Abstract

We present the absorption and emission spectroscopy of GdAl3(BO3)4:Nd3+ as functions of the σ and π polarizations. From the Judd–Ofelt analysis extended to anisotropic crystals, we have determined the parameters Ω2σ=1.455×10-20 cm2, Ω4σ=1.175×10-20 cm2, Ω6σ=2.043×10-20 cm2, Ω2π=0.208×10-20 cm2, Ω4π=0.326×10-20 cm2, and Ω6π=1.257×10-20 cm2. The radiative lifetime of the  4F3/2 level is 293 µs. The σ-polarized stimulated emission cross section was measured to be 3.0×10-19 cm2 at the laser wavelength of 1061.9 nm. No excited-state absorption was found at this wavelength. Green generation by self-frequency doubling was obtained with a yield of 4.3%. Blue generation tuneable in the 436-nm to 443-nm range was obtained with a yield of 7.3% from self-sum frequency mixing.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Lenth and R. M. Macfarlane, “Up-conversion lasers,” Opt. Photon. News March 1992, 8–15.
  2. A. Brenier and A. M. Jurdyc, “Looping mechanism and sequential two-photons absorption up-conversion: a comparison in YAlO3:Er3+,” J. Lumin. 69, 131–140 (1996).
    [CrossRef]
  3. R. M. Macfarlane, R. Wannemacher, T. Hebert, and W. Lenth, “Up-conversion laser action at 450.2 and 483.0 nm in Tm:YliF4,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 250–253.
  4. T. R. Gosnell, “Avalanche assisted up-conversion in Pr/Yb doped Zblan glasses,” Electron. Lett. 33, 411–413 (1997).
    [CrossRef]
  5. J. C. Baumert, J. Hoffnagle, and P. Günter, “High efficiency intracavity frequency doubling of a styryl-9 dye laser with KnbO3 crystals,” Appl. Opt. 24, 1299–1301 (1985).
    [CrossRef]
  6. J. Zarrabi, P. Gavrilovic, and S. Singh, “Intracavity frequency doubled miniaturized Nd:YAlO3 blue laser at 465 nm,” in Advanced Solid State Lasers, Vol. 1 of Trends in Optics and Photonics, S. A. Payne and C. Pollock, eds. (Optical Society of America, Washington, D.C., 1996), pp. 147–149.
  7. J. Reid, M. Ouwerkerk, and L. Beckers, “Potassium lithium niobate and its application to intercavity frequency doubling,” Philips J. Res. 46, 199–213 (1992).
  8. V. Pruneri, R. Koch, P. G. Kazansky, W. A. Clarkson, P. St. J. Russell, and D. C. Hanna, “High efficient first order quasi-phase matched frequency doubling to blue of a cw diode pumped 946 nm Nd:YAG laser,” in Advanced Solid State Lasers, Vol. 1 of Trends in Optics and Photonics, S. A. Payne and C. Pollock, eds. (Optical Society of America, Washington, D.C., 1996), pp. 1–3.
  9. W. P. Risk and W. Lenth, “Diode laser pumped blue-light source based on intracavity sum frequency generation,” Appl. Phys. Lett. 54, 789–791 (1989).
    [CrossRef]
  10. A. Brenier, “The self-doubling and summing lasers: overview and modelling,” J. Lumin. 91, 121–132 (2000).
    [CrossRef]
  11. Tian Lili, Wang Jiyang, Wie Jingqian, Pan Henfu, Guan Qingcai, Hu Xiaobo, Liu Yaogang, C. Q. Wang, and Y. T. Chow, “Optical properties of NdxGd1−xAl3(BO3)4 crystal,” Chin. Sci. Bull. 43, 1973–1977 (1998).
    [CrossRef]
  12. Chaoyang Tu, Minwang Qiu, Yichuan Huang, Xueyuan Chen, Aidong Jiang, and Zundu Luo, “The study of a self-frequency-doubling laser crystal Nd3+:GdAl3(BO3)4,” J. Cryst. Growth 208, 487–492 (2000).
    [CrossRef]
  13. D. Jaque, J. Capmany, L. Zundu, and J. Garcia Solé, “Optical bands and energy levels of Nd3+ ions in the YAl3(BO3)4 nonlinear laser crystal,” J. Phys.: Condens. Matter 9, 9715–9729 (1997).
  14. H. Dai and O. M. Stafsudd, “Polarized absorption spectrum and intensity analysis of trivalent neodymium in sodium β″ alumina,” J. Phys. Chem. Solids 52, 367–379 (1991).
    [CrossRef]
  15. W. T. Carnall, H. Crosswhite, and H. M. Crosswhite, “Energy level structure and transition probabilities of the trivalent lanthanides in LaF3,” Special Rep., Chemistry Division (Argonne National Laboratory, Argonne, IL, 1977).
  16. G. Aka, N. Viegas, A. Kahn-Harari, and D. Vivien, “Optical properties of single crystals of gallium-substituted NYAB: YxNd1−x(Al1−yGay)3(BO3)4,” J. Mater. Chem. 5, 265–271 (1995).
    [CrossRef]
  17. P. Heng-fu, L. Ming-guo, X. Jing, and L. Bao-sheng, “The spectra and sensitisation of laser self-frequency doubling NdxY1−xAl3(BO3)4 crystal,” J. Phys. Condens. Matter 2, 4525–4530 (1990).
    [CrossRef]
  18. F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
    [CrossRef]
  19. F. Mougel, G. Aka, A. Kahn-Harari, and D. Vivien, “CW blue laser generation by self-sum frequency mixing in Nd:Ca4GdO(BO3)3 (Nd:GdCOB) single crystal,” Opt. Mater. 13, 293–297 (1999).
    [CrossRef]
  20. A. Brenier, G. Boulon, D. Jaque, and J. Garcia Solé, “Self-frequency-summing NYAB laser for tuneable blue generation,” Opt. Mater. 13, 311–317 (1999).
    [CrossRef]
  21. A. Brenier and G. Boulon, “Self-frequency summing NYAB laser for tunable uv generation,” J. Lumin. 86, 125–128 (2000).
    [CrossRef]

2000

A. Brenier, “The self-doubling and summing lasers: overview and modelling,” J. Lumin. 91, 121–132 (2000).
[CrossRef]

Chaoyang Tu, Minwang Qiu, Yichuan Huang, Xueyuan Chen, Aidong Jiang, and Zundu Luo, “The study of a self-frequency-doubling laser crystal Nd3+:GdAl3(BO3)4,” J. Cryst. Growth 208, 487–492 (2000).
[CrossRef]

A. Brenier and G. Boulon, “Self-frequency summing NYAB laser for tunable uv generation,” J. Lumin. 86, 125–128 (2000).
[CrossRef]

1999

F. Mougel, G. Aka, A. Kahn-Harari, and D. Vivien, “CW blue laser generation by self-sum frequency mixing in Nd:Ca4GdO(BO3)3 (Nd:GdCOB) single crystal,” Opt. Mater. 13, 293–297 (1999).
[CrossRef]

A. Brenier, G. Boulon, D. Jaque, and J. Garcia Solé, “Self-frequency-summing NYAB laser for tuneable blue generation,” Opt. Mater. 13, 311–317 (1999).
[CrossRef]

1998

Tian Lili, Wang Jiyang, Wie Jingqian, Pan Henfu, Guan Qingcai, Hu Xiaobo, Liu Yaogang, C. Q. Wang, and Y. T. Chow, “Optical properties of NdxGd1−xAl3(BO3)4 crystal,” Chin. Sci. Bull. 43, 1973–1977 (1998).
[CrossRef]

1997

D. Jaque, J. Capmany, L. Zundu, and J. Garcia Solé, “Optical bands and energy levels of Nd3+ ions in the YAl3(BO3)4 nonlinear laser crystal,” J. Phys.: Condens. Matter 9, 9715–9729 (1997).

T. R. Gosnell, “Avalanche assisted up-conversion in Pr/Yb doped Zblan glasses,” Electron. Lett. 33, 411–413 (1997).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

1996

A. Brenier and A. M. Jurdyc, “Looping mechanism and sequential two-photons absorption up-conversion: a comparison in YAlO3:Er3+,” J. Lumin. 69, 131–140 (1996).
[CrossRef]

1995

G. Aka, N. Viegas, A. Kahn-Harari, and D. Vivien, “Optical properties of single crystals of gallium-substituted NYAB: YxNd1−x(Al1−yGay)3(BO3)4,” J. Mater. Chem. 5, 265–271 (1995).
[CrossRef]

1992

J. Reid, M. Ouwerkerk, and L. Beckers, “Potassium lithium niobate and its application to intercavity frequency doubling,” Philips J. Res. 46, 199–213 (1992).

1991

H. Dai and O. M. Stafsudd, “Polarized absorption spectrum and intensity analysis of trivalent neodymium in sodium β″ alumina,” J. Phys. Chem. Solids 52, 367–379 (1991).
[CrossRef]

1990

P. Heng-fu, L. Ming-guo, X. Jing, and L. Bao-sheng, “The spectra and sensitisation of laser self-frequency doubling NdxY1−xAl3(BO3)4 crystal,” J. Phys. Condens. Matter 2, 4525–4530 (1990).
[CrossRef]

1989

W. P. Risk and W. Lenth, “Diode laser pumped blue-light source based on intracavity sum frequency generation,” Appl. Phys. Lett. 54, 789–791 (1989).
[CrossRef]

1985

Aka, G.

F. Mougel, G. Aka, A. Kahn-Harari, and D. Vivien, “CW blue laser generation by self-sum frequency mixing in Nd:Ca4GdO(BO3)3 (Nd:GdCOB) single crystal,” Opt. Mater. 13, 293–297 (1999).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

G. Aka, N. Viegas, A. Kahn-Harari, and D. Vivien, “Optical properties of single crystals of gallium-substituted NYAB: YxNd1−x(Al1−yGay)3(BO3)4,” J. Mater. Chem. 5, 265–271 (1995).
[CrossRef]

Bao-sheng, L.

P. Heng-fu, L. Ming-guo, X. Jing, and L. Bao-sheng, “The spectra and sensitisation of laser self-frequency doubling NdxY1−xAl3(BO3)4 crystal,” J. Phys. Condens. Matter 2, 4525–4530 (1990).
[CrossRef]

Baumert, J. C.

Beckers, L.

J. Reid, M. Ouwerkerk, and L. Beckers, “Potassium lithium niobate and its application to intercavity frequency doubling,” Philips J. Res. 46, 199–213 (1992).

Benitez, J. M.

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

Boulon, G.

A. Brenier and G. Boulon, “Self-frequency summing NYAB laser for tunable uv generation,” J. Lumin. 86, 125–128 (2000).
[CrossRef]

A. Brenier, G. Boulon, D. Jaque, and J. Garcia Solé, “Self-frequency-summing NYAB laser for tuneable blue generation,” Opt. Mater. 13, 311–317 (1999).
[CrossRef]

Brenier, A.

A. Brenier, “The self-doubling and summing lasers: overview and modelling,” J. Lumin. 91, 121–132 (2000).
[CrossRef]

A. Brenier and G. Boulon, “Self-frequency summing NYAB laser for tunable uv generation,” J. Lumin. 86, 125–128 (2000).
[CrossRef]

A. Brenier, G. Boulon, D. Jaque, and J. Garcia Solé, “Self-frequency-summing NYAB laser for tuneable blue generation,” Opt. Mater. 13, 311–317 (1999).
[CrossRef]

A. Brenier and A. M. Jurdyc, “Looping mechanism and sequential two-photons absorption up-conversion: a comparison in YAlO3:Er3+,” J. Lumin. 69, 131–140 (1996).
[CrossRef]

Capmany, J.

D. Jaque, J. Capmany, L. Zundu, and J. Garcia Solé, “Optical bands and energy levels of Nd3+ ions in the YAl3(BO3)4 nonlinear laser crystal,” J. Phys.: Condens. Matter 9, 9715–9729 (1997).

Chen, Xueyuan

Chaoyang Tu, Minwang Qiu, Yichuan Huang, Xueyuan Chen, Aidong Jiang, and Zundu Luo, “The study of a self-frequency-doubling laser crystal Nd3+:GdAl3(BO3)4,” J. Cryst. Growth 208, 487–492 (2000).
[CrossRef]

Chow, Y. T.

Tian Lili, Wang Jiyang, Wie Jingqian, Pan Henfu, Guan Qingcai, Hu Xiaobo, Liu Yaogang, C. Q. Wang, and Y. T. Chow, “Optical properties of NdxGd1−xAl3(BO3)4 crystal,” Chin. Sci. Bull. 43, 1973–1977 (1998).
[CrossRef]

Dai, H.

H. Dai and O. M. Stafsudd, “Polarized absorption spectrum and intensity analysis of trivalent neodymium in sodium β″ alumina,” J. Phys. Chem. Solids 52, 367–379 (1991).
[CrossRef]

Garcia Solé, J.

A. Brenier, G. Boulon, D. Jaque, and J. Garcia Solé, “Self-frequency-summing NYAB laser for tuneable blue generation,” Opt. Mater. 13, 311–317 (1999).
[CrossRef]

D. Jaque, J. Capmany, L. Zundu, and J. Garcia Solé, “Optical bands and energy levels of Nd3+ ions in the YAl3(BO3)4 nonlinear laser crystal,” J. Phys.: Condens. Matter 9, 9715–9729 (1997).

Gosnell, T. R.

T. R. Gosnell, “Avalanche assisted up-conversion in Pr/Yb doped Zblan glasses,” Electron. Lett. 33, 411–413 (1997).
[CrossRef]

Günter, P.

Henfu, Pan

Tian Lili, Wang Jiyang, Wie Jingqian, Pan Henfu, Guan Qingcai, Hu Xiaobo, Liu Yaogang, C. Q. Wang, and Y. T. Chow, “Optical properties of NdxGd1−xAl3(BO3)4 crystal,” Chin. Sci. Bull. 43, 1973–1977 (1998).
[CrossRef]

Heng-fu, P.

P. Heng-fu, L. Ming-guo, X. Jing, and L. Bao-sheng, “The spectra and sensitisation of laser self-frequency doubling NdxY1−xAl3(BO3)4 crystal,” J. Phys. Condens. Matter 2, 4525–4530 (1990).
[CrossRef]

Hoffnagle, J.

Huang, Yichuan

Chaoyang Tu, Minwang Qiu, Yichuan Huang, Xueyuan Chen, Aidong Jiang, and Zundu Luo, “The study of a self-frequency-doubling laser crystal Nd3+:GdAl3(BO3)4,” J. Cryst. Growth 208, 487–492 (2000).
[CrossRef]

Hubert, H.

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

Jaque, D.

A. Brenier, G. Boulon, D. Jaque, and J. Garcia Solé, “Self-frequency-summing NYAB laser for tuneable blue generation,” Opt. Mater. 13, 311–317 (1999).
[CrossRef]

D. Jaque, J. Capmany, L. Zundu, and J. Garcia Solé, “Optical bands and energy levels of Nd3+ ions in the YAl3(BO3)4 nonlinear laser crystal,” J. Phys.: Condens. Matter 9, 9715–9729 (1997).

Jiang, Aidong

Chaoyang Tu, Minwang Qiu, Yichuan Huang, Xueyuan Chen, Aidong Jiang, and Zundu Luo, “The study of a self-frequency-doubling laser crystal Nd3+:GdAl3(BO3)4,” J. Cryst. Growth 208, 487–492 (2000).
[CrossRef]

Jing, X.

P. Heng-fu, L. Ming-guo, X. Jing, and L. Bao-sheng, “The spectra and sensitisation of laser self-frequency doubling NdxY1−xAl3(BO3)4 crystal,” J. Phys. Condens. Matter 2, 4525–4530 (1990).
[CrossRef]

Jingqian, Wie

Tian Lili, Wang Jiyang, Wie Jingqian, Pan Henfu, Guan Qingcai, Hu Xiaobo, Liu Yaogang, C. Q. Wang, and Y. T. Chow, “Optical properties of NdxGd1−xAl3(BO3)4 crystal,” Chin. Sci. Bull. 43, 1973–1977 (1998).
[CrossRef]

Jiyang, Wang

Tian Lili, Wang Jiyang, Wie Jingqian, Pan Henfu, Guan Qingcai, Hu Xiaobo, Liu Yaogang, C. Q. Wang, and Y. T. Chow, “Optical properties of NdxGd1−xAl3(BO3)4 crystal,” Chin. Sci. Bull. 43, 1973–1977 (1998).
[CrossRef]

Jurdyc, A. M.

A. Brenier and A. M. Jurdyc, “Looping mechanism and sequential two-photons absorption up-conversion: a comparison in YAlO3:Er3+,” J. Lumin. 69, 131–140 (1996).
[CrossRef]

Kahn-Harari, A.

F. Mougel, G. Aka, A. Kahn-Harari, and D. Vivien, “CW blue laser generation by self-sum frequency mixing in Nd:Ca4GdO(BO3)3 (Nd:GdCOB) single crystal,” Opt. Mater. 13, 293–297 (1999).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

G. Aka, N. Viegas, A. Kahn-Harari, and D. Vivien, “Optical properties of single crystals of gallium-substituted NYAB: YxNd1−x(Al1−yGay)3(BO3)4,” J. Mater. Chem. 5, 265–271 (1995).
[CrossRef]

Lenth, W.

W. P. Risk and W. Lenth, “Diode laser pumped blue-light source based on intracavity sum frequency generation,” Appl. Phys. Lett. 54, 789–791 (1989).
[CrossRef]

Lili, Tian

Tian Lili, Wang Jiyang, Wie Jingqian, Pan Henfu, Guan Qingcai, Hu Xiaobo, Liu Yaogang, C. Q. Wang, and Y. T. Chow, “Optical properties of NdxGd1−xAl3(BO3)4 crystal,” Chin. Sci. Bull. 43, 1973–1977 (1998).
[CrossRef]

Luo, Zundu

Chaoyang Tu, Minwang Qiu, Yichuan Huang, Xueyuan Chen, Aidong Jiang, and Zundu Luo, “The study of a self-frequency-doubling laser crystal Nd3+:GdAl3(BO3)4,” J. Cryst. Growth 208, 487–492 (2000).
[CrossRef]

Ming-guo, L.

P. Heng-fu, L. Ming-guo, X. Jing, and L. Bao-sheng, “The spectra and sensitisation of laser self-frequency doubling NdxY1−xAl3(BO3)4 crystal,” J. Phys. Condens. Matter 2, 4525–4530 (1990).
[CrossRef]

Mougel, F.

F. Mougel, G. Aka, A. Kahn-Harari, and D. Vivien, “CW blue laser generation by self-sum frequency mixing in Nd:Ca4GdO(BO3)3 (Nd:GdCOB) single crystal,” Opt. Mater. 13, 293–297 (1999).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

Ouwerkerk, M.

J. Reid, M. Ouwerkerk, and L. Beckers, “Potassium lithium niobate and its application to intercavity frequency doubling,” Philips J. Res. 46, 199–213 (1992).

Qingcai, Guan

Tian Lili, Wang Jiyang, Wie Jingqian, Pan Henfu, Guan Qingcai, Hu Xiaobo, Liu Yaogang, C. Q. Wang, and Y. T. Chow, “Optical properties of NdxGd1−xAl3(BO3)4 crystal,” Chin. Sci. Bull. 43, 1973–1977 (1998).
[CrossRef]

Qiu, Minwang

Chaoyang Tu, Minwang Qiu, Yichuan Huang, Xueyuan Chen, Aidong Jiang, and Zundu Luo, “The study of a self-frequency-doubling laser crystal Nd3+:GdAl3(BO3)4,” J. Cryst. Growth 208, 487–492 (2000).
[CrossRef]

Reid, J.

J. Reid, M. Ouwerkerk, and L. Beckers, “Potassium lithium niobate and its application to intercavity frequency doubling,” Philips J. Res. 46, 199–213 (1992).

Risk, W. P.

W. P. Risk and W. Lenth, “Diode laser pumped blue-light source based on intracavity sum frequency generation,” Appl. Phys. Lett. 54, 789–791 (1989).
[CrossRef]

Stafsudd, O. M.

H. Dai and O. M. Stafsudd, “Polarized absorption spectrum and intensity analysis of trivalent neodymium in sodium β″ alumina,” J. Phys. Chem. Solids 52, 367–379 (1991).
[CrossRef]

Tu, Chaoyang

Chaoyang Tu, Minwang Qiu, Yichuan Huang, Xueyuan Chen, Aidong Jiang, and Zundu Luo, “The study of a self-frequency-doubling laser crystal Nd3+:GdAl3(BO3)4,” J. Cryst. Growth 208, 487–492 (2000).
[CrossRef]

Viegas, N.

G. Aka, N. Viegas, A. Kahn-Harari, and D. Vivien, “Optical properties of single crystals of gallium-substituted NYAB: YxNd1−x(Al1−yGay)3(BO3)4,” J. Mater. Chem. 5, 265–271 (1995).
[CrossRef]

Vivien, D.

F. Mougel, G. Aka, A. Kahn-Harari, and D. Vivien, “CW blue laser generation by self-sum frequency mixing in Nd:Ca4GdO(BO3)3 (Nd:GdCOB) single crystal,” Opt. Mater. 13, 293–297 (1999).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

G. Aka, N. Viegas, A. Kahn-Harari, and D. Vivien, “Optical properties of single crystals of gallium-substituted NYAB: YxNd1−x(Al1−yGay)3(BO3)4,” J. Mater. Chem. 5, 265–271 (1995).
[CrossRef]

Wang, C. Q.

Tian Lili, Wang Jiyang, Wie Jingqian, Pan Henfu, Guan Qingcai, Hu Xiaobo, Liu Yaogang, C. Q. Wang, and Y. T. Chow, “Optical properties of NdxGd1−xAl3(BO3)4 crystal,” Chin. Sci. Bull. 43, 1973–1977 (1998).
[CrossRef]

Xiaobo, Hu

Tian Lili, Wang Jiyang, Wie Jingqian, Pan Henfu, Guan Qingcai, Hu Xiaobo, Liu Yaogang, C. Q. Wang, and Y. T. Chow, “Optical properties of NdxGd1−xAl3(BO3)4 crystal,” Chin. Sci. Bull. 43, 1973–1977 (1998).
[CrossRef]

Yaogang, Liu

Tian Lili, Wang Jiyang, Wie Jingqian, Pan Henfu, Guan Qingcai, Hu Xiaobo, Liu Yaogang, C. Q. Wang, and Y. T. Chow, “Optical properties of NdxGd1−xAl3(BO3)4 crystal,” Chin. Sci. Bull. 43, 1973–1977 (1998).
[CrossRef]

Zundu, L.

D. Jaque, J. Capmany, L. Zundu, and J. Garcia Solé, “Optical bands and energy levels of Nd3+ ions in the YAl3(BO3)4 nonlinear laser crystal,” J. Phys.: Condens. Matter 9, 9715–9729 (1997).

Appl. Opt.

Appl. Phys. Lett.

W. P. Risk and W. Lenth, “Diode laser pumped blue-light source based on intracavity sum frequency generation,” Appl. Phys. Lett. 54, 789–791 (1989).
[CrossRef]

Chin. Sci. Bull.

Tian Lili, Wang Jiyang, Wie Jingqian, Pan Henfu, Guan Qingcai, Hu Xiaobo, Liu Yaogang, C. Q. Wang, and Y. T. Chow, “Optical properties of NdxGd1−xAl3(BO3)4 crystal,” Chin. Sci. Bull. 43, 1973–1977 (1998).
[CrossRef]

Electron. Lett.

T. R. Gosnell, “Avalanche assisted up-conversion in Pr/Yb doped Zblan glasses,” Electron. Lett. 33, 411–413 (1997).
[CrossRef]

J. Cryst. Growth

Chaoyang Tu, Minwang Qiu, Yichuan Huang, Xueyuan Chen, Aidong Jiang, and Zundu Luo, “The study of a self-frequency-doubling laser crystal Nd3+:GdAl3(BO3)4,” J. Cryst. Growth 208, 487–492 (2000).
[CrossRef]

J. Lumin.

A. Brenier, “The self-doubling and summing lasers: overview and modelling,” J. Lumin. 91, 121–132 (2000).
[CrossRef]

A. Brenier and G. Boulon, “Self-frequency summing NYAB laser for tunable uv generation,” J. Lumin. 86, 125–128 (2000).
[CrossRef]

A. Brenier and A. M. Jurdyc, “Looping mechanism and sequential two-photons absorption up-conversion: a comparison in YAlO3:Er3+,” J. Lumin. 69, 131–140 (1996).
[CrossRef]

J. Mater. Chem.

G. Aka, N. Viegas, A. Kahn-Harari, and D. Vivien, “Optical properties of single crystals of gallium-substituted NYAB: YxNd1−x(Al1−yGay)3(BO3)4,” J. Mater. Chem. 5, 265–271 (1995).
[CrossRef]

J. Phys. Chem. Solids

H. Dai and O. M. Stafsudd, “Polarized absorption spectrum and intensity analysis of trivalent neodymium in sodium β″ alumina,” J. Phys. Chem. Solids 52, 367–379 (1991).
[CrossRef]

J. Phys. Condens. Matter

P. Heng-fu, L. Ming-guo, X. Jing, and L. Bao-sheng, “The spectra and sensitisation of laser self-frequency doubling NdxY1−xAl3(BO3)4 crystal,” J. Phys. Condens. Matter 2, 4525–4530 (1990).
[CrossRef]

J. Phys.: Condens. Matter

D. Jaque, J. Capmany, L. Zundu, and J. Garcia Solé, “Optical bands and energy levels of Nd3+ ions in the YAl3(BO3)4 nonlinear laser crystal,” J. Phys.: Condens. Matter 9, 9715–9729 (1997).

Opt. Mater.

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, and D. Vivien, “CW blue laser generation by self-sum frequency mixing in Nd:Ca4GdO(BO3)3 (Nd:GdCOB) single crystal,” Opt. Mater. 13, 293–297 (1999).
[CrossRef]

A. Brenier, G. Boulon, D. Jaque, and J. Garcia Solé, “Self-frequency-summing NYAB laser for tuneable blue generation,” Opt. Mater. 13, 311–317 (1999).
[CrossRef]

Philips J. Res.

J. Reid, M. Ouwerkerk, and L. Beckers, “Potassium lithium niobate and its application to intercavity frequency doubling,” Philips J. Res. 46, 199–213 (1992).

Other

V. Pruneri, R. Koch, P. G. Kazansky, W. A. Clarkson, P. St. J. Russell, and D. C. Hanna, “High efficient first order quasi-phase matched frequency doubling to blue of a cw diode pumped 946 nm Nd:YAG laser,” in Advanced Solid State Lasers, Vol. 1 of Trends in Optics and Photonics, S. A. Payne and C. Pollock, eds. (Optical Society of America, Washington, D.C., 1996), pp. 1–3.

W. T. Carnall, H. Crosswhite, and H. M. Crosswhite, “Energy level structure and transition probabilities of the trivalent lanthanides in LaF3,” Special Rep., Chemistry Division (Argonne National Laboratory, Argonne, IL, 1977).

R. M. Macfarlane, R. Wannemacher, T. Hebert, and W. Lenth, “Up-conversion laser action at 450.2 and 483.0 nm in Tm:YliF4,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 250–253.

W. Lenth and R. M. Macfarlane, “Up-conversion lasers,” Opt. Photon. News March 1992, 8–15.

J. Zarrabi, P. Gavrilovic, and S. Singh, “Intracavity frequency doubled miniaturized Nd:YAlO3 blue laser at 465 nm,” in Advanced Solid State Lasers, Vol. 1 of Trends in Optics and Photonics, S. A. Payne and C. Pollock, eds. (Optical Society of America, Washington, D.C., 1996), pp. 147–149.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) π-polarized and (b) σ-polarized absorption spectra of NGAB; the Nd concentration is 1.63 1020 ions/cm3.

Fig. 2
Fig. 2

Absorption spectra of NGAB in the range of the AlGaAs laser diode emission.

Fig. 3
Fig. 3

Polarized emission spectra corresponding to the  4F3/24I11/2 transition.

Fig. 4
Fig. 4

Excited-state absorption (ESA) from the  4F3/2 level in the wavelength range of laser interest: (a) π and (b) σ polarizations.

Fig. 5
Fig. 5

Second harmonic (SH) power versus pump power (incident on the crystal) obtained by SFD in NGAB.

Fig. 6
Fig. 6

Phase-matching angles in NGAB for sum-frequency mixing of the main Nd3+ absorption wavelength λ1 (from the  4I11/2 ground state) and the λ2=1061.9 nm laser wavelength.

Fig. 7
Fig. 7

Blue power versus pump power (incident on the crystal) obtained by self-sum frequency mixing in NGAB.

Fig. 8
Fig. 8

Laser excitation spectra of the 1061.9-nm fluorescence (recorded without any cavity) and of the blue radiation.

Fig. 9
Fig. 9

Time evolutions of the pump, near-infrared laser, and blue radiation pulses.

Tables (2)

Tables Icon

Table 1 Experimental (Pexp) and Theoretical (Pth) Oscillator Strengths (×106) of the Transitions from the  4I9/2 Ground State for σ and π Polarizations

Tables Icon

Table 2 Comparison of the Results of the Judd–Ofelt Analysis in NGAB and NYAB

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Piq(exp)=mc2πe2λ2ρ αiq(λ)dλ
Piqth=(ni2+2)29ni 8π2mνi(2J+1)ht=2,4,6×Qtq|4fn[LS]JU(t)4fn[LS]J|2
rms=i=111[Piq(exp)-Piqth]2numberofbandsfitted1/2,
Ωteff=2Ωtσ+Ωtπ
RoRiTc2=exp2σeFthhνp[1-exp(-αpL)] 2π(Wp2+Wl2).
no1λ1+no2λ2=n3λ3.

Metrics