Abstract

The third-order nonlinear optical properties of polyaniline (PANI) solutions and films were investigated at 532 nm by use of Z-scan, power limiting, and optical Kerr gate techniques. The polymers studied were the undoped partially oxidized (emeraldine base) and fully reduced (leucoemeraldine base) forms of PANI. Our results demonstrate that the leucoemeraldine base is more suitable for use in devices such as all-optical switches and optical power limiters operating at 532 nm. The worse performance of the emeraldine base is due to the presence of defects inside the bandgap of the polymer.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Birge, ed., Molecular and Biomolecular Electronics, in Vol. 240 of the Advances in Chemistry Series (American Chemical Society, Washington, D.C., 1994).
    [CrossRef]
  2. R. Österbacka, C. P. An, X. M. Jiang, and Z. V. Vardeny, “Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals,” Science 287, 839–842 (2000).
    [CrossRef] [PubMed]
  3. M. R. Salaneck, I. Lundström, W. S. Huang, and A. G. MacDiarmid, “A two-dimensional-surface ‘state diagram’ for polyaniline,” Synth. Met. 13, 291–297 (1986).
    [CrossRef]
  4. P. N. Bartlett and Y. Astier, “Microelectrochemical enzyme transistors,” Chem. Commun. (Cambridge) 2000, 105–112 (2000).
    [CrossRef]
  5. H. L. Wang, R. J. Romero, B. R. Mattes, Y. T. Zhu, and M. J. Winokur, “Effect of processing conditions on the properties of high molecular weight conductive polyaniline fiber,” J. Polym. Sci., Part B: Polym. Phys. 38, 194–204 (2000).
    [CrossRef]
  6. N. Spetseris, R. E. Ward, and T. Y. Meyer, “Linear and hyperbranched m-polyaniline: synthesis of polymers for the study of magnetism in organic systems,” Macromolecules 31, 3158–3161 (1998).
    [CrossRef]
  7. H. S. Nalwa and S. Myiata, eds., Nonlinear Optics of Organic Molecules and Polymers (CRC Press, Boca Raton, Fla., 1997), pp. 702, 773.
  8. See, for example, Proceedings of the International Conference on Science and Technology of Synthetic Metals (ICSM’98) in Synth. Met. 101–103 (1999).
  9. C. Halvorson, Y. Cao, D. Moses, and A. J. Heeger, “Third-order nonlinear optical susceptibility of polyaniline,” Synth. Met. 55–57, 3941–3944 (1993).
    [CrossRef]
  10. M. Samoc, A. Samoc, B. Luther-Davies, Z. Bao, L. Yu, B. Hsieh, and U. Scherf, “Femtosecond Z-scan and degenerate four-wave mixing measurements of real and imaginary parts of the third-order nonlinearity of soluble conjugated polymer,” J. Opt. Soc. Am. B 15, 817–825 (1998).
    [CrossRef]
  11. G. S. Maciel, C. B. de Araújo, R. R. B. Correia, and W. M. Azevedo, “Nonliner optical response of polyaniline liquid solutions,” Opt. Commun. 157, 187–192 (1998).
    [CrossRef]
  12. K. S. Wong, S. G. Han, and Z. Vardeny, “Studies of resonant and preresonant femtosecond degenerate four-wave mixing in unoriented conducting polymers,” J. Appl. Phys. 70, 1896–1898 (1991).
    [CrossRef]
  13. J. M. de Souza, “Synthesis, optical properties, morphological and thermal behavior of pseudo SIPN: polyaniline/polyvinyl-alcohol/glutaraldehyde,” M. Sc. Dissertation (Departamento de Química Fundamental, Universidade Federal de Pernambuco, Brazil, 1995) (in Portuguese).
  14. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [CrossRef]
  15. L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors, and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
    [CrossRef]
  16. G. I. Stegeman, “Applications of organic materials in third-order nonlinear optics,” in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalwa and S. Myiata, eds. (CRC Press, Boca Raton, Fla., 1997), pp. 799–812.
  17. D. V. Petrov, A. S. L. Gomes, C. B. de Araújo, J. M. de Souza, W. M. Azevedo, J. V. de Melo, and F. B. Diniz, “Nonlinear-optical properties of a poly(vinyl alcohol)-polyaniline interpenetrating polymer network,” Opt. Lett. 20, 554–556 (1995).
    [CrossRef] [PubMed]
  18. L. Misoguti, C. R. Mendonça, and S. C. Zilio, “Characterization of dynamic optical nonlinearities with pulse trains,” Appl. Phys. Lett. 74, 1531–1533 (1999).
    [CrossRef]
  19. B. R. Orr and J. F. Ward, “Perturbation theory of non-linear optical polarizability of an isolated system,” Mol. Phys. 20, 513–526 (1971).
    [CrossRef]
  20. J. L. Brédas, C. Adant, P. Tackx, and A. Persoons, “Third-order nonlinear response in organic materials: theoretical and experimental aspects,” Chem. Rev. 94, 243–278 (1994).
    [CrossRef]
  21. J. Libert, J. Cornil, D. A. dos Santos, and J. L. Brédas, “From neutral oligoanilines to polyanilines: a theoretical investigation of the chain-length dependence of the electronic and optical properties,” Phys. Rev. B 56, 8638–8650 (1997).
    [CrossRef]

2000 (3)

P. N. Bartlett and Y. Astier, “Microelectrochemical enzyme transistors,” Chem. Commun. (Cambridge) 2000, 105–112 (2000).
[CrossRef]

H. L. Wang, R. J. Romero, B. R. Mattes, Y. T. Zhu, and M. J. Winokur, “Effect of processing conditions on the properties of high molecular weight conductive polyaniline fiber,” J. Polym. Sci., Part B: Polym. Phys. 38, 194–204 (2000).
[CrossRef]

R. Österbacka, C. P. An, X. M. Jiang, and Z. V. Vardeny, “Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals,” Science 287, 839–842 (2000).
[CrossRef] [PubMed]

1999 (1)

L. Misoguti, C. R. Mendonça, and S. C. Zilio, “Characterization of dynamic optical nonlinearities with pulse trains,” Appl. Phys. Lett. 74, 1531–1533 (1999).
[CrossRef]

1998 (3)

M. Samoc, A. Samoc, B. Luther-Davies, Z. Bao, L. Yu, B. Hsieh, and U. Scherf, “Femtosecond Z-scan and degenerate four-wave mixing measurements of real and imaginary parts of the third-order nonlinearity of soluble conjugated polymer,” J. Opt. Soc. Am. B 15, 817–825 (1998).
[CrossRef]

G. S. Maciel, C. B. de Araújo, R. R. B. Correia, and W. M. Azevedo, “Nonliner optical response of polyaniline liquid solutions,” Opt. Commun. 157, 187–192 (1998).
[CrossRef]

N. Spetseris, R. E. Ward, and T. Y. Meyer, “Linear and hyperbranched m-polyaniline: synthesis of polymers for the study of magnetism in organic systems,” Macromolecules 31, 3158–3161 (1998).
[CrossRef]

1997 (1)

J. Libert, J. Cornil, D. A. dos Santos, and J. L. Brédas, “From neutral oligoanilines to polyanilines: a theoretical investigation of the chain-length dependence of the electronic and optical properties,” Phys. Rev. B 56, 8638–8650 (1997).
[CrossRef]

1995 (1)

1994 (1)

J. L. Brédas, C. Adant, P. Tackx, and A. Persoons, “Third-order nonlinear response in organic materials: theoretical and experimental aspects,” Chem. Rev. 94, 243–278 (1994).
[CrossRef]

1993 (2)

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors, and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

C. Halvorson, Y. Cao, D. Moses, and A. J. Heeger, “Third-order nonlinear optical susceptibility of polyaniline,” Synth. Met. 55–57, 3941–3944 (1993).
[CrossRef]

1991 (1)

K. S. Wong, S. G. Han, and Z. Vardeny, “Studies of resonant and preresonant femtosecond degenerate four-wave mixing in unoriented conducting polymers,” J. Appl. Phys. 70, 1896–1898 (1991).
[CrossRef]

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

1986 (1)

M. R. Salaneck, I. Lundström, W. S. Huang, and A. G. MacDiarmid, “A two-dimensional-surface ‘state diagram’ for polyaniline,” Synth. Met. 13, 291–297 (1986).
[CrossRef]

1971 (1)

B. R. Orr and J. F. Ward, “Perturbation theory of non-linear optical polarizability of an isolated system,” Mol. Phys. 20, 513–526 (1971).
[CrossRef]

Adant, C.

J. L. Brédas, C. Adant, P. Tackx, and A. Persoons, “Third-order nonlinear response in organic materials: theoretical and experimental aspects,” Chem. Rev. 94, 243–278 (1994).
[CrossRef]

An, C. P.

R. Österbacka, C. P. An, X. M. Jiang, and Z. V. Vardeny, “Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals,” Science 287, 839–842 (2000).
[CrossRef] [PubMed]

Astier, Y.

P. N. Bartlett and Y. Astier, “Microelectrochemical enzyme transistors,” Chem. Commun. (Cambridge) 2000, 105–112 (2000).
[CrossRef]

Azevedo, W. M.

Bao, Z.

Bartlett, P. N.

P. N. Bartlett and Y. Astier, “Microelectrochemical enzyme transistors,” Chem. Commun. (Cambridge) 2000, 105–112 (2000).
[CrossRef]

Boggess, T. F.

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors, and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

Brédas, J. L.

J. Libert, J. Cornil, D. A. dos Santos, and J. L. Brédas, “From neutral oligoanilines to polyanilines: a theoretical investigation of the chain-length dependence of the electronic and optical properties,” Phys. Rev. B 56, 8638–8650 (1997).
[CrossRef]

J. L. Brédas, C. Adant, P. Tackx, and A. Persoons, “Third-order nonlinear response in organic materials: theoretical and experimental aspects,” Chem. Rev. 94, 243–278 (1994).
[CrossRef]

Cao, Y.

C. Halvorson, Y. Cao, D. Moses, and A. J. Heeger, “Third-order nonlinear optical susceptibility of polyaniline,” Synth. Met. 55–57, 3941–3944 (1993).
[CrossRef]

Cornil, J.

J. Libert, J. Cornil, D. A. dos Santos, and J. L. Brédas, “From neutral oligoanilines to polyanilines: a theoretical investigation of the chain-length dependence of the electronic and optical properties,” Phys. Rev. B 56, 8638–8650 (1997).
[CrossRef]

Correia, R. R. B.

G. S. Maciel, C. B. de Araújo, R. R. B. Correia, and W. M. Azevedo, “Nonliner optical response of polyaniline liquid solutions,” Opt. Commun. 157, 187–192 (1998).
[CrossRef]

de Araújo, C. B.

de Melo, J. V.

de Souza, J. M.

Diniz, F. B.

dos Santos, D. A.

J. Libert, J. Cornil, D. A. dos Santos, and J. L. Brédas, “From neutral oligoanilines to polyanilines: a theoretical investigation of the chain-length dependence of the electronic and optical properties,” Phys. Rev. B 56, 8638–8650 (1997).
[CrossRef]

Gomes, A. S. L.

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Halvorson, C.

C. Halvorson, Y. Cao, D. Moses, and A. J. Heeger, “Third-order nonlinear optical susceptibility of polyaniline,” Synth. Met. 55–57, 3941–3944 (1993).
[CrossRef]

Han, S. G.

K. S. Wong, S. G. Han, and Z. Vardeny, “Studies of resonant and preresonant femtosecond degenerate four-wave mixing in unoriented conducting polymers,” J. Appl. Phys. 70, 1896–1898 (1991).
[CrossRef]

Heeger, A. J.

C. Halvorson, Y. Cao, D. Moses, and A. J. Heeger, “Third-order nonlinear optical susceptibility of polyaniline,” Synth. Met. 55–57, 3941–3944 (1993).
[CrossRef]

Hsieh, B.

Huang, W. S.

M. R. Salaneck, I. Lundström, W. S. Huang, and A. G. MacDiarmid, “A two-dimensional-surface ‘state diagram’ for polyaniline,” Synth. Met. 13, 291–297 (1986).
[CrossRef]

Jiang, X. M.

R. Österbacka, C. P. An, X. M. Jiang, and Z. V. Vardeny, “Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals,” Science 287, 839–842 (2000).
[CrossRef] [PubMed]

Libert, J.

J. Libert, J. Cornil, D. A. dos Santos, and J. L. Brédas, “From neutral oligoanilines to polyanilines: a theoretical investigation of the chain-length dependence of the electronic and optical properties,” Phys. Rev. B 56, 8638–8650 (1997).
[CrossRef]

Lundström, I.

M. R. Salaneck, I. Lundström, W. S. Huang, and A. G. MacDiarmid, “A two-dimensional-surface ‘state diagram’ for polyaniline,” Synth. Met. 13, 291–297 (1986).
[CrossRef]

Luther-Davies, B.

MacDiarmid, A. G.

M. R. Salaneck, I. Lundström, W. S. Huang, and A. G. MacDiarmid, “A two-dimensional-surface ‘state diagram’ for polyaniline,” Synth. Met. 13, 291–297 (1986).
[CrossRef]

Maciel, G. S.

G. S. Maciel, C. B. de Araújo, R. R. B. Correia, and W. M. Azevedo, “Nonliner optical response of polyaniline liquid solutions,” Opt. Commun. 157, 187–192 (1998).
[CrossRef]

Mattes, B. R.

H. L. Wang, R. J. Romero, B. R. Mattes, Y. T. Zhu, and M. J. Winokur, “Effect of processing conditions on the properties of high molecular weight conductive polyaniline fiber,” J. Polym. Sci., Part B: Polym. Phys. 38, 194–204 (2000).
[CrossRef]

Mendonça, C. R.

L. Misoguti, C. R. Mendonça, and S. C. Zilio, “Characterization of dynamic optical nonlinearities with pulse trains,” Appl. Phys. Lett. 74, 1531–1533 (1999).
[CrossRef]

Meyer, T. Y.

N. Spetseris, R. E. Ward, and T. Y. Meyer, “Linear and hyperbranched m-polyaniline: synthesis of polymers for the study of magnetism in organic systems,” Macromolecules 31, 3158–3161 (1998).
[CrossRef]

Misoguti, L.

L. Misoguti, C. R. Mendonça, and S. C. Zilio, “Characterization of dynamic optical nonlinearities with pulse trains,” Appl. Phys. Lett. 74, 1531–1533 (1999).
[CrossRef]

Moses, D.

C. Halvorson, Y. Cao, D. Moses, and A. J. Heeger, “Third-order nonlinear optical susceptibility of polyaniline,” Synth. Met. 55–57, 3941–3944 (1993).
[CrossRef]

Orr, B. R.

B. R. Orr and J. F. Ward, “Perturbation theory of non-linear optical polarizability of an isolated system,” Mol. Phys. 20, 513–526 (1971).
[CrossRef]

Österbacka, R.

R. Österbacka, C. P. An, X. M. Jiang, and Z. V. Vardeny, “Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals,” Science 287, 839–842 (2000).
[CrossRef] [PubMed]

Persoons, A.

J. L. Brédas, C. Adant, P. Tackx, and A. Persoons, “Third-order nonlinear response in organic materials: theoretical and experimental aspects,” Chem. Rev. 94, 243–278 (1994).
[CrossRef]

Petrov, D. V.

Romero, R. J.

H. L. Wang, R. J. Romero, B. R. Mattes, Y. T. Zhu, and M. J. Winokur, “Effect of processing conditions on the properties of high molecular weight conductive polyaniline fiber,” J. Polym. Sci., Part B: Polym. Phys. 38, 194–204 (2000).
[CrossRef]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Salaneck, M. R.

M. R. Salaneck, I. Lundström, W. S. Huang, and A. G. MacDiarmid, “A two-dimensional-surface ‘state diagram’ for polyaniline,” Synth. Met. 13, 291–297 (1986).
[CrossRef]

Samoc, A.

Samoc, M.

Scherf, U.

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Spetseris, N.

N. Spetseris, R. E. Ward, and T. Y. Meyer, “Linear and hyperbranched m-polyaniline: synthesis of polymers for the study of magnetism in organic systems,” Macromolecules 31, 3158–3161 (1998).
[CrossRef]

Tackx, P.

J. L. Brédas, C. Adant, P. Tackx, and A. Persoons, “Third-order nonlinear response in organic materials: theoretical and experimental aspects,” Chem. Rev. 94, 243–278 (1994).
[CrossRef]

Tutt, L. W.

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors, and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Vardeny, Z.

K. S. Wong, S. G. Han, and Z. Vardeny, “Studies of resonant and preresonant femtosecond degenerate four-wave mixing in unoriented conducting polymers,” J. Appl. Phys. 70, 1896–1898 (1991).
[CrossRef]

Vardeny, Z. V.

R. Österbacka, C. P. An, X. M. Jiang, and Z. V. Vardeny, “Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals,” Science 287, 839–842 (2000).
[CrossRef] [PubMed]

Wang, H. L.

H. L. Wang, R. J. Romero, B. R. Mattes, Y. T. Zhu, and M. J. Winokur, “Effect of processing conditions on the properties of high molecular weight conductive polyaniline fiber,” J. Polym. Sci., Part B: Polym. Phys. 38, 194–204 (2000).
[CrossRef]

Ward, J. F.

B. R. Orr and J. F. Ward, “Perturbation theory of non-linear optical polarizability of an isolated system,” Mol. Phys. 20, 513–526 (1971).
[CrossRef]

Ward, R. E.

N. Spetseris, R. E. Ward, and T. Y. Meyer, “Linear and hyperbranched m-polyaniline: synthesis of polymers for the study of magnetism in organic systems,” Macromolecules 31, 3158–3161 (1998).
[CrossRef]

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Winokur, M. J.

H. L. Wang, R. J. Romero, B. R. Mattes, Y. T. Zhu, and M. J. Winokur, “Effect of processing conditions on the properties of high molecular weight conductive polyaniline fiber,” J. Polym. Sci., Part B: Polym. Phys. 38, 194–204 (2000).
[CrossRef]

Wong, K. S.

K. S. Wong, S. G. Han, and Z. Vardeny, “Studies of resonant and preresonant femtosecond degenerate four-wave mixing in unoriented conducting polymers,” J. Appl. Phys. 70, 1896–1898 (1991).
[CrossRef]

Yu, L.

Zhu, Y. T.

H. L. Wang, R. J. Romero, B. R. Mattes, Y. T. Zhu, and M. J. Winokur, “Effect of processing conditions on the properties of high molecular weight conductive polyaniline fiber,” J. Polym. Sci., Part B: Polym. Phys. 38, 194–204 (2000).
[CrossRef]

Zilio, S. C.

L. Misoguti, C. R. Mendonça, and S. C. Zilio, “Characterization of dynamic optical nonlinearities with pulse trains,” Appl. Phys. Lett. 74, 1531–1533 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

L. Misoguti, C. R. Mendonça, and S. C. Zilio, “Characterization of dynamic optical nonlinearities with pulse trains,” Appl. Phys. Lett. 74, 1531–1533 (1999).
[CrossRef]

Chem. Commun. (Cambridge) (1)

P. N. Bartlett and Y. Astier, “Microelectrochemical enzyme transistors,” Chem. Commun. (Cambridge) 2000, 105–112 (2000).
[CrossRef]

Chem. Rev. (1)

J. L. Brédas, C. Adant, P. Tackx, and A. Persoons, “Third-order nonlinear response in organic materials: theoretical and experimental aspects,” Chem. Rev. 94, 243–278 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

J. Appl. Phys. (1)

K. S. Wong, S. G. Han, and Z. Vardeny, “Studies of resonant and preresonant femtosecond degenerate four-wave mixing in unoriented conducting polymers,” J. Appl. Phys. 70, 1896–1898 (1991).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Polym. Sci., Part B: Polym. Phys. (1)

H. L. Wang, R. J. Romero, B. R. Mattes, Y. T. Zhu, and M. J. Winokur, “Effect of processing conditions on the properties of high molecular weight conductive polyaniline fiber,” J. Polym. Sci., Part B: Polym. Phys. 38, 194–204 (2000).
[CrossRef]

Macromolecules (1)

N. Spetseris, R. E. Ward, and T. Y. Meyer, “Linear and hyperbranched m-polyaniline: synthesis of polymers for the study of magnetism in organic systems,” Macromolecules 31, 3158–3161 (1998).
[CrossRef]

Mol. Phys. (1)

B. R. Orr and J. F. Ward, “Perturbation theory of non-linear optical polarizability of an isolated system,” Mol. Phys. 20, 513–526 (1971).
[CrossRef]

Opt. Commun. (1)

G. S. Maciel, C. B. de Araújo, R. R. B. Correia, and W. M. Azevedo, “Nonliner optical response of polyaniline liquid solutions,” Opt. Commun. 157, 187–192 (1998).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

J. Libert, J. Cornil, D. A. dos Santos, and J. L. Brédas, “From neutral oligoanilines to polyanilines: a theoretical investigation of the chain-length dependence of the electronic and optical properties,” Phys. Rev. B 56, 8638–8650 (1997).
[CrossRef]

Prog. Quantum Electron. (1)

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors, and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

Science (1)

R. Österbacka, C. P. An, X. M. Jiang, and Z. V. Vardeny, “Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals,” Science 287, 839–842 (2000).
[CrossRef] [PubMed]

Synth. Met. (2)

M. R. Salaneck, I. Lundström, W. S. Huang, and A. G. MacDiarmid, “A two-dimensional-surface ‘state diagram’ for polyaniline,” Synth. Met. 13, 291–297 (1986).
[CrossRef]

C. Halvorson, Y. Cao, D. Moses, and A. J. Heeger, “Third-order nonlinear optical susceptibility of polyaniline,” Synth. Met. 55–57, 3941–3944 (1993).
[CrossRef]

Other (5)

R. R. Birge, ed., Molecular and Biomolecular Electronics, in Vol. 240 of the Advances in Chemistry Series (American Chemical Society, Washington, D.C., 1994).
[CrossRef]

H. S. Nalwa and S. Myiata, eds., Nonlinear Optics of Organic Molecules and Polymers (CRC Press, Boca Raton, Fla., 1997), pp. 702, 773.

See, for example, Proceedings of the International Conference on Science and Technology of Synthetic Metals (ICSM’98) in Synth. Met. 101–103 (1999).

G. I. Stegeman, “Applications of organic materials in third-order nonlinear optics,” in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalwa and S. Myiata, eds. (CRC Press, Boca Raton, Fla., 1997), pp. 799–812.

J. M. de Souza, “Synthesis, optical properties, morphological and thermal behavior of pseudo SIPN: polyaniline/polyvinyl-alcohol/glutaraldehyde,” M. Sc. Dissertation (Departamento de Química Fundamental, Universidade Federal de Pernambuco, Brazil, 1995) (in Portuguese).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Linear absorption spectra of PANI in DMSO solutions. The forms of PANI studied in this work were the EB (solid curve) and the LEB (dashed curve). PANI concentration, 0.1 g/l.

Fig. 2
Fig. 2

Typical Z-scan trace showing self-defocusing for the emeraldine base in DMSO solution. The Z-scan experiment was performed with 70-ps single pulses at 532 nm. The pulse peak intensity was 5 GW/cm2. Sample thickness, 1 mm; PANI concentration, 0.1 g/l.

Fig. 3
Fig. 3

Transmittance as a function of incident peak intensity for the forms of PANI studied here: (a) EB and (b) LEB. The excitation beam is a pulsed laser (10 ns) emitting at 532 nm. Sample thickness, 1 cm. PANI concentration, 0.01 g/l.

Fig. 4
Fig. 4

Optical Kerr gate signal as a function of delay time for a LEB film.

Tables (1)

Tables Icon

Table 1 Nonlinear Index of Refraction (n2), Linear (α0), and Nonlinear (β) Absorption Coefficients for PANIa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

γ(-ω; ω,-ω,ω)απΔμge2(ωge-2ω)(ωge-ω)+Mee2(ωge-2ω)(ωge-ω)-Mge2(ωge-ω)(ωge+ω),
γ(-ω; ω,-ω,ω)απ-Mge2(ωge-ω)(ωge+ω)-Mgd2(ωgd-ω)(ωgd+ω),

Metrics