Abstract

The characteristics of laser operation near threshold in a cw Nd:YAG laser are investigated. In the threshold region the laser operates in the form of pulses. The off states of the laser are intermittently interrupted by chaotic laser burst of the on states. Through an analysis of scaling in laminar phases, we verify that this phenomenon is the same on–off intermittency that was studied in nonlinear dynamics [Phys. Rev. E 49, 1140 (1994)].

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. T. Arecchi and R. G. Harrison, eds., Instabilities and Chaos in Quantum Optics (Springer-Verlag, Berlin, 1987).
  2. For example, see D. Dangoisse, P. Glorieux, and D. Hennequin, “Chaos in a CO2 laser with modulated parameters,” Phys. Rev. A 36, 4775–4791 (1987).
    [CrossRef] [PubMed]
  3. F. X. Kaertner, D. M. Zumbuehl, and N. Matuschek, “Turbulence in mode-locked lasers,” Phys. Rev. Lett. 82, 4428–4431 (1999).
    [CrossRef]
  4. N. Platt, E. A. Spiegel, and C. Tresser, “On–off intermittency: a mechanism for bursting,” Phys. Rev. Lett. 70, 279–282 (1993).
    [CrossRef] [PubMed]
  5. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, 1999), pp. 113–116.
  6. J. F. Henry, N. Platt, and S. M. Hammel, “Characterization of on–off intermittency,” Phys. Rev. E 49, 1140–1150 (1994).
    [CrossRef]
  7. N. Platt, S. M. Hammel, and J. F. Heagy, “Effects of additive noise on on–off intermittency,” Phys. Rev. Lett. 72, 3498–3501 (1994).
    [CrossRef] [PubMed]
  8. P. W. Hammer, N. Platt, S. M. Hammel, J. F. Heagy, and B. D. Lee, “Experimental observation of on–off intermittency,” Phys. Rev. Lett. 73, 1095–1098 (1994).
    [CrossRef] [PubMed]

1999 (1)

F. X. Kaertner, D. M. Zumbuehl, and N. Matuschek, “Turbulence in mode-locked lasers,” Phys. Rev. Lett. 82, 4428–4431 (1999).
[CrossRef]

1994 (3)

J. F. Henry, N. Platt, and S. M. Hammel, “Characterization of on–off intermittency,” Phys. Rev. E 49, 1140–1150 (1994).
[CrossRef]

N. Platt, S. M. Hammel, and J. F. Heagy, “Effects of additive noise on on–off intermittency,” Phys. Rev. Lett. 72, 3498–3501 (1994).
[CrossRef] [PubMed]

P. W. Hammer, N. Platt, S. M. Hammel, J. F. Heagy, and B. D. Lee, “Experimental observation of on–off intermittency,” Phys. Rev. Lett. 73, 1095–1098 (1994).
[CrossRef] [PubMed]

1993 (1)

N. Platt, E. A. Spiegel, and C. Tresser, “On–off intermittency: a mechanism for bursting,” Phys. Rev. Lett. 70, 279–282 (1993).
[CrossRef] [PubMed]

1987 (1)

For example, see D. Dangoisse, P. Glorieux, and D. Hennequin, “Chaos in a CO2 laser with modulated parameters,” Phys. Rev. A 36, 4775–4791 (1987).
[CrossRef] [PubMed]

Dangoisse, D.

For example, see D. Dangoisse, P. Glorieux, and D. Hennequin, “Chaos in a CO2 laser with modulated parameters,” Phys. Rev. A 36, 4775–4791 (1987).
[CrossRef] [PubMed]

Glorieux, P.

For example, see D. Dangoisse, P. Glorieux, and D. Hennequin, “Chaos in a CO2 laser with modulated parameters,” Phys. Rev. A 36, 4775–4791 (1987).
[CrossRef] [PubMed]

Hammel, S. M.

J. F. Henry, N. Platt, and S. M. Hammel, “Characterization of on–off intermittency,” Phys. Rev. E 49, 1140–1150 (1994).
[CrossRef]

N. Platt, S. M. Hammel, and J. F. Heagy, “Effects of additive noise on on–off intermittency,” Phys. Rev. Lett. 72, 3498–3501 (1994).
[CrossRef] [PubMed]

P. W. Hammer, N. Platt, S. M. Hammel, J. F. Heagy, and B. D. Lee, “Experimental observation of on–off intermittency,” Phys. Rev. Lett. 73, 1095–1098 (1994).
[CrossRef] [PubMed]

Hammer, P. W.

P. W. Hammer, N. Platt, S. M. Hammel, J. F. Heagy, and B. D. Lee, “Experimental observation of on–off intermittency,” Phys. Rev. Lett. 73, 1095–1098 (1994).
[CrossRef] [PubMed]

Heagy, J. F.

N. Platt, S. M. Hammel, and J. F. Heagy, “Effects of additive noise on on–off intermittency,” Phys. Rev. Lett. 72, 3498–3501 (1994).
[CrossRef] [PubMed]

P. W. Hammer, N. Platt, S. M. Hammel, J. F. Heagy, and B. D. Lee, “Experimental observation of on–off intermittency,” Phys. Rev. Lett. 73, 1095–1098 (1994).
[CrossRef] [PubMed]

Hennequin, D.

For example, see D. Dangoisse, P. Glorieux, and D. Hennequin, “Chaos in a CO2 laser with modulated parameters,” Phys. Rev. A 36, 4775–4791 (1987).
[CrossRef] [PubMed]

Henry, J. F.

J. F. Henry, N. Platt, and S. M. Hammel, “Characterization of on–off intermittency,” Phys. Rev. E 49, 1140–1150 (1994).
[CrossRef]

Kaertner, F. X.

F. X. Kaertner, D. M. Zumbuehl, and N. Matuschek, “Turbulence in mode-locked lasers,” Phys. Rev. Lett. 82, 4428–4431 (1999).
[CrossRef]

Lee, B. D.

P. W. Hammer, N. Platt, S. M. Hammel, J. F. Heagy, and B. D. Lee, “Experimental observation of on–off intermittency,” Phys. Rev. Lett. 73, 1095–1098 (1994).
[CrossRef] [PubMed]

Matuschek, N.

F. X. Kaertner, D. M. Zumbuehl, and N. Matuschek, “Turbulence in mode-locked lasers,” Phys. Rev. Lett. 82, 4428–4431 (1999).
[CrossRef]

Platt, N.

J. F. Henry, N. Platt, and S. M. Hammel, “Characterization of on–off intermittency,” Phys. Rev. E 49, 1140–1150 (1994).
[CrossRef]

N. Platt, S. M. Hammel, and J. F. Heagy, “Effects of additive noise on on–off intermittency,” Phys. Rev. Lett. 72, 3498–3501 (1994).
[CrossRef] [PubMed]

P. W. Hammer, N. Platt, S. M. Hammel, J. F. Heagy, and B. D. Lee, “Experimental observation of on–off intermittency,” Phys. Rev. Lett. 73, 1095–1098 (1994).
[CrossRef] [PubMed]

N. Platt, E. A. Spiegel, and C. Tresser, “On–off intermittency: a mechanism for bursting,” Phys. Rev. Lett. 70, 279–282 (1993).
[CrossRef] [PubMed]

Spiegel, E. A.

N. Platt, E. A. Spiegel, and C. Tresser, “On–off intermittency: a mechanism for bursting,” Phys. Rev. Lett. 70, 279–282 (1993).
[CrossRef] [PubMed]

Tresser, C.

N. Platt, E. A. Spiegel, and C. Tresser, “On–off intermittency: a mechanism for bursting,” Phys. Rev. Lett. 70, 279–282 (1993).
[CrossRef] [PubMed]

Zumbuehl, D. M.

F. X. Kaertner, D. M. Zumbuehl, and N. Matuschek, “Turbulence in mode-locked lasers,” Phys. Rev. Lett. 82, 4428–4431 (1999).
[CrossRef]

Phys. Rev. A (1)

For example, see D. Dangoisse, P. Glorieux, and D. Hennequin, “Chaos in a CO2 laser with modulated parameters,” Phys. Rev. A 36, 4775–4791 (1987).
[CrossRef] [PubMed]

Phys. Rev. E (1)

J. F. Henry, N. Platt, and S. M. Hammel, “Characterization of on–off intermittency,” Phys. Rev. E 49, 1140–1150 (1994).
[CrossRef]

Phys. Rev. Lett. (4)

N. Platt, S. M. Hammel, and J. F. Heagy, “Effects of additive noise on on–off intermittency,” Phys. Rev. Lett. 72, 3498–3501 (1994).
[CrossRef] [PubMed]

P. W. Hammer, N. Platt, S. M. Hammel, J. F. Heagy, and B. D. Lee, “Experimental observation of on–off intermittency,” Phys. Rev. Lett. 73, 1095–1098 (1994).
[CrossRef] [PubMed]

F. X. Kaertner, D. M. Zumbuehl, and N. Matuschek, “Turbulence in mode-locked lasers,” Phys. Rev. Lett. 82, 4428–4431 (1999).
[CrossRef]

N. Platt, E. A. Spiegel, and C. Tresser, “On–off intermittency: a mechanism for bursting,” Phys. Rev. Lett. 70, 279–282 (1993).
[CrossRef] [PubMed]

Other (2)

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, 1999), pp. 113–116.

F. T. Arecchi and R. G. Harrison, eds., Instabilities and Chaos in Quantum Optics (Springer-Verlag, Berlin, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup: R, laser rod (Nd:YAG); L, krypton arc lamp; M1, M2: laser mirrors; A, aperture; PS, power supply; PD, photodiode; OS, oscilloscope; PC, personal computer.

Fig. 2
Fig. 2

Experimentally obtained time scales of laser outputs in the threshold region of a cw Nd:YAG laser. Lamp current: (a) 10.25 A, (b) 10.18 A, (c) 10.16 A, (d) 10.14 A.

Fig. 3
Fig. 3

Expanded time scales of laser outputs. Input power, (a)>(b)>(c).

Fig. 4
Fig. 4

Probability distribution of laminar phase versus laminar length. A–C, experimental results. Currents are curve C, 10.14 A; curve B, 10.16 A; curve A, 10.18 A. The solid diagonal line shows a slope of -3/2.

Fig. 5
Fig. 5

Average laminar length versus difference of current δ=|a-ac|. Open circles represent the measurements. An error of ∼10% in current is assumed. The solid diagonal line shows a slope of -1.

Metrics