Abstract

Theoretical and experimental studies are carried out on the simultaneous dual-wavelength oscillation of a gain-switched Ti:Al2O3 laser, which is electronically tuned with an acousto-optic tunable filter (AOTF). Simultaneous oscillation at two wavelengths is performed by feeding two different radio frequencies (RFs) to the AOTF, although Ti:Al2O3 is known to be homogeneously broadened. Analysis based on semiclassical theory explains the temporal behavior and stability of dual-pulse oscillation, which is achieved by controlling the cavity lifetimes for two operating wavelengths independently. The relationship between gain and cavity loss, which is controllable through the diffraction efficiency of the AOTF by adjusting RF powers, is studied. The effects of variations of the pump pulse energy and in the spontaneous emission intensity have been studied in the numerical laser model for dual-wavelength operation. Because of the competition between the dual-wavelength pulses, the fluctuations in peak power in the experiment were observed to double compared with those observed during single-wavelength operation. Most experimental results of output characteristics agreed qualitatively with those of numerical predictions except for instability, which was significantly lower than the predicted value.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. F. Moulton, “Ti-doped sapphire: tunable solid-state laser,” Opt. News (November/December, 1982), p. 9.
  2. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125–133 (1986).
    [CrossRef]
  3. A. I. Gizbrekht, A. V. Kebedzhiev, M. N. Nenchev, Z. I. Peshev, and E. V. Pestryakov, “Two-wave emission from an Al2O3:Ti crystal laser,” Sov. J. Quantum Electron. 19, 1305–1307 (1989).
    [CrossRef]
  4. M. Nenchev, A. Deleva, E. Stoykova, Z. Peshiev, T. Patrikov, and A. Gizbrekht, “Controlled time-delayed-pulses operation of a two-wavelength combined dye–Ti:Al2O3 laser,” Opt. Commun. 86, 405–408 (1991).
    [CrossRef]
  5. R. Scheps and J. F. Myers, “Doubly resonant Ti:sapphire laser,” IEEE Photon. Technol. Lett. 4, 1–3 (1992).
    [CrossRef]
  6. R. Scheps and J. F. Myers, “Dual-wavelength coupled-cavity Ti:sapphire laser with active mirror for enhanced red operation and efficient intracavity sum frequency generation at 459 nm,” IEEE J. Quantum Electron. 30, 1050–1057 (1994).
    [CrossRef]
  7. M. Gorris-Neveux, M. Nenchev, R. Barbe, and J.-C. Keller, “A two-wavelength, passively self-injection locked, cw Ti3+:Al2O3 laser,” IEEE J. Quantum Electron. 31, 1253–1260 (1995).
    [CrossRef]
  8. A. Sanchez, R. E. Fahey, A. J. Strauss, and R. L. Aggrawal, “Room-temperature cw operation of the Ti:Al2O3 laser,” in Tunable Solid-State Lasers II, A. B. Budgor, L. Esterowitz, and L. D. DeShazer, eds. (Springer-Verlag, Berlin, 1986), pp. 202–207.
  9. C.-L. Pan, J.-C. Kuo, C.-D. Hwang, J.-M. Shieh, Y. Lai, and C.-S. Chang, “Buildup dynamics of the spectrum and the average output power of a homogeneously broadened continuous-wave Ti:sapphire laser,” Opt. Lett. 17, 994–996 (1992).
    [CrossRef] [PubMed]
  10. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 457.
  11. S. Wada, K. Akagawa, and H. Tashiro, “Electronically tuned Ti:sapphire laser,” Opt. Lett. 21, 731–733 (1996).
    [CrossRef] [PubMed]
  12. J. Geng, S. Wada, Y. Urata, and H. Tashiro, “Widely tunable, narrow-linewidth, subnanosecond pulse generation in an electronically tuned Ti:sapphire laser,” Opt. Lett. 24, 676–678 (1999).
    [CrossRef]
  13. I. C. Chang, “Tunable acousto-optic filter: An overview,” Opt. Eng. 16, 455–460 (1977).
    [CrossRef]
  14. I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370 (1981).
    [CrossRef]
  15. N. Saito, K. Akagawa, S. Wada, and H. Tashiro, “Difference-frequency generation by mixing dual-wavelength pulses emitting from an electronically tuned Ti:sapphire laser,” Appl. Phys. B 69, 93–97 (1999).
    [CrossRef]
  16. N. Saito, S. Monma, Y. Urata, S. Wada, and H. Tashiro, “Intracavity difference frequency generation using dual-wavelength oscillation by an electronically tuned Ti:sapphire laser,” Jpn. J. Appl. Phys. 38, 384–386 (1999).
    [CrossRef]
  17. N. Saito, “Difference-frequency generation in MgO-doped periodically poled LiNbO3 using an electronically tuned Ti:sapphire laser in dual-wavelength operation,” Jpn. J. Appl. Phys. 39, 1767–1768 (2000).
    [CrossRef]
  18. L. G. DeShazer, J. M. Eggleston, and K. W. Kangas, “Saturation of green absorption in titanium-doped sapphire laser crystal,” Opt. Lett. 13, 363–365 (1988).
    [CrossRef] [PubMed]
  19. W. Koechner, Solid-State Laser Engineering, 4th ed., A. L. Schawlow, A. E. Siegman, and T. Tamir, eds. (Springer-Verlag, Berlin, 1996), Vol. 1, pp. 117–127, Vol. 2, pp. 77–78.
  20. L. G. DeShazer, J. M. Eggleston, and K. W. Kangas “Oscillation and amplifier performance of Ti:sapphire,” in Tunable Solid State Lasers II, A. B. Budgor, L. Esterowitz, and L. G. DeShazer, eds. (Springer-Verlag, Berlin, 1986), pp. 228–234.
  21. J. M. Eggleston, L. G. DeShazer, and K. W. Kangas, “Characteristics and kinetics of laser-pumped Ti:sapphire laser,” IEEE J. Quantum Electron. 24, 1009–1015 (1988).
    [CrossRef]
  22. K. Akagawa, S. Wada, and H. Tashiro, “Synchronization of pulsed Ti:sapphire lasers and its application to difference frequency mixing for tunable infrared generation,” Appl. Opt. 35, 2570–2575 (1996).
    [CrossRef] [PubMed]

2000

N. Saito, “Difference-frequency generation in MgO-doped periodically poled LiNbO3 using an electronically tuned Ti:sapphire laser in dual-wavelength operation,” Jpn. J. Appl. Phys. 39, 1767–1768 (2000).
[CrossRef]

1999

J. Geng, S. Wada, Y. Urata, and H. Tashiro, “Widely tunable, narrow-linewidth, subnanosecond pulse generation in an electronically tuned Ti:sapphire laser,” Opt. Lett. 24, 676–678 (1999).
[CrossRef]

N. Saito, K. Akagawa, S. Wada, and H. Tashiro, “Difference-frequency generation by mixing dual-wavelength pulses emitting from an electronically tuned Ti:sapphire laser,” Appl. Phys. B 69, 93–97 (1999).
[CrossRef]

N. Saito, S. Monma, Y. Urata, S. Wada, and H. Tashiro, “Intracavity difference frequency generation using dual-wavelength oscillation by an electronically tuned Ti:sapphire laser,” Jpn. J. Appl. Phys. 38, 384–386 (1999).
[CrossRef]

1996

1995

M. Gorris-Neveux, M. Nenchev, R. Barbe, and J.-C. Keller, “A two-wavelength, passively self-injection locked, cw Ti3+:Al2O3 laser,” IEEE J. Quantum Electron. 31, 1253–1260 (1995).
[CrossRef]

1994

R. Scheps and J. F. Myers, “Dual-wavelength coupled-cavity Ti:sapphire laser with active mirror for enhanced red operation and efficient intracavity sum frequency generation at 459 nm,” IEEE J. Quantum Electron. 30, 1050–1057 (1994).
[CrossRef]

1992

1991

M. Nenchev, A. Deleva, E. Stoykova, Z. Peshiev, T. Patrikov, and A. Gizbrekht, “Controlled time-delayed-pulses operation of a two-wavelength combined dye–Ti:Al2O3 laser,” Opt. Commun. 86, 405–408 (1991).
[CrossRef]

1989

A. I. Gizbrekht, A. V. Kebedzhiev, M. N. Nenchev, Z. I. Peshev, and E. V. Pestryakov, “Two-wave emission from an Al2O3:Ti crystal laser,” Sov. J. Quantum Electron. 19, 1305–1307 (1989).
[CrossRef]

1988

L. G. DeShazer, J. M. Eggleston, and K. W. Kangas, “Saturation of green absorption in titanium-doped sapphire laser crystal,” Opt. Lett. 13, 363–365 (1988).
[CrossRef] [PubMed]

J. M. Eggleston, L. G. DeShazer, and K. W. Kangas, “Characteristics and kinetics of laser-pumped Ti:sapphire laser,” IEEE J. Quantum Electron. 24, 1009–1015 (1988).
[CrossRef]

1986

1981

I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370 (1981).
[CrossRef]

1977

I. C. Chang, “Tunable acousto-optic filter: An overview,” Opt. Eng. 16, 455–460 (1977).
[CrossRef]

Akagawa, K.

Barbe, R.

M. Gorris-Neveux, M. Nenchev, R. Barbe, and J.-C. Keller, “A two-wavelength, passively self-injection locked, cw Ti3+:Al2O3 laser,” IEEE J. Quantum Electron. 31, 1253–1260 (1995).
[CrossRef]

Chang, C.-S.

Chang, I. C.

I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370 (1981).
[CrossRef]

I. C. Chang, “Tunable acousto-optic filter: An overview,” Opt. Eng. 16, 455–460 (1977).
[CrossRef]

Deleva, A.

M. Nenchev, A. Deleva, E. Stoykova, Z. Peshiev, T. Patrikov, and A. Gizbrekht, “Controlled time-delayed-pulses operation of a two-wavelength combined dye–Ti:Al2O3 laser,” Opt. Commun. 86, 405–408 (1991).
[CrossRef]

DeShazer, L. G.

J. M. Eggleston, L. G. DeShazer, and K. W. Kangas, “Characteristics and kinetics of laser-pumped Ti:sapphire laser,” IEEE J. Quantum Electron. 24, 1009–1015 (1988).
[CrossRef]

L. G. DeShazer, J. M. Eggleston, and K. W. Kangas, “Saturation of green absorption in titanium-doped sapphire laser crystal,” Opt. Lett. 13, 363–365 (1988).
[CrossRef] [PubMed]

Eggleston, J. M.

L. G. DeShazer, J. M. Eggleston, and K. W. Kangas, “Saturation of green absorption in titanium-doped sapphire laser crystal,” Opt. Lett. 13, 363–365 (1988).
[CrossRef] [PubMed]

J. M. Eggleston, L. G. DeShazer, and K. W. Kangas, “Characteristics and kinetics of laser-pumped Ti:sapphire laser,” IEEE J. Quantum Electron. 24, 1009–1015 (1988).
[CrossRef]

Geng, J.

Gizbrekht, A.

M. Nenchev, A. Deleva, E. Stoykova, Z. Peshiev, T. Patrikov, and A. Gizbrekht, “Controlled time-delayed-pulses operation of a two-wavelength combined dye–Ti:Al2O3 laser,” Opt. Commun. 86, 405–408 (1991).
[CrossRef]

Gizbrekht, A. I.

A. I. Gizbrekht, A. V. Kebedzhiev, M. N. Nenchev, Z. I. Peshev, and E. V. Pestryakov, “Two-wave emission from an Al2O3:Ti crystal laser,” Sov. J. Quantum Electron. 19, 1305–1307 (1989).
[CrossRef]

Gorris-Neveux, M.

M. Gorris-Neveux, M. Nenchev, R. Barbe, and J.-C. Keller, “A two-wavelength, passively self-injection locked, cw Ti3+:Al2O3 laser,” IEEE J. Quantum Electron. 31, 1253–1260 (1995).
[CrossRef]

Hwang, C.-D.

Kangas, K. W.

L. G. DeShazer, J. M. Eggleston, and K. W. Kangas, “Saturation of green absorption in titanium-doped sapphire laser crystal,” Opt. Lett. 13, 363–365 (1988).
[CrossRef] [PubMed]

J. M. Eggleston, L. G. DeShazer, and K. W. Kangas, “Characteristics and kinetics of laser-pumped Ti:sapphire laser,” IEEE J. Quantum Electron. 24, 1009–1015 (1988).
[CrossRef]

Kebedzhiev, A. V.

A. I. Gizbrekht, A. V. Kebedzhiev, M. N. Nenchev, Z. I. Peshev, and E. V. Pestryakov, “Two-wave emission from an Al2O3:Ti crystal laser,” Sov. J. Quantum Electron. 19, 1305–1307 (1989).
[CrossRef]

Keller, J.-C.

M. Gorris-Neveux, M. Nenchev, R. Barbe, and J.-C. Keller, “A two-wavelength, passively self-injection locked, cw Ti3+:Al2O3 laser,” IEEE J. Quantum Electron. 31, 1253–1260 (1995).
[CrossRef]

Kuo, J.-C.

Lai, Y.

Monma, S.

N. Saito, S. Monma, Y. Urata, S. Wada, and H. Tashiro, “Intracavity difference frequency generation using dual-wavelength oscillation by an electronically tuned Ti:sapphire laser,” Jpn. J. Appl. Phys. 38, 384–386 (1999).
[CrossRef]

Moulton, P. F.

Myers, J. F.

R. Scheps and J. F. Myers, “Dual-wavelength coupled-cavity Ti:sapphire laser with active mirror for enhanced red operation and efficient intracavity sum frequency generation at 459 nm,” IEEE J. Quantum Electron. 30, 1050–1057 (1994).
[CrossRef]

R. Scheps and J. F. Myers, “Doubly resonant Ti:sapphire laser,” IEEE Photon. Technol. Lett. 4, 1–3 (1992).
[CrossRef]

Nenchev, M.

M. Gorris-Neveux, M. Nenchev, R. Barbe, and J.-C. Keller, “A two-wavelength, passively self-injection locked, cw Ti3+:Al2O3 laser,” IEEE J. Quantum Electron. 31, 1253–1260 (1995).
[CrossRef]

M. Nenchev, A. Deleva, E. Stoykova, Z. Peshiev, T. Patrikov, and A. Gizbrekht, “Controlled time-delayed-pulses operation of a two-wavelength combined dye–Ti:Al2O3 laser,” Opt. Commun. 86, 405–408 (1991).
[CrossRef]

Nenchev, M. N.

A. I. Gizbrekht, A. V. Kebedzhiev, M. N. Nenchev, Z. I. Peshev, and E. V. Pestryakov, “Two-wave emission from an Al2O3:Ti crystal laser,” Sov. J. Quantum Electron. 19, 1305–1307 (1989).
[CrossRef]

Pan, C.-L.

Patrikov, T.

M. Nenchev, A. Deleva, E. Stoykova, Z. Peshiev, T. Patrikov, and A. Gizbrekht, “Controlled time-delayed-pulses operation of a two-wavelength combined dye–Ti:Al2O3 laser,” Opt. Commun. 86, 405–408 (1991).
[CrossRef]

Peshev, Z. I.

A. I. Gizbrekht, A. V. Kebedzhiev, M. N. Nenchev, Z. I. Peshev, and E. V. Pestryakov, “Two-wave emission from an Al2O3:Ti crystal laser,” Sov. J. Quantum Electron. 19, 1305–1307 (1989).
[CrossRef]

Peshiev, Z.

M. Nenchev, A. Deleva, E. Stoykova, Z. Peshiev, T. Patrikov, and A. Gizbrekht, “Controlled time-delayed-pulses operation of a two-wavelength combined dye–Ti:Al2O3 laser,” Opt. Commun. 86, 405–408 (1991).
[CrossRef]

Pestryakov, E. V.

A. I. Gizbrekht, A. V. Kebedzhiev, M. N. Nenchev, Z. I. Peshev, and E. V. Pestryakov, “Two-wave emission from an Al2O3:Ti crystal laser,” Sov. J. Quantum Electron. 19, 1305–1307 (1989).
[CrossRef]

Saito, N.

N. Saito, “Difference-frequency generation in MgO-doped periodically poled LiNbO3 using an electronically tuned Ti:sapphire laser in dual-wavelength operation,” Jpn. J. Appl. Phys. 39, 1767–1768 (2000).
[CrossRef]

N. Saito, S. Monma, Y. Urata, S. Wada, and H. Tashiro, “Intracavity difference frequency generation using dual-wavelength oscillation by an electronically tuned Ti:sapphire laser,” Jpn. J. Appl. Phys. 38, 384–386 (1999).
[CrossRef]

N. Saito, K. Akagawa, S. Wada, and H. Tashiro, “Difference-frequency generation by mixing dual-wavelength pulses emitting from an electronically tuned Ti:sapphire laser,” Appl. Phys. B 69, 93–97 (1999).
[CrossRef]

Scheps, R.

R. Scheps and J. F. Myers, “Dual-wavelength coupled-cavity Ti:sapphire laser with active mirror for enhanced red operation and efficient intracavity sum frequency generation at 459 nm,” IEEE J. Quantum Electron. 30, 1050–1057 (1994).
[CrossRef]

R. Scheps and J. F. Myers, “Doubly resonant Ti:sapphire laser,” IEEE Photon. Technol. Lett. 4, 1–3 (1992).
[CrossRef]

Shieh, J.-M.

Stoykova, E.

M. Nenchev, A. Deleva, E. Stoykova, Z. Peshiev, T. Patrikov, and A. Gizbrekht, “Controlled time-delayed-pulses operation of a two-wavelength combined dye–Ti:Al2O3 laser,” Opt. Commun. 86, 405–408 (1991).
[CrossRef]

Tashiro, H.

J. Geng, S. Wada, Y. Urata, and H. Tashiro, “Widely tunable, narrow-linewidth, subnanosecond pulse generation in an electronically tuned Ti:sapphire laser,” Opt. Lett. 24, 676–678 (1999).
[CrossRef]

N. Saito, K. Akagawa, S. Wada, and H. Tashiro, “Difference-frequency generation by mixing dual-wavelength pulses emitting from an electronically tuned Ti:sapphire laser,” Appl. Phys. B 69, 93–97 (1999).
[CrossRef]

N. Saito, S. Monma, Y. Urata, S. Wada, and H. Tashiro, “Intracavity difference frequency generation using dual-wavelength oscillation by an electronically tuned Ti:sapphire laser,” Jpn. J. Appl. Phys. 38, 384–386 (1999).
[CrossRef]

K. Akagawa, S. Wada, and H. Tashiro, “Synchronization of pulsed Ti:sapphire lasers and its application to difference frequency mixing for tunable infrared generation,” Appl. Opt. 35, 2570–2575 (1996).
[CrossRef] [PubMed]

S. Wada, K. Akagawa, and H. Tashiro, “Electronically tuned Ti:sapphire laser,” Opt. Lett. 21, 731–733 (1996).
[CrossRef] [PubMed]

Urata, Y.

J. Geng, S. Wada, Y. Urata, and H. Tashiro, “Widely tunable, narrow-linewidth, subnanosecond pulse generation in an electronically tuned Ti:sapphire laser,” Opt. Lett. 24, 676–678 (1999).
[CrossRef]

N. Saito, S. Monma, Y. Urata, S. Wada, and H. Tashiro, “Intracavity difference frequency generation using dual-wavelength oscillation by an electronically tuned Ti:sapphire laser,” Jpn. J. Appl. Phys. 38, 384–386 (1999).
[CrossRef]

Wada, S.

N. Saito, S. Monma, Y. Urata, S. Wada, and H. Tashiro, “Intracavity difference frequency generation using dual-wavelength oscillation by an electronically tuned Ti:sapphire laser,” Jpn. J. Appl. Phys. 38, 384–386 (1999).
[CrossRef]

N. Saito, K. Akagawa, S. Wada, and H. Tashiro, “Difference-frequency generation by mixing dual-wavelength pulses emitting from an electronically tuned Ti:sapphire laser,” Appl. Phys. B 69, 93–97 (1999).
[CrossRef]

J. Geng, S. Wada, Y. Urata, and H. Tashiro, “Widely tunable, narrow-linewidth, subnanosecond pulse generation in an electronically tuned Ti:sapphire laser,” Opt. Lett. 24, 676–678 (1999).
[CrossRef]

S. Wada, K. Akagawa, and H. Tashiro, “Electronically tuned Ti:sapphire laser,” Opt. Lett. 21, 731–733 (1996).
[CrossRef] [PubMed]

K. Akagawa, S. Wada, and H. Tashiro, “Synchronization of pulsed Ti:sapphire lasers and its application to difference frequency mixing for tunable infrared generation,” Appl. Opt. 35, 2570–2575 (1996).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. B

N. Saito, K. Akagawa, S. Wada, and H. Tashiro, “Difference-frequency generation by mixing dual-wavelength pulses emitting from an electronically tuned Ti:sapphire laser,” Appl. Phys. B 69, 93–97 (1999).
[CrossRef]

Appl. Phys. Lett.

I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370 (1981).
[CrossRef]

IEEE J. Quantum Electron.

J. M. Eggleston, L. G. DeShazer, and K. W. Kangas, “Characteristics and kinetics of laser-pumped Ti:sapphire laser,” IEEE J. Quantum Electron. 24, 1009–1015 (1988).
[CrossRef]

R. Scheps and J. F. Myers, “Dual-wavelength coupled-cavity Ti:sapphire laser with active mirror for enhanced red operation and efficient intracavity sum frequency generation at 459 nm,” IEEE J. Quantum Electron. 30, 1050–1057 (1994).
[CrossRef]

M. Gorris-Neveux, M. Nenchev, R. Barbe, and J.-C. Keller, “A two-wavelength, passively self-injection locked, cw Ti3+:Al2O3 laser,” IEEE J. Quantum Electron. 31, 1253–1260 (1995).
[CrossRef]

IEEE Photon. Technol. Lett.

R. Scheps and J. F. Myers, “Doubly resonant Ti:sapphire laser,” IEEE Photon. Technol. Lett. 4, 1–3 (1992).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

N. Saito, S. Monma, Y. Urata, S. Wada, and H. Tashiro, “Intracavity difference frequency generation using dual-wavelength oscillation by an electronically tuned Ti:sapphire laser,” Jpn. J. Appl. Phys. 38, 384–386 (1999).
[CrossRef]

N. Saito, “Difference-frequency generation in MgO-doped periodically poled LiNbO3 using an electronically tuned Ti:sapphire laser in dual-wavelength operation,” Jpn. J. Appl. Phys. 39, 1767–1768 (2000).
[CrossRef]

Opt. Commun.

M. Nenchev, A. Deleva, E. Stoykova, Z. Peshiev, T. Patrikov, and A. Gizbrekht, “Controlled time-delayed-pulses operation of a two-wavelength combined dye–Ti:Al2O3 laser,” Opt. Commun. 86, 405–408 (1991).
[CrossRef]

Opt. Eng.

I. C. Chang, “Tunable acousto-optic filter: An overview,” Opt. Eng. 16, 455–460 (1977).
[CrossRef]

Opt. Lett.

Sov. J. Quantum Electron.

A. I. Gizbrekht, A. V. Kebedzhiev, M. N. Nenchev, Z. I. Peshev, and E. V. Pestryakov, “Two-wave emission from an Al2O3:Ti crystal laser,” Sov. J. Quantum Electron. 19, 1305–1307 (1989).
[CrossRef]

Other

P. F. Moulton, “Ti-doped sapphire: tunable solid-state laser,” Opt. News (November/December, 1982), p. 9.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 457.

A. Sanchez, R. E. Fahey, A. J. Strauss, and R. L. Aggrawal, “Room-temperature cw operation of the Ti:Al2O3 laser,” in Tunable Solid-State Lasers II, A. B. Budgor, L. Esterowitz, and L. D. DeShazer, eds. (Springer-Verlag, Berlin, 1986), pp. 202–207.

W. Koechner, Solid-State Laser Engineering, 4th ed., A. L. Schawlow, A. E. Siegman, and T. Tamir, eds. (Springer-Verlag, Berlin, 1996), Vol. 1, pp. 117–127, Vol. 2, pp. 77–78.

L. G. DeShazer, J. M. Eggleston, and K. W. Kangas “Oscillation and amplifier performance of Ti:sapphire,” in Tunable Solid State Lasers II, A. B. Budgor, L. Esterowitz, and L. G. DeShazer, eds. (Springer-Verlag, Berlin, 1986), pp. 228–234.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Energy diagram of Ti:Al2O3.

Fig. 2
Fig. 2

Temporal behaviors for the rise of dual-wavelength pulses with a constant pump power. Wavelengths of 780 and 850 nm were used. The diffraction efficiency of 780 nm in an AOTF is changed as a parameter, while that of 850 nm is fixed at unity.

Fig. 3
Fig. 3

Temporal behaviors for pulsed pumping for a combination of 720- and 780-nm wavelengths. Temporal profiles of lasing pulses and population inversion are shown. The diffraction efficiency at 720 nm was fixed at unity, while that at 780 nm was varied from 0.68 to 0.80, as shown.

Fig. 4
Fig. 4

Temporal behaviors for pulsed pumping for a combination of 720- and 850-nm wavelengths. The diffraction efficiency at 720 nm was fixed at unity, while that at 850 nm was varied from 0.74 to 0.90, as shown.

Fig. 5
Fig. 5

For the change in pumping rate, (a) variation of peak photon density in dual-wavelength operation, and (b) variation of each peak photon density in single-wavelength operation.

Fig. 6
Fig. 6

Experimental setup of an electronically tuned Ti:sapphire laser.

Fig. 7
Fig. 7

Tuning range of the electronically tuned Ti:sapphire laser with RF power control.

Fig. 8
Fig. 8

Temporal behaviors of dual-wavelength pulses. Here 720 and 780 nm were selected as dual wavelengths. The RF power for 780 nm was increased gradually from 47% to 52%, while that for 720 was fixed at 100% (2 W).

Fig. 9
Fig. 9

Output powers in dual-wavelength operation. Combinations of (a) 720 and 780 nm and (b) 720 and 850 nm were measured as a function of RF power.

Tables (1)

Tables Icon

Table 1 Values Used for Numerical Calculations

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Ntot=N0+N1+N2+N3.
Wp=ηQW03,
Ntot=N0(t)+N2(t).
dN2(t)dt=Wp(t)-N2(t)×c[σ(v1)ϕ1(t)+σ(v2)ϕ2(t)] lL+1τF,
dϕ1(t)dt=cσ(v1)N2(t)ϕ1(t) lL-ϕ1(t)τC1+cσ(v1)N2(t),
dϕ2(t)dt=cσ(v2)N2(t)ϕ2(t) lL-ϕ2(t)τC2+cσ(v2)N2(t),
τC1=2Lc[-ln RO(v1)RR(v1)TD1(PA)2TP(v1)2+2α(v1)l]-1,
τC2=2Lc[-ln RO(v2)RR(v2)TD2(PA)2TP(v2)2+2α(v2)l]-1,
WP(t)=ηQ P(t)hvPV,
P(t)=EτPηNt exp-tτN,
WP(t)=ηQ P(t)N0hvPV[N0-N2(t)].

Metrics