. I. Gribenyukov, V. V. Zuev, V. D. Karyshev, A. V. Lisletsov, I. O. Kovalev, V. I. Konov, G. P. Kuz’min, A. A. Nesterenko, A. E. Osorgin, Yu. M. Stardumov, and N. I. Chapliev, “Conversion of pulsed laser radiation from the 9.3–9.6 mm range to the second harmonic in ZnGeP2 crystals,” Sov. J. Quantum Electron. 20, 410–414 (1990).
[CrossRef]

Chapliev, N. I.

Y. M. Andreev, An. N. Bykanov, A. I. Gribenyukov, V. V. Zuev, V. D. Karyshev, A. V. Lisletsov, I. O. Kovalev, V. I. Konov, G. P. Kuz’min, A. A. Nesterenko, A. E. Osorgin, Yu. M. Stardumov, and N. I. Chapliev, “Conversion of pulsed laser radiation from the 9.3–9.6 mm range to the second harmonic in ZnGeP2 crystals,” Sov. J. Quantum Electron. 20, 410–414 (1990).
[CrossRef]

G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevskii, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, “Efficient generation of the second harmonic of CO2 laser radiation in a GaSe crystal,” Sov. J. Quantum Electron. 19, 494–498 (1989).
[CrossRef]

Ghosh, G.

Gribenyukov, A. I.

Y. M. Andreev, An. N. Bykanov, A. I. Gribenyukov, V. V. Zuev, V. D. Karyshev, A. V. Lisletsov, I. O. Kovalev, V. I. Konov, G. P. Kuz’min, A. A. Nesterenko, A. E. Osorgin, Yu. M. Stardumov, and N. I. Chapliev, “Conversion of pulsed laser radiation from the 9.3–9.6 mm range to the second harmonic in ZnGeP2 crystals,” Sov. J. Quantum Electron. 20, 410–414 (1990).
[CrossRef]

Y. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, O. Ya. Zyranov, I. I. Ippolitov, A. N. Morozov, A. V. Sosnin, and G. S. Khemi’nitskii, “Efficient generation of the second harmonic of tunable CO2 laser radiation,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).
[CrossRef]

Hopkins, F. K.

F. K. Hopkins, “Nonlinear materials extend the range of high power lasers,” Laser Focus World 31(7), 87–93 (1995).

Ippolitov, I. I.

Y. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, O. Ya. Zyranov, I. I. Ippolitov, A. N. Morozov, A. V. Sosnin, and G. S. Khemi’nitskii, “Efficient generation of the second harmonic of tunable CO2 laser radiation,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).
[CrossRef]

Jani, M. G.

Karasev, M. E.

G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevskii, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, “Efficient generation of the second harmonic of CO2 laser radiation in a GaSe crystal,” Sov. J. Quantum Electron. 19, 494–498 (1989).
[CrossRef]

Karyshev, V. D.

Y. M. Andreev, An. N. Bykanov, A. I. Gribenyukov, V. V. Zuev, V. D. Karyshev, A. V. Lisletsov, I. O. Kovalev, V. I. Konov, G. P. Kuz’min, A. A. Nesterenko, A. E. Osorgin, Yu. M. Stardumov, and N. I. Chapliev, “Conversion of pulsed laser radiation from the 9.3–9.6 mm range to the second harmonic in ZnGeP2 crystals,” Sov. J. Quantum Electron. 20, 410–414 (1990).
[CrossRef]

Kato, K.

Khemi’nitskii, G. S.

Y. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, O. Ya. Zyranov, I. I. Ippolitov, A. N. Morozov, A. V. Sosnin, and G. S. Khemi’nitskii, “Efficient generation of the second harmonic of tunable CO2 laser radiation,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).
[CrossRef]

Konov, V. I.

Y. M. Andreev, An. N. Bykanov, A. I. Gribenyukov, V. V. Zuev, V. D. Karyshev, A. V. Lisletsov, I. O. Kovalev, V. I. Konov, G. P. Kuz’min, A. A. Nesterenko, A. E. Osorgin, Yu. M. Stardumov, and N. I. Chapliev, “Conversion of pulsed laser radiation from the 9.3–9.6 mm range to the second harmonic in ZnGeP2 crystals,” Sov. J. Quantum Electron. 20, 410–414 (1990).
[CrossRef]

G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevskii, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, “Efficient generation of the second harmonic of CO2 laser radiation in a GaSe crystal,” Sov. J. Quantum Electron. 19, 494–498 (1989).
[CrossRef]

Kovalev, I. O.

Y. M. Andreev, An. N. Bykanov, A. I. Gribenyukov, V. V. Zuev, V. D. Karyshev, A. V. Lisletsov, I. O. Kovalev, V. I. Konov, G. P. Kuz’min, A. A. Nesterenko, A. E. Osorgin, Yu. M. Stardumov, and N. I. Chapliev, “Conversion of pulsed laser radiation from the 9.3–9.6 mm range to the second harmonic in ZnGeP2 crystals,” Sov. J. Quantum Electron. 20, 410–414 (1990).
[CrossRef]

Kulevskii, L. A.

G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevskii, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, “Efficient generation of the second harmonic of CO2 laser radiation in a GaSe crystal,” Sov. J. Quantum Electron. 19, 494–498 (1989).
[CrossRef]

Kuz’min, G. P.

Y. M. Andreev, An. N. Bykanov, A. I. Gribenyukov, V. V. Zuev, V. D. Karyshev, A. V. Lisletsov, I. O. Kovalev, V. I. Konov, G. P. Kuz’min, A. A. Nesterenko, A. E. Osorgin, Yu. M. Stardumov, and N. I. Chapliev, “Conversion of pulsed laser radiation from the 9.3–9.6 mm range to the second harmonic in ZnGeP2 crystals,” Sov. J. Quantum Electron. 20, 410–414 (1990).
[CrossRef]

Lisletsov, A. V.

Y. M. Andreev, An. N. Bykanov, A. I. Gribenyukov, V. V. Zuev, V. D. Karyshev, A. V. Lisletsov, I. O. Kovalev, V. I. Konov, G. P. Kuz’min, A. A. Nesterenko, A. E. Osorgin, Yu. M. Stardumov, and N. I. Chapliev, “Conversion of pulsed laser radiation from the 9.3–9.6 mm range to the second harmonic in ZnGeP2 crystals,” Sov. J. Quantum Electron. 20, 410–414 (1990).
[CrossRef]

Malitson, I.

Morozov, A. N.

Y. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, O. Ya. Zyranov, I. I. Ippolitov, A. N. Morozov, A. V. Sosnin, and G. S. Khemi’nitskii, “Efficient generation of the second harmonic of tunable CO2 laser radiation,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).
[CrossRef]

Murray, K. E.

Mustafaev, N. B.

G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevskii, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, “Efficient generation of the second harmonic of CO2 laser radiation in a GaSe crystal,” Sov. J. Quantum Electron. 19, 494–498 (1989).
[CrossRef]

Nesterenko, A. A.

Y. M. Andreev, An. N. Bykanov, A. I. Gribenyukov, V. V. Zuev, V. D. Karyshev, A. V. Lisletsov, I. O. Kovalev, V. I. Konov, G. P. Kuz’min, A. A. Nesterenko, A. E. Osorgin, Yu. M. Stardumov, and N. I. Chapliev, “Conversion of pulsed laser radiation from the 9.3–9.6 mm range to the second harmonic in ZnGeP2 crystals,” Sov. J. Quantum Electron. 20, 410–414 (1990).
[CrossRef]

Osorgin, A. E.

Y. M. Andreev, An. N. Bykanov, A. I. Gribenyukov, V. V. Zuev, V. D. Karyshev, A. V. Lisletsov, I. O. Kovalev, V. I. Konov, G. P. Kuz’min, A. A. Nesterenko, A. E. Osorgin, Yu. M. Stardumov, and N. I. Chapliev, “Conversion of pulsed laser radiation from the 9.3–9.6 mm range to the second harmonic in ZnGeP2 crystals,” Sov. J. Quantum Electron. 20, 410–414 (1990).
[CrossRef]

Pashinin, P. P.

G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevskii, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, “Efficient generation of the second harmonic of CO2 laser radiation in a GaSe crystal,” Sov. J. Quantum Electron. 19, 494–498 (1989).
[CrossRef]

Pollak, T. M.

Prokhorov, A. M.

G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevskii, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, “Efficient generation of the second harmonic of CO2 laser radiation in a GaSe crystal,” Sov. J. Quantum Electron. 19, 494–498 (1989).
[CrossRef]

Schunemann, P. G.

P. G. Schunemann, “Nonlinear crystals provide high power for the mid-IR,” Laser Focus World 35(4), 85–90 (1999).

N. P. Barnes, K. E. Murray, M. G. Jani, P. G. Schunemann, and T. M. Pollak, “ZnGeP2 parametric amplifier,” J. Opt. Soc. Am. B 15, 232–238 (1998).
[CrossRef]

Sosnin, A. V.

Y. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, O. Ya. Zyranov, I. I. Ippolitov, A. N. Morozov, A. V. Sosnin, and G. S. Khemi’nitskii, “Efficient generation of the second harmonic of tunable CO2 laser radiation,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).
[CrossRef]

Stardumov, Yu. M.

Y. M. Andreev, An. N. Bykanov, A. I. Gribenyukov, V. V. Zuev, V. D. Karyshev, A. V. Lisletsov, I. O. Kovalev, V. I. Konov, G. P. Kuz’min, A. A. Nesterenko, A. E. Osorgin, Yu. M. Stardumov, and N. I. Chapliev, “Conversion of pulsed laser radiation from the 9.3–9.6 mm range to the second harmonic in ZnGeP2 crystals,” Sov. J. Quantum Electron. 20, 410–414 (1990).
[CrossRef]

Starodumov, Yu. M.

G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevskii, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, “Efficient generation of the second harmonic of CO2 laser radiation in a GaSe crystal,” Sov. J. Quantum Electron. 19, 494–498 (1989).
[CrossRef]

Storz, F. G.

G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2,” Appl. Phys. Lett. 18, 301–304 (1971).
[CrossRef]

Voevodin, V. G.

Y. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, O. Ya. Zyranov, I. I. Ippolitov, A. N. Morozov, A. V. Sosnin, and G. S. Khemi’nitskii, “Efficient generation of the second harmonic of tunable CO2 laser radiation,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).
[CrossRef]

Zuev, V. V.

Y. M. Andreev, An. N. Bykanov, A. I. Gribenyukov, V. V. Zuev, V. D. Karyshev, A. V. Lisletsov, I. O. Kovalev, V. I. Konov, G. P. Kuz’min, A. A. Nesterenko, A. E. Osorgin, Yu. M. Stardumov, and N. I. Chapliev, “Conversion of pulsed laser radiation from the 9.3–9.6 mm range to the second harmonic in ZnGeP2 crystals,” Sov. J. Quantum Electron. 20, 410–414 (1990).
[CrossRef]

Zyranov, O. Ya.

Y. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, O. Ya. Zyranov, I. I. Ippolitov, A. N. Morozov, A. V. Sosnin, and G. S. Khemi’nitskii, “Efficient generation of the second harmonic of tunable CO2 laser radiation,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2,” Appl. Phys. Lett. 18, 301–304 (1971).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Laser Focus World (2)

F. K. Hopkins, “Nonlinear materials extend the range of high power lasers,” Laser Focus World 31(7), 87–93 (1995).

P. G. Schunemann, “Nonlinear crystals provide high power for the mid-IR,” Laser Focus World 35(4), 85–90 (1999).

Sov. J. Quantum Electron. (3)

Y. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, O. Ya. Zyranov, I. I. Ippolitov, A. N. Morozov, A. V. Sosnin, and G. S. Khemi’nitskii, “Efficient generation of the second harmonic of tunable CO2 laser radiation,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).
[CrossRef]

Y. M. Andreev, An. N. Bykanov, A. I. Gribenyukov, V. V. Zuev, V. D. Karyshev, A. V. Lisletsov, I. O. Kovalev, V. I. Konov, G. P. Kuz’min, A. A. Nesterenko, A. E. Osorgin, Yu. M. Stardumov, and N. I. Chapliev, “Conversion of pulsed laser radiation from the 9.3–9.6 mm range to the second harmonic in ZnGeP2 crystals,” Sov. J. Quantum Electron. 20, 410–414 (1990).
[CrossRef]

G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevskii, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, “Efficient generation of the second harmonic of CO2 laser radiation in a GaSe crystal,” Sov. J. Quantum Electron. 19, 494–498 (1989).
[CrossRef]

Other (4)

A. J. LaRocca, “Atmospheric absorption,” in The Infrared Handbook, W. L. Wolfe and G. J. Zissis, eds. (Office of Naval Research, Washington, D.C., 1978), Chap. 5.

P. A. Budni, K. Ezzo, P. G. Schunemann, M. G. Knights, S. Minnigh, J. C. McCarthy, and T. M. Pollak, “2.8 micron pumped optical parametric oscillation in ZnGeP2,” in Advanced Solid State Lasers, G. Dube and L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 335–338.

T. H. Allik, S. Chandra, P. G. Schunemann, P. A. Ketteridge, I. Lee, T. M. Pollak, and E. P. Chicklis, “3.5 micron pumped NCPM ZnGeP2 OPO,” in Advanced Solid State Lasers, W. R. Bosenburg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington D.C., 1998), pp. 230–232.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), p. 179.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Ordinary and extraordinary refractive indices of zinc germanium phosphide as a function of wavelength.

Fig. 2
Fig. 2

Comparison of calculated phase-matching loci for a 3.46-µm pumped optical parametric oscillator calculated with Sellmier coefficients from Ref. 10 and this study. The cutoff wavelength for the idler calculated from Ref. 10 is 8.09 µm. From this study it is 7.51 µm. The propagation angle for 7.8-µm output is 81 deg based on this study.

Fig. 3
Fig. 3

Comparison of calculated phase-matching loci for frequency doubling of carbon dioxide laser lines. The filled triangles are data taken from Refs. 11-14.

Fig. 4
Fig. 4

Calculated phase-matching loci for a 2.05-µm pumped optical parametric oscillator showing both type I and type II phase matching.

Fig. 5
Fig. 5

Calculated phase-matching loci for a 2.81-µm pumped optical parametric oscillator showing both type I and type II phase matching.

Tables (1)

Tables Icon

Table 1 Calculated Sellmeir Coefficients for ZnGeP2

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n2=A+Bλ2(λ2-C)+Dλ2(λ2-E).

Metrics