Abstract

The half-leaky guided-mode technique is used to explore the director profile through a thin, twisted, homogeneously aligned nematic liquid-crystal cell (Merck-E7). Twisted alignment is realized by rubbed polyimide layers on both inner walls of the cell. By monitoring first a particular angle of incidence range of the p-to-s-conversion reflectivity for the twisted-nematic cell under high voltage, the direction of the liquid-crystal director on the top interface of the cell, the easy axis, is accurately determined. Then by removing the external voltage and modeling the complete director profile in the cell to fit the half-leaky guided-mode reflectivity data recorded, the real twist of the director from the top to the bottom of the cell is accurately determined. By comparing the surface director orientation at zero volts with the easy axis of the top interface, the azimuthal (in-plane twist) anchoring coefficient, WT, is quantified through knowledge of the twist elastic constant K22. At 26.5 °C we find that for E7, WT=(4.4±0.3)×10-5 J m-2.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Yokoyama and H. A. van Sprang, “A novel method for determining the anchoring energy function at a nematic liquid crystal-wall interface from director distributions at high fields,” J. Appl. Phys. 57, 4520–4526 (1985).
    [CrossRef]
  2. Yu. A. Nastishin, R. D. Polak, S. V. Shiyanovskii, V. H. Bodnar, and O. D. Lavrentovich, “Nematic polar anchoring strength measured by electric field techniques,” J. Appl. Phys. 86, 4199–4213 (1999).
    [CrossRef]
  3. Fuzi Yang and J. R. Sambles, “Fully-leaky guided wave determination of the polar anchoring energy of a homogeneously aligned nematic liquid crystal,” J. Appl. Phys. 87, 2726–2735 (2000).
    [CrossRef]
  4. S. Faetti, M. Nobili, and A. Schipone, “Experimental measurement of the azimuthal anchoring energy function at a SiO–nematic interface,” Liq. Cryst. 10, 95–100 (1991).
    [CrossRef]
  5. S. Faetti and M. Nobili, “An accurate optical method for measuring the azimuthal anchoring energy of nematic liquid crystals,” Liq. Cryst. 25, 487–494 (1998).
    [CrossRef]
  6. B. T. Hallam, F. Yang, and J. R. Sambles, “Quantification of the azimuthal anchoring of a homogeneously aligned nematic liquid crystal using fully-leaky guided modes,” Liq. Cryst. 26, 657–662 (1999).
    [CrossRef]
  7. F. Yang, J. R. Sambles, and G. W. Bradberry, “Half-leaky guided wave determination of azimuthal anchoring energy and twist elastic constant of a homogeneously aligned nematic liquid crystal,” J. Appl. Phys. 85, 728–733 (1999).
    [CrossRef]
  8. Y. Iimura, N. Kobayashi, and S. Kobayashi, “A new method for measuring the azimuthal anchoring energy of a nematic liquid crystal,” Jpn. J. Appl. Phys., Part 2 33, L434–L436 (1994).
    [CrossRef]
  9. M. Jiang, X. M. Huang, Z. K. Wang, K. Ma, and R. P. Sun, “Measurement of twist angle and surface torsional anchoring strength in a nematic liquid crystal cell,” Liq. Cryst. 18, 419–422 (1995).
    [CrossRef]
  10. E. Polossat and I. Dozov, “New optical method for the measurement of the azimuthal anchoring energy of nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 282, 223–233 (1996).
    [CrossRef]
  11. T. Akahane, H. Kaneko, and M. Kimura, “Novel method of measuring surface torsional anchoring strength of nematic liquid crystals,” Jpn. J. Appl. Phys., Part 1 35, 4434–4437 (1996).
    [CrossRef]
  12. Fuzi Yang and J. R. Sambles, “The influence of surface reflectivities on measurement of the torsional anchoring strength of nematic liquid crystals,” Jpn. J. Appl. Phys., Part 1 37, 3998–4007 (1998).
    [CrossRef]
  13. Fuzi Yang and J. R. Sambles, “Optical characterization of liquid crystals by means of half-leaky guided modes,” J. Opt. Soc. Am. B 10, 858–866 (1993).
    [CrossRef]
  14. Fuzi Yang and J. R. Sambles, “The optical tensor configuration in a surface stabilized ferroelectric liquid crystal determined by using half-leaky guided modes,” Liq. Cryst. 13, 1–11 (1993).
    [CrossRef]
  15. A. Sugimura, G. R. Luckhurst, and Z. Ou-Yang, “Director deformation of a twisted chiral nematic liquid crystal cell with weak anchoring boundaries,” Phys. Rev. E 52, 681–689 (1995).
    [CrossRef]
  16. A. Rapini and M. J. Papoular, “Distorsion d’une lamelle nematique sous champ magnetique conditiens d’ancrage aux parois,” J. Phys. Colloq. 30, 11–12 (1969).
    [CrossRef]
  17. Fuzi Yang and J. R. Sambles, “Optical characterization of a uniaxial material using the polarization-conversion reflective technique,” J. Opt. Soc. Am. B 11, 605–617 (1994).
    [CrossRef]
  18. D. Y. K. Ko and J. R. Sambles, “Scattering matrix method for propagation of radiation in stratified media: attenuated total reflection studies of liquid crystals,” J. Opt. Soc. Am. A 5, 1863–1866 (1988).
    [CrossRef]
  19. M. J. Bancroft, “Dynamic light scattering studies of some nematic liquid crystals,” Ph.D. dissertation (University of Manchester, Manchester, England, 1991).

2000 (1)

Fuzi Yang and J. R. Sambles, “Fully-leaky guided wave determination of the polar anchoring energy of a homogeneously aligned nematic liquid crystal,” J. Appl. Phys. 87, 2726–2735 (2000).
[CrossRef]

1999 (3)

Yu. A. Nastishin, R. D. Polak, S. V. Shiyanovskii, V. H. Bodnar, and O. D. Lavrentovich, “Nematic polar anchoring strength measured by electric field techniques,” J. Appl. Phys. 86, 4199–4213 (1999).
[CrossRef]

B. T. Hallam, F. Yang, and J. R. Sambles, “Quantification of the azimuthal anchoring of a homogeneously aligned nematic liquid crystal using fully-leaky guided modes,” Liq. Cryst. 26, 657–662 (1999).
[CrossRef]

F. Yang, J. R. Sambles, and G. W. Bradberry, “Half-leaky guided wave determination of azimuthal anchoring energy and twist elastic constant of a homogeneously aligned nematic liquid crystal,” J. Appl. Phys. 85, 728–733 (1999).
[CrossRef]

1998 (2)

S. Faetti and M. Nobili, “An accurate optical method for measuring the azimuthal anchoring energy of nematic liquid crystals,” Liq. Cryst. 25, 487–494 (1998).
[CrossRef]

Fuzi Yang and J. R. Sambles, “The influence of surface reflectivities on measurement of the torsional anchoring strength of nematic liquid crystals,” Jpn. J. Appl. Phys., Part 1 37, 3998–4007 (1998).
[CrossRef]

1996 (2)

E. Polossat and I. Dozov, “New optical method for the measurement of the azimuthal anchoring energy of nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 282, 223–233 (1996).
[CrossRef]

T. Akahane, H. Kaneko, and M. Kimura, “Novel method of measuring surface torsional anchoring strength of nematic liquid crystals,” Jpn. J. Appl. Phys., Part 1 35, 4434–4437 (1996).
[CrossRef]

1995 (2)

A. Sugimura, G. R. Luckhurst, and Z. Ou-Yang, “Director deformation of a twisted chiral nematic liquid crystal cell with weak anchoring boundaries,” Phys. Rev. E 52, 681–689 (1995).
[CrossRef]

M. Jiang, X. M. Huang, Z. K. Wang, K. Ma, and R. P. Sun, “Measurement of twist angle and surface torsional anchoring strength in a nematic liquid crystal cell,” Liq. Cryst. 18, 419–422 (1995).
[CrossRef]

1994 (2)

Y. Iimura, N. Kobayashi, and S. Kobayashi, “A new method for measuring the azimuthal anchoring energy of a nematic liquid crystal,” Jpn. J. Appl. Phys., Part 2 33, L434–L436 (1994).
[CrossRef]

Fuzi Yang and J. R. Sambles, “Optical characterization of a uniaxial material using the polarization-conversion reflective technique,” J. Opt. Soc. Am. B 11, 605–617 (1994).
[CrossRef]

1993 (2)

Fuzi Yang and J. R. Sambles, “Optical characterization of liquid crystals by means of half-leaky guided modes,” J. Opt. Soc. Am. B 10, 858–866 (1993).
[CrossRef]

Fuzi Yang and J. R. Sambles, “The optical tensor configuration in a surface stabilized ferroelectric liquid crystal determined by using half-leaky guided modes,” Liq. Cryst. 13, 1–11 (1993).
[CrossRef]

1991 (1)

S. Faetti, M. Nobili, and A. Schipone, “Experimental measurement of the azimuthal anchoring energy function at a SiO–nematic interface,” Liq. Cryst. 10, 95–100 (1991).
[CrossRef]

1988 (1)

1985 (1)

H. Yokoyama and H. A. van Sprang, “A novel method for determining the anchoring energy function at a nematic liquid crystal-wall interface from director distributions at high fields,” J. Appl. Phys. 57, 4520–4526 (1985).
[CrossRef]

1969 (1)

A. Rapini and M. J. Papoular, “Distorsion d’une lamelle nematique sous champ magnetique conditiens d’ancrage aux parois,” J. Phys. Colloq. 30, 11–12 (1969).
[CrossRef]

Akahane, T.

T. Akahane, H. Kaneko, and M. Kimura, “Novel method of measuring surface torsional anchoring strength of nematic liquid crystals,” Jpn. J. Appl. Phys., Part 1 35, 4434–4437 (1996).
[CrossRef]

Bodnar, V. H.

Yu. A. Nastishin, R. D. Polak, S. V. Shiyanovskii, V. H. Bodnar, and O. D. Lavrentovich, “Nematic polar anchoring strength measured by electric field techniques,” J. Appl. Phys. 86, 4199–4213 (1999).
[CrossRef]

Bradberry, G. W.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Half-leaky guided wave determination of azimuthal anchoring energy and twist elastic constant of a homogeneously aligned nematic liquid crystal,” J. Appl. Phys. 85, 728–733 (1999).
[CrossRef]

Dozov, I.

E. Polossat and I. Dozov, “New optical method for the measurement of the azimuthal anchoring energy of nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 282, 223–233 (1996).
[CrossRef]

Faetti, S.

S. Faetti and M. Nobili, “An accurate optical method for measuring the azimuthal anchoring energy of nematic liquid crystals,” Liq. Cryst. 25, 487–494 (1998).
[CrossRef]

S. Faetti, M. Nobili, and A. Schipone, “Experimental measurement of the azimuthal anchoring energy function at a SiO–nematic interface,” Liq. Cryst. 10, 95–100 (1991).
[CrossRef]

Hallam, B. T.

B. T. Hallam, F. Yang, and J. R. Sambles, “Quantification of the azimuthal anchoring of a homogeneously aligned nematic liquid crystal using fully-leaky guided modes,” Liq. Cryst. 26, 657–662 (1999).
[CrossRef]

Huang, X. M.

M. Jiang, X. M. Huang, Z. K. Wang, K. Ma, and R. P. Sun, “Measurement of twist angle and surface torsional anchoring strength in a nematic liquid crystal cell,” Liq. Cryst. 18, 419–422 (1995).
[CrossRef]

Iimura, Y.

Y. Iimura, N. Kobayashi, and S. Kobayashi, “A new method for measuring the azimuthal anchoring energy of a nematic liquid crystal,” Jpn. J. Appl. Phys., Part 2 33, L434–L436 (1994).
[CrossRef]

Jiang, M.

M. Jiang, X. M. Huang, Z. K. Wang, K. Ma, and R. P. Sun, “Measurement of twist angle and surface torsional anchoring strength in a nematic liquid crystal cell,” Liq. Cryst. 18, 419–422 (1995).
[CrossRef]

Kaneko, H.

T. Akahane, H. Kaneko, and M. Kimura, “Novel method of measuring surface torsional anchoring strength of nematic liquid crystals,” Jpn. J. Appl. Phys., Part 1 35, 4434–4437 (1996).
[CrossRef]

Kimura, M.

T. Akahane, H. Kaneko, and M. Kimura, “Novel method of measuring surface torsional anchoring strength of nematic liquid crystals,” Jpn. J. Appl. Phys., Part 1 35, 4434–4437 (1996).
[CrossRef]

Ko, D. Y. K.

Kobayashi, N.

Y. Iimura, N. Kobayashi, and S. Kobayashi, “A new method for measuring the azimuthal anchoring energy of a nematic liquid crystal,” Jpn. J. Appl. Phys., Part 2 33, L434–L436 (1994).
[CrossRef]

Kobayashi, S.

Y. Iimura, N. Kobayashi, and S. Kobayashi, “A new method for measuring the azimuthal anchoring energy of a nematic liquid crystal,” Jpn. J. Appl. Phys., Part 2 33, L434–L436 (1994).
[CrossRef]

Lavrentovich, O. D.

Yu. A. Nastishin, R. D. Polak, S. V. Shiyanovskii, V. H. Bodnar, and O. D. Lavrentovich, “Nematic polar anchoring strength measured by electric field techniques,” J. Appl. Phys. 86, 4199–4213 (1999).
[CrossRef]

Luckhurst, G. R.

A. Sugimura, G. R. Luckhurst, and Z. Ou-Yang, “Director deformation of a twisted chiral nematic liquid crystal cell with weak anchoring boundaries,” Phys. Rev. E 52, 681–689 (1995).
[CrossRef]

Ma, K.

M. Jiang, X. M. Huang, Z. K. Wang, K. Ma, and R. P. Sun, “Measurement of twist angle and surface torsional anchoring strength in a nematic liquid crystal cell,” Liq. Cryst. 18, 419–422 (1995).
[CrossRef]

Nastishin, Yu. A.

Yu. A. Nastishin, R. D. Polak, S. V. Shiyanovskii, V. H. Bodnar, and O. D. Lavrentovich, “Nematic polar anchoring strength measured by electric field techniques,” J. Appl. Phys. 86, 4199–4213 (1999).
[CrossRef]

Nobili, M.

S. Faetti and M. Nobili, “An accurate optical method for measuring the azimuthal anchoring energy of nematic liquid crystals,” Liq. Cryst. 25, 487–494 (1998).
[CrossRef]

S. Faetti, M. Nobili, and A. Schipone, “Experimental measurement of the azimuthal anchoring energy function at a SiO–nematic interface,” Liq. Cryst. 10, 95–100 (1991).
[CrossRef]

Ou-Yang, Z.

A. Sugimura, G. R. Luckhurst, and Z. Ou-Yang, “Director deformation of a twisted chiral nematic liquid crystal cell with weak anchoring boundaries,” Phys. Rev. E 52, 681–689 (1995).
[CrossRef]

Papoular, M. J.

A. Rapini and M. J. Papoular, “Distorsion d’une lamelle nematique sous champ magnetique conditiens d’ancrage aux parois,” J. Phys. Colloq. 30, 11–12 (1969).
[CrossRef]

Polak, R. D.

Yu. A. Nastishin, R. D. Polak, S. V. Shiyanovskii, V. H. Bodnar, and O. D. Lavrentovich, “Nematic polar anchoring strength measured by electric field techniques,” J. Appl. Phys. 86, 4199–4213 (1999).
[CrossRef]

Polossat, E.

E. Polossat and I. Dozov, “New optical method for the measurement of the azimuthal anchoring energy of nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 282, 223–233 (1996).
[CrossRef]

Rapini, A.

A. Rapini and M. J. Papoular, “Distorsion d’une lamelle nematique sous champ magnetique conditiens d’ancrage aux parois,” J. Phys. Colloq. 30, 11–12 (1969).
[CrossRef]

Sambles, J. R.

Fuzi Yang and J. R. Sambles, “Fully-leaky guided wave determination of the polar anchoring energy of a homogeneously aligned nematic liquid crystal,” J. Appl. Phys. 87, 2726–2735 (2000).
[CrossRef]

F. Yang, J. R. Sambles, and G. W. Bradberry, “Half-leaky guided wave determination of azimuthal anchoring energy and twist elastic constant of a homogeneously aligned nematic liquid crystal,” J. Appl. Phys. 85, 728–733 (1999).
[CrossRef]

B. T. Hallam, F. Yang, and J. R. Sambles, “Quantification of the azimuthal anchoring of a homogeneously aligned nematic liquid crystal using fully-leaky guided modes,” Liq. Cryst. 26, 657–662 (1999).
[CrossRef]

Fuzi Yang and J. R. Sambles, “The influence of surface reflectivities on measurement of the torsional anchoring strength of nematic liquid crystals,” Jpn. J. Appl. Phys., Part 1 37, 3998–4007 (1998).
[CrossRef]

Fuzi Yang and J. R. Sambles, “Optical characterization of a uniaxial material using the polarization-conversion reflective technique,” J. Opt. Soc. Am. B 11, 605–617 (1994).
[CrossRef]

Fuzi Yang and J. R. Sambles, “Optical characterization of liquid crystals by means of half-leaky guided modes,” J. Opt. Soc. Am. B 10, 858–866 (1993).
[CrossRef]

Fuzi Yang and J. R. Sambles, “The optical tensor configuration in a surface stabilized ferroelectric liquid crystal determined by using half-leaky guided modes,” Liq. Cryst. 13, 1–11 (1993).
[CrossRef]

D. Y. K. Ko and J. R. Sambles, “Scattering matrix method for propagation of radiation in stratified media: attenuated total reflection studies of liquid crystals,” J. Opt. Soc. Am. A 5, 1863–1866 (1988).
[CrossRef]

Schipone, A.

S. Faetti, M. Nobili, and A. Schipone, “Experimental measurement of the azimuthal anchoring energy function at a SiO–nematic interface,” Liq. Cryst. 10, 95–100 (1991).
[CrossRef]

Shiyanovskii, S. V.

Yu. A. Nastishin, R. D. Polak, S. V. Shiyanovskii, V. H. Bodnar, and O. D. Lavrentovich, “Nematic polar anchoring strength measured by electric field techniques,” J. Appl. Phys. 86, 4199–4213 (1999).
[CrossRef]

Sugimura, A.

A. Sugimura, G. R. Luckhurst, and Z. Ou-Yang, “Director deformation of a twisted chiral nematic liquid crystal cell with weak anchoring boundaries,” Phys. Rev. E 52, 681–689 (1995).
[CrossRef]

Sun, R. P.

M. Jiang, X. M. Huang, Z. K. Wang, K. Ma, and R. P. Sun, “Measurement of twist angle and surface torsional anchoring strength in a nematic liquid crystal cell,” Liq. Cryst. 18, 419–422 (1995).
[CrossRef]

van Sprang, H. A.

H. Yokoyama and H. A. van Sprang, “A novel method for determining the anchoring energy function at a nematic liquid crystal-wall interface from director distributions at high fields,” J. Appl. Phys. 57, 4520–4526 (1985).
[CrossRef]

Wang, Z. K.

M. Jiang, X. M. Huang, Z. K. Wang, K. Ma, and R. P. Sun, “Measurement of twist angle and surface torsional anchoring strength in a nematic liquid crystal cell,” Liq. Cryst. 18, 419–422 (1995).
[CrossRef]

Yang, F.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Half-leaky guided wave determination of azimuthal anchoring energy and twist elastic constant of a homogeneously aligned nematic liquid crystal,” J. Appl. Phys. 85, 728–733 (1999).
[CrossRef]

B. T. Hallam, F. Yang, and J. R. Sambles, “Quantification of the azimuthal anchoring of a homogeneously aligned nematic liquid crystal using fully-leaky guided modes,” Liq. Cryst. 26, 657–662 (1999).
[CrossRef]

Yang, Fuzi

Fuzi Yang and J. R. Sambles, “Fully-leaky guided wave determination of the polar anchoring energy of a homogeneously aligned nematic liquid crystal,” J. Appl. Phys. 87, 2726–2735 (2000).
[CrossRef]

Fuzi Yang and J. R. Sambles, “The influence of surface reflectivities on measurement of the torsional anchoring strength of nematic liquid crystals,” Jpn. J. Appl. Phys., Part 1 37, 3998–4007 (1998).
[CrossRef]

Fuzi Yang and J. R. Sambles, “Optical characterization of a uniaxial material using the polarization-conversion reflective technique,” J. Opt. Soc. Am. B 11, 605–617 (1994).
[CrossRef]

Fuzi Yang and J. R. Sambles, “The optical tensor configuration in a surface stabilized ferroelectric liquid crystal determined by using half-leaky guided modes,” Liq. Cryst. 13, 1–11 (1993).
[CrossRef]

Fuzi Yang and J. R. Sambles, “Optical characterization of liquid crystals by means of half-leaky guided modes,” J. Opt. Soc. Am. B 10, 858–866 (1993).
[CrossRef]

Yokoyama, H.

H. Yokoyama and H. A. van Sprang, “A novel method for determining the anchoring energy function at a nematic liquid crystal-wall interface from director distributions at high fields,” J. Appl. Phys. 57, 4520–4526 (1985).
[CrossRef]

J. Appl. Phys. (4)

H. Yokoyama and H. A. van Sprang, “A novel method for determining the anchoring energy function at a nematic liquid crystal-wall interface from director distributions at high fields,” J. Appl. Phys. 57, 4520–4526 (1985).
[CrossRef]

Yu. A. Nastishin, R. D. Polak, S. V. Shiyanovskii, V. H. Bodnar, and O. D. Lavrentovich, “Nematic polar anchoring strength measured by electric field techniques,” J. Appl. Phys. 86, 4199–4213 (1999).
[CrossRef]

Fuzi Yang and J. R. Sambles, “Fully-leaky guided wave determination of the polar anchoring energy of a homogeneously aligned nematic liquid crystal,” J. Appl. Phys. 87, 2726–2735 (2000).
[CrossRef]

F. Yang, J. R. Sambles, and G. W. Bradberry, “Half-leaky guided wave determination of azimuthal anchoring energy and twist elastic constant of a homogeneously aligned nematic liquid crystal,” J. Appl. Phys. 85, 728–733 (1999).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

J. Phys. Colloq. (1)

A. Rapini and M. J. Papoular, “Distorsion d’une lamelle nematique sous champ magnetique conditiens d’ancrage aux parois,” J. Phys. Colloq. 30, 11–12 (1969).
[CrossRef]

Jpn. J. Appl. Phys., Part 1 (2)

T. Akahane, H. Kaneko, and M. Kimura, “Novel method of measuring surface torsional anchoring strength of nematic liquid crystals,” Jpn. J. Appl. Phys., Part 1 35, 4434–4437 (1996).
[CrossRef]

Fuzi Yang and J. R. Sambles, “The influence of surface reflectivities on measurement of the torsional anchoring strength of nematic liquid crystals,” Jpn. J. Appl. Phys., Part 1 37, 3998–4007 (1998).
[CrossRef]

Jpn. J. Appl. Phys., Part 2 (1)

Y. Iimura, N. Kobayashi, and S. Kobayashi, “A new method for measuring the azimuthal anchoring energy of a nematic liquid crystal,” Jpn. J. Appl. Phys., Part 2 33, L434–L436 (1994).
[CrossRef]

Liq. Cryst. (5)

M. Jiang, X. M. Huang, Z. K. Wang, K. Ma, and R. P. Sun, “Measurement of twist angle and surface torsional anchoring strength in a nematic liquid crystal cell,” Liq. Cryst. 18, 419–422 (1995).
[CrossRef]

S. Faetti, M. Nobili, and A. Schipone, “Experimental measurement of the azimuthal anchoring energy function at a SiO–nematic interface,” Liq. Cryst. 10, 95–100 (1991).
[CrossRef]

S. Faetti and M. Nobili, “An accurate optical method for measuring the azimuthal anchoring energy of nematic liquid crystals,” Liq. Cryst. 25, 487–494 (1998).
[CrossRef]

B. T. Hallam, F. Yang, and J. R. Sambles, “Quantification of the azimuthal anchoring of a homogeneously aligned nematic liquid crystal using fully-leaky guided modes,” Liq. Cryst. 26, 657–662 (1999).
[CrossRef]

Fuzi Yang and J. R. Sambles, “The optical tensor configuration in a surface stabilized ferroelectric liquid crystal determined by using half-leaky guided modes,” Liq. Cryst. 13, 1–11 (1993).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

E. Polossat and I. Dozov, “New optical method for the measurement of the azimuthal anchoring energy of nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 282, 223–233 (1996).
[CrossRef]

Phys. Rev. E (1)

A. Sugimura, G. R. Luckhurst, and Z. Ou-Yang, “Director deformation of a twisted chiral nematic liquid crystal cell with weak anchoring boundaries,” Phys. Rev. E 52, 681–689 (1995).
[CrossRef]

Other (1)

M. J. Bancroft, “Dynamic light scattering studies of some nematic liquid crystals,” Ph.D. dissertation (University of Manchester, Manchester, England, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Coordinate system of the TN cell for the numerical modeling.

Fig. 2
Fig. 2

(a) Twist-angle profile of a TN cell under high voltage; (b) tilt-angle profile of a TN cell under high voltage.

Fig. 3
Fig. 3

Reflectivity of RPS for a TN cell under high voltage.

Fig. 4
Fig. 4

Ex field distribution through a TN cell under a 4.0-V external field.

Fig. 5
Fig. 5

Polarization-conversion reflectivity RPS for a TN cell under high voltage over a small incident-angle range.

Fig. 6
Fig. 6

(a) Reflectivity data of RSS, RPP, RPS, and RSP for a twist-off situation; (b) reflectivity data of RSS for three different twist-off situations.

Fig. 7
Fig. 7

(a) Changes in RSS for a particular guided mode for three different twist-off situations with ϕ1 varying by ±0.5° near -90.0°. (b) Changes in RSS for a particular guided mode for three different twist-off situations with ϕ1 varying by ±0.5° near -50.0°.

Fig. 8
Fig. 8

Sample geometry in the experiment.

Fig. 9
Fig. 9

(a) Experimentally recorded reflectivity data of RPS for a TN cell under 4.0 V ac. (b) Six experimentally recorded RPS data for different twist-off angles of the director. (c) Six experimentally recorded RPS data for different twist-off angles of the director in the direction opposite that in Fig. 9(b).

Fig. 10
Fig. 10

Intensity of a special p-to-s-conversion mode versus the twist-off angle of the director from the incidence plane.

Fig. 11
Fig. 11

(a) Experimentally recorded data for RSS (crosses) and the theoretical fits (solid curve). (b) Experimentally recorded data for RPS (crosses) and the theoretical fits (solid curve).

Fig. 12
Fig. 12

Detail of the first mode in area III: experimentally recorded data for RSS (crosses) and the theoretical fit (solid curve).

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

FAnchoring=-0.5W(n·e)2
h(θ)(dϕ/dz)=WB sin θ sin θe sin(ϕ-ϕe),
h(θ)=(K22 sin2 θ+K33 cos2 θ)sin2 θ,
B=sin θ sin θe cos(ϕ-ϕe)+cos θ cos θe.
K22(dϕ/dz)=0.5Wsin 2(ϕ-ϕe)C,
C=sin2 θe/(1+α cos2 θ)+cos θcos θe sin θe/sin θ(1+α cos2 θ)cos(ϕ-ϕe),
α=(K33-K22)/K22.
K22(dϕ/dz)=0.5WT sin[2(ϕ-ϕe)].
rps=2(εH)1/2(sin θ cos ϕ cos β)(q cos θ+q sin θ sin ϕ)εΔε/D,
rsp=2(εH)1/2(sin θ cos ϕ cos β)(q cos θ-q sin θ sin ϕ)εΔε/D,
D=εH1/2(d1+d2)+cos β(d3+d4),
d1=ε cos2 β(L+mq),
d2=q(Lq-εq2+εp),
d3=εH(Lq-εq2+εε33),
d4=ε(Lq-mq2+εε),
L=[ε(ε33ε-mq2)]1/2,
ε33=ε+Δε cos2 θ=ε-Δε sin2 θ,
m=ε-Δε sin2 θ cos2 ϕ,
p=ε-Δε sin2 θ sin2 ϕ.
WT=2K22ϕt/{dLC sin[2(ϕ-ϕe)]},

Metrics