Abstract

The refractive-index change caused by electrons was measured in amorphous AsS and AsSe thin films. Films were coated with different metals. Diffraction gratings were written by electron-beam lithography. The interactions of electrons in films with and without the photodiffusion of overcoated metal were compared. Incoming electrons caused metal atom and ion diffusion in both investigated cases. The metal diffusion was dependent on the metal and it was found to influence the refractive index. In some cases lateral diffusion of the metal was noticed. The conditions for applications were verified.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Kolobov and S. R. Elliott, “Photodoping of amorphous chalcogenides by metals,” Adv. Phys. 40, 625–684 (1991).
    [CrossRef]
  2. T. Suhara, H. Nishihara, and J. Koyma, “Electron-beam-induced refractive-index change of amorphous semiconductors,” Jpn. J. Appl. Phys. 14, 1079–1080 (1975).
    [CrossRef]
  3. H. Nishihara, “Direct writing technique using a scanning electron microscope: Fabrication of optical gratings in amorphous chalcogenide films,” in Technical Digest of the First International Conference on Integrated Optics and Fiber Communication (Institute of Electronics and Communications Engineers, Tokyo, 1977), pp. 587–590.
  4. H. Nishihara, Y. Handa, T. Suhara, and J. Koyama, “Direct writing of optical gratings using a scanning electron microscopy,” Appl. Opt. 17, 2342–2345 (1978).
    [CrossRef] [PubMed]
  5. Y. Handa, T. Suhara, H. Nishihara, and J. Koyama, “Scanning-electron-microscope-written gratings in chalcogenide films for optical integrated films,” Appl. Opt. 18, 248–252 (1979).
    [CrossRef] [PubMed]
  6. Y. Handa, T. Suhara, H. Nishihara, and J. Koyama, “Integrated grating circuit for guided-beam multiple division fabricated by electron-beam direct writing,” Opt. Lett. 5, 309–311 (1980).
    [CrossRef] [PubMed]
  7. Y. Handa, T. Suhara, H. Nishihara, and J. Koyama, “Microgratings for high-efficiency guided-beam deflection fabricated by electron-beam direct-writing techniques,” Appl. Opt. 19, 2842–2847 (1980).
    [CrossRef] [PubMed]
  8. T. Suhara, Y. Handa, H. Nishihara, and J. Koyama, “Monolithic integrated microgratings and photodiodes for wavelength multiplexing,” Appl. Phys. Lett. 40, 120–122 (1982).
    [CrossRef]
  9. T. Suhara and H. Nishihara, “Integrated optics components and devices using periodic structures,” IEEE J. Quantum Electron. QE-22, 845–867 (1986).
    [CrossRef]
  10. J. M. Oldale and S. R. Elliott, “Reversible electron beam writing on a submicron scale in a superionic amorphous films,” Appl. Phys. Lett. 63, 1801–1803 (1993).
    [CrossRef]
  11. S. A. Sergeev, A. A. Simashkevich, and S. D. Shutov, “Slanted superimposed diffraction gratings formed by an electron beam in amorphous arsenic sulfide films,” Quantum Electron. 24, 924–926 (1994).
    [CrossRef]
  12. A. Yoshikawa, O. Ochi, H. Nagai, and Y. Mizushima, “A new inorganic electron resist of high contrast,” Appl. Phys. Lett. 31, 161–163 (1977).
    [CrossRef]
  13. B. Singh, S. P. Beaumont, P. G. Bower, and C. D. W. Wilkinson, “Sub-50-nm lithography in amorphous Se–Ge inorganic resist by electron beam exposure,” Appl. Phys. Lett. 41, 1002–1004 (19082).
    [CrossRef]
  14. N. Nordman and O. Nordman, “Electron beam induced refractive index change in amorphous As-S and As-Se thin films coated with different metals,” J. Appl. Phys. (to be published).
  15. C. P. McHardy, A. G. Fitzgerald, P. A. Moir, and M. Flynn, “The dissolution of metals in amorphous chalcogenides and the effects of electron and ultraviolet radiation,” J. Phys. C 20, 4055–4075 (1987).
    [CrossRef]
  16. N. Nordman and O. Salminen, “Thickness variations in amorphous As2S3 films induced by electron beams,” Solid State Commun. 100, 241–244 (1996).
    [CrossRef]
  17. O. Nordman, N. Nordman, and N. Peyghambarian, “Electron beam induced changes in the refractive index and film thickness of amorphous AsxS100−x and AsxSe100−x films,” J. Appl. Phys. 84, 6055–6058 (1998).
    [CrossRef]
  18. N. Nordman, O. Salminen, M. Kuittinen, and J. Turunen, “Diffractive phase elements by electron beam exposure of thin As2S3 films,” J. Appl. Phys. 80, 3683–3686 (1996).
    [CrossRef]
  19. N. Nordman and O. Nordman, “Characterization of refractive index change induced by electron beam in amorphous thin As2S3 film,” J. Appl. Phys. 82, 1521–1534 (1997).
    [CrossRef]
  20. O. Nordman and N. Nordman, “Hole formation induced by 488.0 nm light in 10 μm thick amorphous as-evaporated As2S3 films,” Phys. Rev. B 60, 2833–2838 (1999).
    [CrossRef]
  21. P. Stradins, K. Shvarts, and J. Teteris, “The relation of photo and thermal components of photoinduced changes in amorphous semiconductors,” J. Non-Cryst. Solids 114, 79–81 (1989).
    [CrossRef]
  22. N. Yoshida, M. Itoh, and K. Tanaka, “Photo- and electron-induced chemical modification in Ag-As(Ge)-S(Se) glasses,” J. Non-Cryst. Solids 198–200, 749–752 (1996).
    [CrossRef]
  23. M. Ohto, M. Itoh, and K. Tanaka, “Optical and electrical properties of Ag-As-S glasses,” J. Appl. Phys. 77, 1034–1039 (1995).
    [CrossRef]
  24. O. Nordman, N. Nordman, and A. Ozols, “Influence of the age of amorphous nonannealed As2S3 thin films on holographic properties,” Opt. Commun. 145, 38–42 (1998).
    [CrossRef]
  25. A. Ozols, O. Salminen, and M. Reinfelde, “Relaxational self-enhancement of holographic gratings in amorphous As2S3 films,” J. Appl. Phys. 75, 3326–3334 (1994).
    [CrossRef]
  26. T. I. Kosa, T. Wagner, P. J. S. Ewen, and A. E. Owen, “Index of refraction of Ag-doped As37S67 films: measurement and analysis of dispersion,” Philos. Mag. B 71, 311–318 (1995).
    [CrossRef]
  27. J. B. Ramirez-Malo, E. Marquez, C. Corrales, J. Fernandez-Peña, J. Reyes, P. Villares, and R. Jimenez-Garay, “A new study of the refractive-index dispersion of Ag-photodoped thin films of As30S70 chalcogenide glass,” Mater. Chem. Phys. 44, 186–189 (1996).
    [CrossRef]
  28. N. Yoshida and K. Tanaka, “Photoinduced Ag migration in Ag-As-S glasses,” J. Appl. Phys. 78, 1745–1750 (1995).
    [CrossRef]

1999

O. Nordman and N. Nordman, “Hole formation induced by 488.0 nm light in 10 μm thick amorphous as-evaporated As2S3 films,” Phys. Rev. B 60, 2833–2838 (1999).
[CrossRef]

1998

O. Nordman, N. Nordman, and A. Ozols, “Influence of the age of amorphous nonannealed As2S3 thin films on holographic properties,” Opt. Commun. 145, 38–42 (1998).
[CrossRef]

O. Nordman, N. Nordman, and N. Peyghambarian, “Electron beam induced changes in the refractive index and film thickness of amorphous AsxS100−x and AsxSe100−x films,” J. Appl. Phys. 84, 6055–6058 (1998).
[CrossRef]

1997

N. Nordman and O. Nordman, “Characterization of refractive index change induced by electron beam in amorphous thin As2S3 film,” J. Appl. Phys. 82, 1521–1534 (1997).
[CrossRef]

1996

N. Nordman and O. Salminen, “Thickness variations in amorphous As2S3 films induced by electron beams,” Solid State Commun. 100, 241–244 (1996).
[CrossRef]

N. Yoshida, M. Itoh, and K. Tanaka, “Photo- and electron-induced chemical modification in Ag-As(Ge)-S(Se) glasses,” J. Non-Cryst. Solids 198–200, 749–752 (1996).
[CrossRef]

N. Nordman, O. Salminen, M. Kuittinen, and J. Turunen, “Diffractive phase elements by electron beam exposure of thin As2S3 films,” J. Appl. Phys. 80, 3683–3686 (1996).
[CrossRef]

J. B. Ramirez-Malo, E. Marquez, C. Corrales, J. Fernandez-Peña, J. Reyes, P. Villares, and R. Jimenez-Garay, “A new study of the refractive-index dispersion of Ag-photodoped thin films of As30S70 chalcogenide glass,” Mater. Chem. Phys. 44, 186–189 (1996).
[CrossRef]

1995

N. Yoshida and K. Tanaka, “Photoinduced Ag migration in Ag-As-S glasses,” J. Appl. Phys. 78, 1745–1750 (1995).
[CrossRef]

T. I. Kosa, T. Wagner, P. J. S. Ewen, and A. E. Owen, “Index of refraction of Ag-doped As37S67 films: measurement and analysis of dispersion,” Philos. Mag. B 71, 311–318 (1995).
[CrossRef]

M. Ohto, M. Itoh, and K. Tanaka, “Optical and electrical properties of Ag-As-S glasses,” J. Appl. Phys. 77, 1034–1039 (1995).
[CrossRef]

1994

A. Ozols, O. Salminen, and M. Reinfelde, “Relaxational self-enhancement of holographic gratings in amorphous As2S3 films,” J. Appl. Phys. 75, 3326–3334 (1994).
[CrossRef]

S. A. Sergeev, A. A. Simashkevich, and S. D. Shutov, “Slanted superimposed diffraction gratings formed by an electron beam in amorphous arsenic sulfide films,” Quantum Electron. 24, 924–926 (1994).
[CrossRef]

1993

J. M. Oldale and S. R. Elliott, “Reversible electron beam writing on a submicron scale in a superionic amorphous films,” Appl. Phys. Lett. 63, 1801–1803 (1993).
[CrossRef]

1991

A. V. Kolobov and S. R. Elliott, “Photodoping of amorphous chalcogenides by metals,” Adv. Phys. 40, 625–684 (1991).
[CrossRef]

1989

P. Stradins, K. Shvarts, and J. Teteris, “The relation of photo and thermal components of photoinduced changes in amorphous semiconductors,” J. Non-Cryst. Solids 114, 79–81 (1989).
[CrossRef]

1987

C. P. McHardy, A. G. Fitzgerald, P. A. Moir, and M. Flynn, “The dissolution of metals in amorphous chalcogenides and the effects of electron and ultraviolet radiation,” J. Phys. C 20, 4055–4075 (1987).
[CrossRef]

1986

T. Suhara and H. Nishihara, “Integrated optics components and devices using periodic structures,” IEEE J. Quantum Electron. QE-22, 845–867 (1986).
[CrossRef]

1982

T. Suhara, Y. Handa, H. Nishihara, and J. Koyama, “Monolithic integrated microgratings and photodiodes for wavelength multiplexing,” Appl. Phys. Lett. 40, 120–122 (1982).
[CrossRef]

1980

1979

1978

1977

A. Yoshikawa, O. Ochi, H. Nagai, and Y. Mizushima, “A new inorganic electron resist of high contrast,” Appl. Phys. Lett. 31, 161–163 (1977).
[CrossRef]

1975

T. Suhara, H. Nishihara, and J. Koyma, “Electron-beam-induced refractive-index change of amorphous semiconductors,” Jpn. J. Appl. Phys. 14, 1079–1080 (1975).
[CrossRef]

Beaumont, S. P.

B. Singh, S. P. Beaumont, P. G. Bower, and C. D. W. Wilkinson, “Sub-50-nm lithography in amorphous Se–Ge inorganic resist by electron beam exposure,” Appl. Phys. Lett. 41, 1002–1004 (19082).
[CrossRef]

Bower, P. G.

B. Singh, S. P. Beaumont, P. G. Bower, and C. D. W. Wilkinson, “Sub-50-nm lithography in amorphous Se–Ge inorganic resist by electron beam exposure,” Appl. Phys. Lett. 41, 1002–1004 (19082).
[CrossRef]

Corrales, C.

J. B. Ramirez-Malo, E. Marquez, C. Corrales, J. Fernandez-Peña, J. Reyes, P. Villares, and R. Jimenez-Garay, “A new study of the refractive-index dispersion of Ag-photodoped thin films of As30S70 chalcogenide glass,” Mater. Chem. Phys. 44, 186–189 (1996).
[CrossRef]

Elliott, S. R.

J. M. Oldale and S. R. Elliott, “Reversible electron beam writing on a submicron scale in a superionic amorphous films,” Appl. Phys. Lett. 63, 1801–1803 (1993).
[CrossRef]

A. V. Kolobov and S. R. Elliott, “Photodoping of amorphous chalcogenides by metals,” Adv. Phys. 40, 625–684 (1991).
[CrossRef]

Ewen, P. J. S.

T. I. Kosa, T. Wagner, P. J. S. Ewen, and A. E. Owen, “Index of refraction of Ag-doped As37S67 films: measurement and analysis of dispersion,” Philos. Mag. B 71, 311–318 (1995).
[CrossRef]

Fernandez-Peña, J.

J. B. Ramirez-Malo, E. Marquez, C. Corrales, J. Fernandez-Peña, J. Reyes, P. Villares, and R. Jimenez-Garay, “A new study of the refractive-index dispersion of Ag-photodoped thin films of As30S70 chalcogenide glass,” Mater. Chem. Phys. 44, 186–189 (1996).
[CrossRef]

Fitzgerald, A. G.

C. P. McHardy, A. G. Fitzgerald, P. A. Moir, and M. Flynn, “The dissolution of metals in amorphous chalcogenides and the effects of electron and ultraviolet radiation,” J. Phys. C 20, 4055–4075 (1987).
[CrossRef]

Flynn, M.

C. P. McHardy, A. G. Fitzgerald, P. A. Moir, and M. Flynn, “The dissolution of metals in amorphous chalcogenides and the effects of electron and ultraviolet radiation,” J. Phys. C 20, 4055–4075 (1987).
[CrossRef]

Handa, Y.

Itoh, M.

N. Yoshida, M. Itoh, and K. Tanaka, “Photo- and electron-induced chemical modification in Ag-As(Ge)-S(Se) glasses,” J. Non-Cryst. Solids 198–200, 749–752 (1996).
[CrossRef]

M. Ohto, M. Itoh, and K. Tanaka, “Optical and electrical properties of Ag-As-S glasses,” J. Appl. Phys. 77, 1034–1039 (1995).
[CrossRef]

Jimenez-Garay, R.

J. B. Ramirez-Malo, E. Marquez, C. Corrales, J. Fernandez-Peña, J. Reyes, P. Villares, and R. Jimenez-Garay, “A new study of the refractive-index dispersion of Ag-photodoped thin films of As30S70 chalcogenide glass,” Mater. Chem. Phys. 44, 186–189 (1996).
[CrossRef]

Kolobov, A. V.

A. V. Kolobov and S. R. Elliott, “Photodoping of amorphous chalcogenides by metals,” Adv. Phys. 40, 625–684 (1991).
[CrossRef]

Kosa, T. I.

T. I. Kosa, T. Wagner, P. J. S. Ewen, and A. E. Owen, “Index of refraction of Ag-doped As37S67 films: measurement and analysis of dispersion,” Philos. Mag. B 71, 311–318 (1995).
[CrossRef]

Koyama, J.

Koyma, J.

T. Suhara, H. Nishihara, and J. Koyma, “Electron-beam-induced refractive-index change of amorphous semiconductors,” Jpn. J. Appl. Phys. 14, 1079–1080 (1975).
[CrossRef]

Kuittinen, M.

N. Nordman, O. Salminen, M. Kuittinen, and J. Turunen, “Diffractive phase elements by electron beam exposure of thin As2S3 films,” J. Appl. Phys. 80, 3683–3686 (1996).
[CrossRef]

Marquez, E.

J. B. Ramirez-Malo, E. Marquez, C. Corrales, J. Fernandez-Peña, J. Reyes, P. Villares, and R. Jimenez-Garay, “A new study of the refractive-index dispersion of Ag-photodoped thin films of As30S70 chalcogenide glass,” Mater. Chem. Phys. 44, 186–189 (1996).
[CrossRef]

McHardy, C. P.

C. P. McHardy, A. G. Fitzgerald, P. A. Moir, and M. Flynn, “The dissolution of metals in amorphous chalcogenides and the effects of electron and ultraviolet radiation,” J. Phys. C 20, 4055–4075 (1987).
[CrossRef]

Mizushima, Y.

A. Yoshikawa, O. Ochi, H. Nagai, and Y. Mizushima, “A new inorganic electron resist of high contrast,” Appl. Phys. Lett. 31, 161–163 (1977).
[CrossRef]

Moir, P. A.

C. P. McHardy, A. G. Fitzgerald, P. A. Moir, and M. Flynn, “The dissolution of metals in amorphous chalcogenides and the effects of electron and ultraviolet radiation,” J. Phys. C 20, 4055–4075 (1987).
[CrossRef]

Nagai, H.

A. Yoshikawa, O. Ochi, H. Nagai, and Y. Mizushima, “A new inorganic electron resist of high contrast,” Appl. Phys. Lett. 31, 161–163 (1977).
[CrossRef]

Nishihara, H.

Nordman, N.

O. Nordman and N. Nordman, “Hole formation induced by 488.0 nm light in 10 μm thick amorphous as-evaporated As2S3 films,” Phys. Rev. B 60, 2833–2838 (1999).
[CrossRef]

O. Nordman, N. Nordman, and N. Peyghambarian, “Electron beam induced changes in the refractive index and film thickness of amorphous AsxS100−x and AsxSe100−x films,” J. Appl. Phys. 84, 6055–6058 (1998).
[CrossRef]

O. Nordman, N. Nordman, and A. Ozols, “Influence of the age of amorphous nonannealed As2S3 thin films on holographic properties,” Opt. Commun. 145, 38–42 (1998).
[CrossRef]

N. Nordman and O. Nordman, “Characterization of refractive index change induced by electron beam in amorphous thin As2S3 film,” J. Appl. Phys. 82, 1521–1534 (1997).
[CrossRef]

N. Nordman, O. Salminen, M. Kuittinen, and J. Turunen, “Diffractive phase elements by electron beam exposure of thin As2S3 films,” J. Appl. Phys. 80, 3683–3686 (1996).
[CrossRef]

N. Nordman and O. Salminen, “Thickness variations in amorphous As2S3 films induced by electron beams,” Solid State Commun. 100, 241–244 (1996).
[CrossRef]

Nordman, O.

O. Nordman and N. Nordman, “Hole formation induced by 488.0 nm light in 10 μm thick amorphous as-evaporated As2S3 films,” Phys. Rev. B 60, 2833–2838 (1999).
[CrossRef]

O. Nordman, N. Nordman, and N. Peyghambarian, “Electron beam induced changes in the refractive index and film thickness of amorphous AsxS100−x and AsxSe100−x films,” J. Appl. Phys. 84, 6055–6058 (1998).
[CrossRef]

O. Nordman, N. Nordman, and A. Ozols, “Influence of the age of amorphous nonannealed As2S3 thin films on holographic properties,” Opt. Commun. 145, 38–42 (1998).
[CrossRef]

N. Nordman and O. Nordman, “Characterization of refractive index change induced by electron beam in amorphous thin As2S3 film,” J. Appl. Phys. 82, 1521–1534 (1997).
[CrossRef]

Ochi, O.

A. Yoshikawa, O. Ochi, H. Nagai, and Y. Mizushima, “A new inorganic electron resist of high contrast,” Appl. Phys. Lett. 31, 161–163 (1977).
[CrossRef]

Ohto, M.

M. Ohto, M. Itoh, and K. Tanaka, “Optical and electrical properties of Ag-As-S glasses,” J. Appl. Phys. 77, 1034–1039 (1995).
[CrossRef]

Oldale, J. M.

J. M. Oldale and S. R. Elliott, “Reversible electron beam writing on a submicron scale in a superionic amorphous films,” Appl. Phys. Lett. 63, 1801–1803 (1993).
[CrossRef]

Owen, A. E.

T. I. Kosa, T. Wagner, P. J. S. Ewen, and A. E. Owen, “Index of refraction of Ag-doped As37S67 films: measurement and analysis of dispersion,” Philos. Mag. B 71, 311–318 (1995).
[CrossRef]

Ozols, A.

O. Nordman, N. Nordman, and A. Ozols, “Influence of the age of amorphous nonannealed As2S3 thin films on holographic properties,” Opt. Commun. 145, 38–42 (1998).
[CrossRef]

A. Ozols, O. Salminen, and M. Reinfelde, “Relaxational self-enhancement of holographic gratings in amorphous As2S3 films,” J. Appl. Phys. 75, 3326–3334 (1994).
[CrossRef]

Peyghambarian, N.

O. Nordman, N. Nordman, and N. Peyghambarian, “Electron beam induced changes in the refractive index and film thickness of amorphous AsxS100−x and AsxSe100−x films,” J. Appl. Phys. 84, 6055–6058 (1998).
[CrossRef]

Ramirez-Malo, J. B.

J. B. Ramirez-Malo, E. Marquez, C. Corrales, J. Fernandez-Peña, J. Reyes, P. Villares, and R. Jimenez-Garay, “A new study of the refractive-index dispersion of Ag-photodoped thin films of As30S70 chalcogenide glass,” Mater. Chem. Phys. 44, 186–189 (1996).
[CrossRef]

Reinfelde, M.

A. Ozols, O. Salminen, and M. Reinfelde, “Relaxational self-enhancement of holographic gratings in amorphous As2S3 films,” J. Appl. Phys. 75, 3326–3334 (1994).
[CrossRef]

Reyes, J.

J. B. Ramirez-Malo, E. Marquez, C. Corrales, J. Fernandez-Peña, J. Reyes, P. Villares, and R. Jimenez-Garay, “A new study of the refractive-index dispersion of Ag-photodoped thin films of As30S70 chalcogenide glass,” Mater. Chem. Phys. 44, 186–189 (1996).
[CrossRef]

Salminen, O.

N. Nordman and O. Salminen, “Thickness variations in amorphous As2S3 films induced by electron beams,” Solid State Commun. 100, 241–244 (1996).
[CrossRef]

N. Nordman, O. Salminen, M. Kuittinen, and J. Turunen, “Diffractive phase elements by electron beam exposure of thin As2S3 films,” J. Appl. Phys. 80, 3683–3686 (1996).
[CrossRef]

A. Ozols, O. Salminen, and M. Reinfelde, “Relaxational self-enhancement of holographic gratings in amorphous As2S3 films,” J. Appl. Phys. 75, 3326–3334 (1994).
[CrossRef]

Sergeev, S. A.

S. A. Sergeev, A. A. Simashkevich, and S. D. Shutov, “Slanted superimposed diffraction gratings formed by an electron beam in amorphous arsenic sulfide films,” Quantum Electron. 24, 924–926 (1994).
[CrossRef]

Shutov, S. D.

S. A. Sergeev, A. A. Simashkevich, and S. D. Shutov, “Slanted superimposed diffraction gratings formed by an electron beam in amorphous arsenic sulfide films,” Quantum Electron. 24, 924–926 (1994).
[CrossRef]

Shvarts, K.

P. Stradins, K. Shvarts, and J. Teteris, “The relation of photo and thermal components of photoinduced changes in amorphous semiconductors,” J. Non-Cryst. Solids 114, 79–81 (1989).
[CrossRef]

Simashkevich, A. A.

S. A. Sergeev, A. A. Simashkevich, and S. D. Shutov, “Slanted superimposed diffraction gratings formed by an electron beam in amorphous arsenic sulfide films,” Quantum Electron. 24, 924–926 (1994).
[CrossRef]

Singh, B.

B. Singh, S. P. Beaumont, P. G. Bower, and C. D. W. Wilkinson, “Sub-50-nm lithography in amorphous Se–Ge inorganic resist by electron beam exposure,” Appl. Phys. Lett. 41, 1002–1004 (19082).
[CrossRef]

Stradins, P.

P. Stradins, K. Shvarts, and J. Teteris, “The relation of photo and thermal components of photoinduced changes in amorphous semiconductors,” J. Non-Cryst. Solids 114, 79–81 (1989).
[CrossRef]

Suhara, T.

Tanaka, K.

N. Yoshida, M. Itoh, and K. Tanaka, “Photo- and electron-induced chemical modification in Ag-As(Ge)-S(Se) glasses,” J. Non-Cryst. Solids 198–200, 749–752 (1996).
[CrossRef]

M. Ohto, M. Itoh, and K. Tanaka, “Optical and electrical properties of Ag-As-S glasses,” J. Appl. Phys. 77, 1034–1039 (1995).
[CrossRef]

N. Yoshida and K. Tanaka, “Photoinduced Ag migration in Ag-As-S glasses,” J. Appl. Phys. 78, 1745–1750 (1995).
[CrossRef]

Teteris, J.

P. Stradins, K. Shvarts, and J. Teteris, “The relation of photo and thermal components of photoinduced changes in amorphous semiconductors,” J. Non-Cryst. Solids 114, 79–81 (1989).
[CrossRef]

Turunen, J.

N. Nordman, O. Salminen, M. Kuittinen, and J. Turunen, “Diffractive phase elements by electron beam exposure of thin As2S3 films,” J. Appl. Phys. 80, 3683–3686 (1996).
[CrossRef]

Villares, P.

J. B. Ramirez-Malo, E. Marquez, C. Corrales, J. Fernandez-Peña, J. Reyes, P. Villares, and R. Jimenez-Garay, “A new study of the refractive-index dispersion of Ag-photodoped thin films of As30S70 chalcogenide glass,” Mater. Chem. Phys. 44, 186–189 (1996).
[CrossRef]

Wagner, T.

T. I. Kosa, T. Wagner, P. J. S. Ewen, and A. E. Owen, “Index of refraction of Ag-doped As37S67 films: measurement and analysis of dispersion,” Philos. Mag. B 71, 311–318 (1995).
[CrossRef]

Wilkinson, C. D. W.

B. Singh, S. P. Beaumont, P. G. Bower, and C. D. W. Wilkinson, “Sub-50-nm lithography in amorphous Se–Ge inorganic resist by electron beam exposure,” Appl. Phys. Lett. 41, 1002–1004 (19082).
[CrossRef]

Yoshida, N.

N. Yoshida, M. Itoh, and K. Tanaka, “Photo- and electron-induced chemical modification in Ag-As(Ge)-S(Se) glasses,” J. Non-Cryst. Solids 198–200, 749–752 (1996).
[CrossRef]

N. Yoshida and K. Tanaka, “Photoinduced Ag migration in Ag-As-S glasses,” J. Appl. Phys. 78, 1745–1750 (1995).
[CrossRef]

Yoshikawa, A.

A. Yoshikawa, O. Ochi, H. Nagai, and Y. Mizushima, “A new inorganic electron resist of high contrast,” Appl. Phys. Lett. 31, 161–163 (1977).
[CrossRef]

Adv. Phys.

A. V. Kolobov and S. R. Elliott, “Photodoping of amorphous chalcogenides by metals,” Adv. Phys. 40, 625–684 (1991).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

T. Suhara, Y. Handa, H. Nishihara, and J. Koyama, “Monolithic integrated microgratings and photodiodes for wavelength multiplexing,” Appl. Phys. Lett. 40, 120–122 (1982).
[CrossRef]

J. M. Oldale and S. R. Elliott, “Reversible electron beam writing on a submicron scale in a superionic amorphous films,” Appl. Phys. Lett. 63, 1801–1803 (1993).
[CrossRef]

A. Yoshikawa, O. Ochi, H. Nagai, and Y. Mizushima, “A new inorganic electron resist of high contrast,” Appl. Phys. Lett. 31, 161–163 (1977).
[CrossRef]

B. Singh, S. P. Beaumont, P. G. Bower, and C. D. W. Wilkinson, “Sub-50-nm lithography in amorphous Se–Ge inorganic resist by electron beam exposure,” Appl. Phys. Lett. 41, 1002–1004 (19082).
[CrossRef]

IEEE J. Quantum Electron.

T. Suhara and H. Nishihara, “Integrated optics components and devices using periodic structures,” IEEE J. Quantum Electron. QE-22, 845–867 (1986).
[CrossRef]

J. Appl. Phys.

O. Nordman, N. Nordman, and N. Peyghambarian, “Electron beam induced changes in the refractive index and film thickness of amorphous AsxS100−x and AsxSe100−x films,” J. Appl. Phys. 84, 6055–6058 (1998).
[CrossRef]

N. Nordman, O. Salminen, M. Kuittinen, and J. Turunen, “Diffractive phase elements by electron beam exposure of thin As2S3 films,” J. Appl. Phys. 80, 3683–3686 (1996).
[CrossRef]

N. Nordman and O. Nordman, “Characterization of refractive index change induced by electron beam in amorphous thin As2S3 film,” J. Appl. Phys. 82, 1521–1534 (1997).
[CrossRef]

M. Ohto, M. Itoh, and K. Tanaka, “Optical and electrical properties of Ag-As-S glasses,” J. Appl. Phys. 77, 1034–1039 (1995).
[CrossRef]

A. Ozols, O. Salminen, and M. Reinfelde, “Relaxational self-enhancement of holographic gratings in amorphous As2S3 films,” J. Appl. Phys. 75, 3326–3334 (1994).
[CrossRef]

N. Yoshida and K. Tanaka, “Photoinduced Ag migration in Ag-As-S glasses,” J. Appl. Phys. 78, 1745–1750 (1995).
[CrossRef]

J. Non-Cryst. Solids

P. Stradins, K. Shvarts, and J. Teteris, “The relation of photo and thermal components of photoinduced changes in amorphous semiconductors,” J. Non-Cryst. Solids 114, 79–81 (1989).
[CrossRef]

N. Yoshida, M. Itoh, and K. Tanaka, “Photo- and electron-induced chemical modification in Ag-As(Ge)-S(Se) glasses,” J. Non-Cryst. Solids 198–200, 749–752 (1996).
[CrossRef]

J. Phys. C

C. P. McHardy, A. G. Fitzgerald, P. A. Moir, and M. Flynn, “The dissolution of metals in amorphous chalcogenides and the effects of electron and ultraviolet radiation,” J. Phys. C 20, 4055–4075 (1987).
[CrossRef]

Jpn. J. Appl. Phys.

T. Suhara, H. Nishihara, and J. Koyma, “Electron-beam-induced refractive-index change of amorphous semiconductors,” Jpn. J. Appl. Phys. 14, 1079–1080 (1975).
[CrossRef]

Mater. Chem. Phys.

J. B. Ramirez-Malo, E. Marquez, C. Corrales, J. Fernandez-Peña, J. Reyes, P. Villares, and R. Jimenez-Garay, “A new study of the refractive-index dispersion of Ag-photodoped thin films of As30S70 chalcogenide glass,” Mater. Chem. Phys. 44, 186–189 (1996).
[CrossRef]

Opt. Commun.

O. Nordman, N. Nordman, and A. Ozols, “Influence of the age of amorphous nonannealed As2S3 thin films on holographic properties,” Opt. Commun. 145, 38–42 (1998).
[CrossRef]

Opt. Lett.

Philos. Mag. B

T. I. Kosa, T. Wagner, P. J. S. Ewen, and A. E. Owen, “Index of refraction of Ag-doped As37S67 films: measurement and analysis of dispersion,” Philos. Mag. B 71, 311–318 (1995).
[CrossRef]

Phys. Rev. B

O. Nordman and N. Nordman, “Hole formation induced by 488.0 nm light in 10 μm thick amorphous as-evaporated As2S3 films,” Phys. Rev. B 60, 2833–2838 (1999).
[CrossRef]

Quantum Electron.

S. A. Sergeev, A. A. Simashkevich, and S. D. Shutov, “Slanted superimposed diffraction gratings formed by an electron beam in amorphous arsenic sulfide films,” Quantum Electron. 24, 924–926 (1994).
[CrossRef]

Solid State Commun.

N. Nordman and O. Salminen, “Thickness variations in amorphous As2S3 films induced by electron beams,” Solid State Commun. 100, 241–244 (1996).
[CrossRef]

Other

N. Nordman and O. Nordman, “Electron beam induced refractive index change in amorphous As-S and As-Se thin films coated with different metals,” J. Appl. Phys. (to be published).

H. Nishihara, “Direct writing technique using a scanning electron microscope: Fabrication of optical gratings in amorphous chalcogenide films,” in Technical Digest of the First International Conference on Integrated Optics and Fiber Communication (Institute of Electronics and Communications Engineers, Tokyo, 1977), pp. 587–590.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Phase shift φ as a function of the electron dose in Ag- and Ge-coated As40S60 films. Solid curves, films without photodiffusion; dashed curves, with photodiffusion (pd).

Fig. 2
Fig. 2

Phase shift φ as a function of the electron dose in Ag- coated As35S65 films. Solid curve, films without photodiffusion, dashed curves, with photodiffusion (pd).

Fig. 3
Fig. 3

Phase shift φ as a function of the electron dose in Au-, Ag-, and Ge-coated As50Se50 films. Solid curves, films without photodiffusion, dashed curves, with photodiffusion (pd).

Fig. 4
Fig. 4

Phase shift φ as a function of the electron dose in Ag- coated As65Se35 films. Solid curve, films without photodiffusion, dashed curve, with photodiffusion (pd).

Fig. 5
Fig. 5

Phase shift φ as a function of electron dose in Ag- coated As70Se30 films. Solid curve, films without photodiffusion; dashed curve, with photodiffusion (pd).

Fig. 6
Fig. 6

Difference of phase shift maxima of films without and with photodiffusion as a function of As content in AsS and AsSe systems. Films were coated with Au and Ag.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

φ=2πΔndλ,
ΔT=PaKwπ3/2 arctan2Dtw.
ΔT=Pa2π1/2Kw.
φmetal(t)=φemetal(t)+φdmetal(t)withoutphotodiffusion,
φpmetal(t)=φe,pmetal(t)+φd,pmetal(t)withphotodiffusion,

Metrics