Abstract

We report the fabrication and characterization of two-dimensional silicon-based photonic crystal (PhC) structures realized by a combination of electron-beam lithography and dry-etching techniques. PhCs of various lattices with very high aspect ratios up to 20 have been achieved, and PhC chips were prepared by standard semiconductor technologies, including thinning and cleaving. The chips consisting of high-aspect-ratio air rods or dielectric rods permit a direct transmission measurement, and they were observed to demonstrate pronounced photonic bandgap effects. Several photonic bandgap behaviors were identified by comparing transmission with reflection and experimental results with numerical results, and by considering detecting beam property.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Kiniry, “Wavelength division multiplexing: ultra high speed fiber optics,” IEEE Internet Comput. 2, 13–18 (1998).
    [CrossRef]
  2. N. Henmi, “Optical devices for Tb/s communication systems,” Oyo Butsuri 68, 1366–1371 (1999).
  3. S. Tedjini, A. Ho-Quoc, and D. A. M. Khalil, “All-optical networks as microwave and millimeter-wave circuits,” IEEE Trans. Microwave Theory Tech. 43, 2428–2433 (1995).
    [CrossRef]
  4. A. Himeno, “Silica-based planar lightwave circuits,” Mater. Res. Soc. Symp. Proc. 597, 41–50 (2000).
    [CrossRef]
  5. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
    [CrossRef]
  6. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef] [PubMed]
  7. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef] [PubMed]
  8. See articles in Photonic Band Gap Materials, C. Soukoulis, ed., Vol. 315 of NATO ASI Series E (Kluwer Academic, Dordrecht, The Netherlands, 1996).
  9. J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals (Princeton University, Princeton, N.J., 1995).
  10. C.-Z. Zhao and Y. Gao, Semiconductor Silicon-based Materials and Waveguides (Publishing House of Electronics Industry, Beijing, 1997).
  11. T. G. Brown and D. G. Hall, “Optical emission at 1.32 μm from sulfur-doped crystalline silicon,” Appl. Phys. Lett. 49, 245–247 (1986).
    [CrossRef]
  12. C.-X. Du, W.-X. Ni, K. B. Joelsson, and G. V. Hansson, “Room temperature 1.54 μm light emission of erbium doped Si Schottky diodes prepared by molecular beam epitaxy,” Appl. Phys. Lett. 71, 1023–1025 (1997).
    [CrossRef]
  13. H. Temkin, T. P. Pearsall, J. C. Bean, R. A. Logan, and S. Luryi, “GexSi1−x strained-layer superlattice waveguide photodetectors operating near 1.3 μm,” Appl. Phys. Lett. 48, 963–965 (1986).
    [CrossRef]
  14. G. Dehlinger, L. Diehl, U. Gennser, H. Sigg, J. Faist, K. Ensslin, D. Grützmacher, and E. Müller, “Intersubband electroluminescence from silicon based quantum cascade structures,” Science 290, 2277–2280 (2000).
    [CrossRef] [PubMed]
  15. U. Grüning, V. Lehmann, and K. Busch, “Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 μm,” Appl. Phys. Lett. 68, 747–749 (1996).
    [CrossRef]
  16. U. Grüning, V. Lehmann, and C. M. Engelhardt, “Two-dimensional infrared photonic band gap structure based on porous silicon,” Appl. Phys. Lett. 66, 3254–3256 (1995).
    [CrossRef]
  17. K. A. Valiev, The Physics of Submicron Lithography (Plenum, New York, 1992).
  18. P. L. Gourley, J. R. Wendt, G. A. Vawter, T. M. Brennan, and B. E. Hammons, “Optical properties of two-dimensional photonic lattices fabricated as honeycomb nanostructures in compound semiconductors,” Appl. Phys. Lett. 64, 687–689 (1994).
    [CrossRef]
  19. C. C. Cheng and A. Scherer, “Fabrication of photonic bandgap crystals,” J. Vac. Sci. Technol. B 13, 2696–2700 (1995).
    [CrossRef]
  20. C. C. Cheng, A. Scherer, R. C. Tyan, Y. Fainman, G. Witzgall, and E. Yablonovitch, “New fabrication techniques for high quality photonic crystals,” J. Vac. Sci. Technol. B 15, 2764–2767 (1997).
    [CrossRef]
  21. M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, “Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
    [CrossRef]
  22. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
    [CrossRef]
  23. A. Barra, D. Cassagne, and C. Jouanin, “Existence of two-dimensional absolute photonic band gaps in the visible,” Appl. Phys. Lett. 72, 627–629 (1998).
    [CrossRef]
  24. M. Notomi, I. Yokohama, C. Takahashi, A. Shinya, and T. Tamamura, “Two-dimensional Si photonic crystals on oxide using SOI substrate,” presented at the International Work-shop on Photonic and Electromagnetic Crystal Structures, Sendai, Japan, March 8–10, 2000, paper T3–4.
  25. M. Plihal and A. A. Maradudin, Phys. Rev. B 44, 8565 (1991).
    [CrossRef]
  26. K. Sakoda, “Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices,” Phys. Rev. B 52, 7982–7985 (1995).
    [CrossRef]

2000 (3)

A. Himeno, “Silica-based planar lightwave circuits,” Mater. Res. Soc. Symp. Proc. 597, 41–50 (2000).
[CrossRef]

G. Dehlinger, L. Diehl, U. Gennser, H. Sigg, J. Faist, K. Ensslin, D. Grützmacher, and E. Müller, “Intersubband electroluminescence from silicon based quantum cascade structures,” Science 290, 2277–2280 (2000).
[CrossRef] [PubMed]

M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, “Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
[CrossRef]

1999 (1)

N. Henmi, “Optical devices for Tb/s communication systems,” Oyo Butsuri 68, 1366–1371 (1999).

1998 (3)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[CrossRef]

A. Barra, D. Cassagne, and C. Jouanin, “Existence of two-dimensional absolute photonic band gaps in the visible,” Appl. Phys. Lett. 72, 627–629 (1998).
[CrossRef]

J. R. Kiniry, “Wavelength division multiplexing: ultra high speed fiber optics,” IEEE Internet Comput. 2, 13–18 (1998).
[CrossRef]

1997 (3)

C. C. Cheng, A. Scherer, R. C. Tyan, Y. Fainman, G. Witzgall, and E. Yablonovitch, “New fabrication techniques for high quality photonic crystals,” J. Vac. Sci. Technol. B 15, 2764–2767 (1997).
[CrossRef]

C.-X. Du, W.-X. Ni, K. B. Joelsson, and G. V. Hansson, “Room temperature 1.54 μm light emission of erbium doped Si Schottky diodes prepared by molecular beam epitaxy,” Appl. Phys. Lett. 71, 1023–1025 (1997).
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

1996 (1)

U. Grüning, V. Lehmann, and K. Busch, “Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 μm,” Appl. Phys. Lett. 68, 747–749 (1996).
[CrossRef]

1995 (4)

U. Grüning, V. Lehmann, and C. M. Engelhardt, “Two-dimensional infrared photonic band gap structure based on porous silicon,” Appl. Phys. Lett. 66, 3254–3256 (1995).
[CrossRef]

S. Tedjini, A. Ho-Quoc, and D. A. M. Khalil, “All-optical networks as microwave and millimeter-wave circuits,” IEEE Trans. Microwave Theory Tech. 43, 2428–2433 (1995).
[CrossRef]

K. Sakoda, “Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices,” Phys. Rev. B 52, 7982–7985 (1995).
[CrossRef]

C. C. Cheng and A. Scherer, “Fabrication of photonic bandgap crystals,” J. Vac. Sci. Technol. B 13, 2696–2700 (1995).
[CrossRef]

1994 (1)

P. L. Gourley, J. R. Wendt, G. A. Vawter, T. M. Brennan, and B. E. Hammons, “Optical properties of two-dimensional photonic lattices fabricated as honeycomb nanostructures in compound semiconductors,” Appl. Phys. Lett. 64, 687–689 (1994).
[CrossRef]

1991 (1)

M. Plihal and A. A. Maradudin, Phys. Rev. B 44, 8565 (1991).
[CrossRef]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

1986 (2)

T. G. Brown and D. G. Hall, “Optical emission at 1.32 μm from sulfur-doped crystalline silicon,” Appl. Phys. Lett. 49, 245–247 (1986).
[CrossRef]

H. Temkin, T. P. Pearsall, J. C. Bean, R. A. Logan, and S. Luryi, “GexSi1−x strained-layer superlattice waveguide photodetectors operating near 1.3 μm,” Appl. Phys. Lett. 48, 963–965 (1986).
[CrossRef]

Barra, A.

A. Barra, D. Cassagne, and C. Jouanin, “Existence of two-dimensional absolute photonic band gaps in the visible,” Appl. Phys. Lett. 72, 627–629 (1998).
[CrossRef]

Bean, J. C.

H. Temkin, T. P. Pearsall, J. C. Bean, R. A. Logan, and S. Luryi, “GexSi1−x strained-layer superlattice waveguide photodetectors operating near 1.3 μm,” Appl. Phys. Lett. 48, 963–965 (1986).
[CrossRef]

Brennan, T. M.

P. L. Gourley, J. R. Wendt, G. A. Vawter, T. M. Brennan, and B. E. Hammons, “Optical properties of two-dimensional photonic lattices fabricated as honeycomb nanostructures in compound semiconductors,” Appl. Phys. Lett. 64, 687–689 (1994).
[CrossRef]

Brown, T. G.

T. G. Brown and D. G. Hall, “Optical emission at 1.32 μm from sulfur-doped crystalline silicon,” Appl. Phys. Lett. 49, 245–247 (1986).
[CrossRef]

Busch, K.

U. Grüning, V. Lehmann, and K. Busch, “Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 μm,” Appl. Phys. Lett. 68, 747–749 (1996).
[CrossRef]

Cassagne, D.

A. Barra, D. Cassagne, and C. Jouanin, “Existence of two-dimensional absolute photonic band gaps in the visible,” Appl. Phys. Lett. 72, 627–629 (1998).
[CrossRef]

Cheng, C. C.

C. C. Cheng, A. Scherer, R. C. Tyan, Y. Fainman, G. Witzgall, and E. Yablonovitch, “New fabrication techniques for high quality photonic crystals,” J. Vac. Sci. Technol. B 15, 2764–2767 (1997).
[CrossRef]

C. C. Cheng and A. Scherer, “Fabrication of photonic bandgap crystals,” J. Vac. Sci. Technol. B 13, 2696–2700 (1995).
[CrossRef]

Dehlinger, G.

G. Dehlinger, L. Diehl, U. Gennser, H. Sigg, J. Faist, K. Ensslin, D. Grützmacher, and E. Müller, “Intersubband electroluminescence from silicon based quantum cascade structures,” Science 290, 2277–2280 (2000).
[CrossRef] [PubMed]

Diehl, L.

G. Dehlinger, L. Diehl, U. Gennser, H. Sigg, J. Faist, K. Ensslin, D. Grützmacher, and E. Müller, “Intersubband electroluminescence from silicon based quantum cascade structures,” Science 290, 2277–2280 (2000).
[CrossRef] [PubMed]

Du, C.-X.

C.-X. Du, W.-X. Ni, K. B. Joelsson, and G. V. Hansson, “Room temperature 1.54 μm light emission of erbium doped Si Schottky diodes prepared by molecular beam epitaxy,” Appl. Phys. Lett. 71, 1023–1025 (1997).
[CrossRef]

Engelhardt, C. M.

U. Grüning, V. Lehmann, and C. M. Engelhardt, “Two-dimensional infrared photonic band gap structure based on porous silicon,” Appl. Phys. Lett. 66, 3254–3256 (1995).
[CrossRef]

Ensslin, K.

G. Dehlinger, L. Diehl, U. Gennser, H. Sigg, J. Faist, K. Ensslin, D. Grützmacher, and E. Müller, “Intersubband electroluminescence from silicon based quantum cascade structures,” Science 290, 2277–2280 (2000).
[CrossRef] [PubMed]

Fainman, Y.

C. C. Cheng, A. Scherer, R. C. Tyan, Y. Fainman, G. Witzgall, and E. Yablonovitch, “New fabrication techniques for high quality photonic crystals,” J. Vac. Sci. Technol. B 15, 2764–2767 (1997).
[CrossRef]

Faist, J.

G. Dehlinger, L. Diehl, U. Gennser, H. Sigg, J. Faist, K. Ensslin, D. Grützmacher, and E. Müller, “Intersubband electroluminescence from silicon based quantum cascade structures,” Science 290, 2277–2280 (2000).
[CrossRef] [PubMed]

Fan, S.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

Gennser, U.

G. Dehlinger, L. Diehl, U. Gennser, H. Sigg, J. Faist, K. Ensslin, D. Grützmacher, and E. Müller, “Intersubband electroluminescence from silicon based quantum cascade structures,” Science 290, 2277–2280 (2000).
[CrossRef] [PubMed]

Gourley, P. L.

P. L. Gourley, J. R. Wendt, G. A. Vawter, T. M. Brennan, and B. E. Hammons, “Optical properties of two-dimensional photonic lattices fabricated as honeycomb nanostructures in compound semiconductors,” Appl. Phys. Lett. 64, 687–689 (1994).
[CrossRef]

Grüning, U.

U. Grüning, V. Lehmann, and K. Busch, “Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 μm,” Appl. Phys. Lett. 68, 747–749 (1996).
[CrossRef]

U. Grüning, V. Lehmann, and C. M. Engelhardt, “Two-dimensional infrared photonic band gap structure based on porous silicon,” Appl. Phys. Lett. 66, 3254–3256 (1995).
[CrossRef]

Grützmacher, D.

G. Dehlinger, L. Diehl, U. Gennser, H. Sigg, J. Faist, K. Ensslin, D. Grützmacher, and E. Müller, “Intersubband electroluminescence from silicon based quantum cascade structures,” Science 290, 2277–2280 (2000).
[CrossRef] [PubMed]

Hall, D. G.

T. G. Brown and D. G. Hall, “Optical emission at 1.32 μm from sulfur-doped crystalline silicon,” Appl. Phys. Lett. 49, 245–247 (1986).
[CrossRef]

Hammons, B. E.

P. L. Gourley, J. R. Wendt, G. A. Vawter, T. M. Brennan, and B. E. Hammons, “Optical properties of two-dimensional photonic lattices fabricated as honeycomb nanostructures in compound semiconductors,” Appl. Phys. Lett. 64, 687–689 (1994).
[CrossRef]

Hansson, G. V.

C.-X. Du, W.-X. Ni, K. B. Joelsson, and G. V. Hansson, “Room temperature 1.54 μm light emission of erbium doped Si Schottky diodes prepared by molecular beam epitaxy,” Appl. Phys. Lett. 71, 1023–1025 (1997).
[CrossRef]

Henmi, N.

N. Henmi, “Optical devices for Tb/s communication systems,” Oyo Butsuri 68, 1366–1371 (1999).

Himeno, A.

A. Himeno, “Silica-based planar lightwave circuits,” Mater. Res. Soc. Symp. Proc. 597, 41–50 (2000).
[CrossRef]

Ho-Quoc, A.

S. Tedjini, A. Ho-Quoc, and D. A. M. Khalil, “All-optical networks as microwave and millimeter-wave circuits,” IEEE Trans. Microwave Theory Tech. 43, 2428–2433 (1995).
[CrossRef]

Joannopoulos, J. D.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

Joelsson, K. B.

C.-X. Du, W.-X. Ni, K. B. Joelsson, and G. V. Hansson, “Room temperature 1.54 μm light emission of erbium doped Si Schottky diodes prepared by molecular beam epitaxy,” Appl. Phys. Lett. 71, 1023–1025 (1997).
[CrossRef]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Jouanin, C.

A. Barra, D. Cassagne, and C. Jouanin, “Existence of two-dimensional absolute photonic band gaps in the visible,” Appl. Phys. Lett. 72, 627–629 (1998).
[CrossRef]

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[CrossRef]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[CrossRef]

Khalil, D. A. M.

S. Tedjini, A. Ho-Quoc, and D. A. M. Khalil, “All-optical networks as microwave and millimeter-wave circuits,” IEEE Trans. Microwave Theory Tech. 43, 2428–2433 (1995).
[CrossRef]

Kiniry, J. R.

J. R. Kiniry, “Wavelength division multiplexing: ultra high speed fiber optics,” IEEE Internet Comput. 2, 13–18 (1998).
[CrossRef]

Kosaka, H.

M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, “Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[CrossRef]

Lehmann, V.

U. Grüning, V. Lehmann, and K. Busch, “Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 μm,” Appl. Phys. Lett. 68, 747–749 (1996).
[CrossRef]

U. Grüning, V. Lehmann, and C. M. Engelhardt, “Two-dimensional infrared photonic band gap structure based on porous silicon,” Appl. Phys. Lett. 66, 3254–3256 (1995).
[CrossRef]

Logan, R. A.

H. Temkin, T. P. Pearsall, J. C. Bean, R. A. Logan, and S. Luryi, “GexSi1−x strained-layer superlattice waveguide photodetectors operating near 1.3 μm,” Appl. Phys. Lett. 48, 963–965 (1986).
[CrossRef]

Luryi, S.

H. Temkin, T. P. Pearsall, J. C. Bean, R. A. Logan, and S. Luryi, “GexSi1−x strained-layer superlattice waveguide photodetectors operating near 1.3 μm,” Appl. Phys. Lett. 48, 963–965 (1986).
[CrossRef]

Maradudin, A. A.

M. Plihal and A. A. Maradudin, Phys. Rev. B 44, 8565 (1991).
[CrossRef]

Müller, E.

G. Dehlinger, L. Diehl, U. Gennser, H. Sigg, J. Faist, K. Ensslin, D. Grützmacher, and E. Müller, “Intersubband electroluminescence from silicon based quantum cascade structures,” Science 290, 2277–2280 (2000).
[CrossRef] [PubMed]

Ni, W.-X.

C.-X. Du, W.-X. Ni, K. B. Joelsson, and G. V. Hansson, “Room temperature 1.54 μm light emission of erbium doped Si Schottky diodes prepared by molecular beam epitaxy,” Appl. Phys. Lett. 71, 1023–1025 (1997).
[CrossRef]

Notomi, M.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[CrossRef]

Pearsall, T. P.

H. Temkin, T. P. Pearsall, J. C. Bean, R. A. Logan, and S. Luryi, “GexSi1−x strained-layer superlattice waveguide photodetectors operating near 1.3 μm,” Appl. Phys. Lett. 48, 963–965 (1986).
[CrossRef]

Plihal, M.

M. Plihal and A. A. Maradudin, Phys. Rev. B 44, 8565 (1991).
[CrossRef]

Sakoda, K.

K. Sakoda, “Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices,” Phys. Rev. B 52, 7982–7985 (1995).
[CrossRef]

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[CrossRef]

Scherer, A.

C. C. Cheng, A. Scherer, R. C. Tyan, Y. Fainman, G. Witzgall, and E. Yablonovitch, “New fabrication techniques for high quality photonic crystals,” J. Vac. Sci. Technol. B 15, 2764–2767 (1997).
[CrossRef]

C. C. Cheng and A. Scherer, “Fabrication of photonic bandgap crystals,” J. Vac. Sci. Technol. B 13, 2696–2700 (1995).
[CrossRef]

Sigg, H.

G. Dehlinger, L. Diehl, U. Gennser, H. Sigg, J. Faist, K. Ensslin, D. Grützmacher, and E. Müller, “Intersubband electroluminescence from silicon based quantum cascade structures,” Science 290, 2277–2280 (2000).
[CrossRef] [PubMed]

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[CrossRef]

Tedjini, S.

S. Tedjini, A. Ho-Quoc, and D. A. M. Khalil, “All-optical networks as microwave and millimeter-wave circuits,” IEEE Trans. Microwave Theory Tech. 43, 2428–2433 (1995).
[CrossRef]

Temkin, H.

H. Temkin, T. P. Pearsall, J. C. Bean, R. A. Logan, and S. Luryi, “GexSi1−x strained-layer superlattice waveguide photodetectors operating near 1.3 μm,” Appl. Phys. Lett. 48, 963–965 (1986).
[CrossRef]

Tokushima, M.

M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, “Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
[CrossRef]

Tomita, A.

M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, “Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[CrossRef]

Tyan, R. C.

C. C. Cheng, A. Scherer, R. C. Tyan, Y. Fainman, G. Witzgall, and E. Yablonovitch, “New fabrication techniques for high quality photonic crystals,” J. Vac. Sci. Technol. B 15, 2764–2767 (1997).
[CrossRef]

Vawter, G. A.

P. L. Gourley, J. R. Wendt, G. A. Vawter, T. M. Brennan, and B. E. Hammons, “Optical properties of two-dimensional photonic lattices fabricated as honeycomb nanostructures in compound semiconductors,” Appl. Phys. Lett. 64, 687–689 (1994).
[CrossRef]

Villeneuve, P. R.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

Wendt, J. R.

P. L. Gourley, J. R. Wendt, G. A. Vawter, T. M. Brennan, and B. E. Hammons, “Optical properties of two-dimensional photonic lattices fabricated as honeycomb nanostructures in compound semiconductors,” Appl. Phys. Lett. 64, 687–689 (1994).
[CrossRef]

Witzgall, G.

C. C. Cheng, A. Scherer, R. C. Tyan, Y. Fainman, G. Witzgall, and E. Yablonovitch, “New fabrication techniques for high quality photonic crystals,” J. Vac. Sci. Technol. B 15, 2764–2767 (1997).
[CrossRef]

Yablonovitch, E.

C. C. Cheng, A. Scherer, R. C. Tyan, Y. Fainman, G. Witzgall, and E. Yablonovitch, “New fabrication techniques for high quality photonic crystals,” J. Vac. Sci. Technol. B 15, 2764–2767 (1997).
[CrossRef]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Yamada, H.

M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, “Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
[CrossRef]

Appl. Phys. Lett. (8)

T. G. Brown and D. G. Hall, “Optical emission at 1.32 μm from sulfur-doped crystalline silicon,” Appl. Phys. Lett. 49, 245–247 (1986).
[CrossRef]

C.-X. Du, W.-X. Ni, K. B. Joelsson, and G. V. Hansson, “Room temperature 1.54 μm light emission of erbium doped Si Schottky diodes prepared by molecular beam epitaxy,” Appl. Phys. Lett. 71, 1023–1025 (1997).
[CrossRef]

H. Temkin, T. P. Pearsall, J. C. Bean, R. A. Logan, and S. Luryi, “GexSi1−x strained-layer superlattice waveguide photodetectors operating near 1.3 μm,” Appl. Phys. Lett. 48, 963–965 (1986).
[CrossRef]

U. Grüning, V. Lehmann, and K. Busch, “Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 μm,” Appl. Phys. Lett. 68, 747–749 (1996).
[CrossRef]

U. Grüning, V. Lehmann, and C. M. Engelhardt, “Two-dimensional infrared photonic band gap structure based on porous silicon,” Appl. Phys. Lett. 66, 3254–3256 (1995).
[CrossRef]

P. L. Gourley, J. R. Wendt, G. A. Vawter, T. M. Brennan, and B. E. Hammons, “Optical properties of two-dimensional photonic lattices fabricated as honeycomb nanostructures in compound semiconductors,” Appl. Phys. Lett. 64, 687–689 (1994).
[CrossRef]

M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, “Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
[CrossRef]

A. Barra, D. Cassagne, and C. Jouanin, “Existence of two-dimensional absolute photonic band gaps in the visible,” Appl. Phys. Lett. 72, 627–629 (1998).
[CrossRef]

IEEE Internet Comput. (1)

J. R. Kiniry, “Wavelength division multiplexing: ultra high speed fiber optics,” IEEE Internet Comput. 2, 13–18 (1998).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

S. Tedjini, A. Ho-Quoc, and D. A. M. Khalil, “All-optical networks as microwave and millimeter-wave circuits,” IEEE Trans. Microwave Theory Tech. 43, 2428–2433 (1995).
[CrossRef]

J. Vac. Sci. Technol. B (2)

C. C. Cheng and A. Scherer, “Fabrication of photonic bandgap crystals,” J. Vac. Sci. Technol. B 13, 2696–2700 (1995).
[CrossRef]

C. C. Cheng, A. Scherer, R. C. Tyan, Y. Fainman, G. Witzgall, and E. Yablonovitch, “New fabrication techniques for high quality photonic crystals,” J. Vac. Sci. Technol. B 15, 2764–2767 (1997).
[CrossRef]

Mater. Res. Soc. Symp. Proc. (1)

A. Himeno, “Silica-based planar lightwave circuits,” Mater. Res. Soc. Symp. Proc. 597, 41–50 (2000).
[CrossRef]

Nature (1)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

Oyo Butsuri (1)

N. Henmi, “Optical devices for Tb/s communication systems,” Oyo Butsuri 68, 1366–1371 (1999).

Phys. Rev. B (3)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[CrossRef]

M. Plihal and A. A. Maradudin, Phys. Rev. B 44, 8565 (1991).
[CrossRef]

K. Sakoda, “Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices,” Phys. Rev. B 52, 7982–7985 (1995).
[CrossRef]

Phys. Rev. Lett. (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Science (1)

G. Dehlinger, L. Diehl, U. Gennser, H. Sigg, J. Faist, K. Ensslin, D. Grützmacher, and E. Müller, “Intersubband electroluminescence from silicon based quantum cascade structures,” Science 290, 2277–2280 (2000).
[CrossRef] [PubMed]

Other (5)

K. A. Valiev, The Physics of Submicron Lithography (Plenum, New York, 1992).

See articles in Photonic Band Gap Materials, C. Soukoulis, ed., Vol. 315 of NATO ASI Series E (Kluwer Academic, Dordrecht, The Netherlands, 1996).

J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals (Princeton University, Princeton, N.J., 1995).

C.-Z. Zhao and Y. Gao, Semiconductor Silicon-based Materials and Waveguides (Publishing House of Electronics Industry, Beijing, 1997).

M. Notomi, I. Yokohama, C. Takahashi, A. Shinya, and T. Tamamura, “Two-dimensional Si photonic crystals on oxide using SOI substrate,” presented at the International Work-shop on Photonic and Electromagnetic Crystal Structures, Sendai, Japan, March 8–10, 2000, paper T3–4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Hole-diameter-dependent aspect ratio and etching depth (both spline fitted), where the air holes of different diameters are prepared in the same resist template of 450 nm in thickness.

Fig. 2
Fig. 2

SEM images of 2D PhC structures fabricated by EBL and dry etching (top view): (a) air-rod square, (b) air-rod triangular, (c) dielectric-rod graphite, (d) doped dielectric-rod graphite lattices, among which the air-rod triangular and dielectric-rod graphite lattices are most promising for the construction of compact 2D PhC-based PLC waveguides. The scale bars are (a) 1.0, (b) 1.5, (c) 2.0, (d) 2.0 µm, respectively.

Fig. 3
Fig. 3

SEM images of high-aspect-ratio 2D air-rod triangular lattices (tilting view). The lattice constants are (a) 580 nm and (b) 1000 nm, respectively. The wafer was tilted 60° from horizontal to include both top and side planes in one image.

Fig. 4
Fig. 4

SEM images of dielectric-rod lattices (tilting view). Note that the rod diameters are only (a) 450 nm and (b) 230 nm, respectively. Because the defined pattern consisted of isolated circles, much care should be taken for obtaining masks of designed patterns.

Fig. 5
Fig. 5

Illustration of a PhC chip, which contains a cleaving facet (left) and an as-fabricated facet (right). Polarizations, E and H, of the incident light are defined by the oscillation direction of electric vectors. The two top insets show different PhC–air interfaces.

Fig. 6
Fig. 6

(a) Configuration of optical system for the transmission and reflection measurements. The incident infrared light was split into two branches that deliver beams for T and R measurements. (b) Arrangement of beam and PhC chips. The slit pair used for the confinement of the detection area is critical for depressing the idle power and therefore for achieving a sufficient signal-to-background ratio. Note the divergence of the beam, which is responsible for the discrepancy of measured and simulated PBG properties. MCT; mercury cadmium telluride.

Fig. 7
Fig. 7

Transmission (solid curves) and reflection (dotted curves) spectra of a triangular lattice with a lattice constant of 1.3 µm of both H (upper) and E (lower) polarizations. The inset shows the incident direction of light.

Fig. 8
Fig. 8

Calculated photonic band structures of triangular photonic lattices consisting of silicon with a refractive index of 3.45 and a filling ratio of material, 23%. All gaps opened for Γ-M propagation are marked by the diagonally shaded regions, and the absolute gap is denoted by the gray bar.

Metrics