Abstract

Using the classical treatment of the stimulated Raman-scattering process, we use a theoretical model to simulate the operation of an nth-order cascaded Raman fiber laser. We introduce the partial differential equations employed to describe the propagation and time dependence of the forward and reverse-propagating fields of an nth-order cascaded Raman fiber laser. Under steady-state conditions, these equations form the well-known system of first-order, nonlinear boundary-value ordinary differential equations, with separated boundary conditions. We solve this system of equations numerically with the use of mono-implicit Runge–Kutta methods within a defect-control framework. We consider cascaded Raman fiber lasers of orders 2 through 5 and examine the parameters that influence the operation of these devices. We also provide preliminary results on the investigation of a time-dependent model in which the pump power is assumed to vary periodically with time. The associated system of first-order, hyperbolic, partial differential equations is treated by employing a transverse method-of-lines algorithm; the time derivatives are discretized with a finite-difference scheme, yielding a large system of boundary-value ordinary differential equations. We establish that for sinusoidal modulation of the pump the Stokes cavity modes exhibit antiphase dynamics typical of a system of locally coupled nonlinear oscillators.

© 2001 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription