Abstract

We have studied the processes of photocoloration and discoloration in Mn:YAlO3 and relevant crystals. We show the following: (1) The coloration rate in Mn:YAlO3 does not depend on Mn concentration. (2) The effective recombination time of free electrons with Mn5+ ions and deep traps is of the order of 0.5 ms. (3) The rate of photocoloration increases with an increase in temperature. (4) The discoloration kinetics in Mn:YAlO3 are strongly nonexponential. At room temperature the effective discoloration time approximates 120 years. (5) At increased temperatures the discoloration kinetics accelerate dramatically. (6) We have grown and characterized Mn:GdAlO3 and Mn:YbAlO3 crystals. The activation energy in these crystals is much larger than that in Mn:YAlO3. This suggests the great potential of MnYbAlO3 and Mn:GdAlO3 in terms of permanent data storage.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, J. C. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
    [CrossRef]
  2. M. A. Noginov, N. Noginova, M. Curley, N. Kukhtarev, H. J. Caulfield, P. Venkateswarlu, and G. B. Loutts, “Optical characterization of Mn:YAlO3, a material for holographic recording and data storage,” J. Opt. Soc. Am. B 15, 1463–1468 (1998).
    [CrossRef]
  3. M. A. Noginov and G. B. Loutts, “Spectroscopic studies of Mn4+ ions in yttrium orthoaluminate,” J. Opt. Soc. Am. B 16, 3–11 (1999).
    [CrossRef]
  4. M. A. Noginov, G. B. Loutts, and M. Warren, “Spectroscopic studies of Mn3+ and Mn2+ ions in YAlO3,” J. Opt. Soc. Am. B 16, 475–483 (1999).
    [CrossRef]
  5. M. A. Noginov, G. B. Loutts, N. Noginova, S. Hurling, and S. Kück, “Spectroscopic characterization of photoinduced Mn5+ ions in YAlO3,” Phys. Rev. B 61, 1884–1891 (2000).
    [CrossRef]
  6. R. F. Belt, J. R. Latore, R. Uhrin, and J. Paxton, “EPR and optical study of Fe in Nd:YAlO3 crystals,” Appl. Phys. Lett. 25, 218–220 (1974).
    [CrossRef]
  7. J. Kvapil, J. Kvapil, J. Kubelka, and R. Autrata, “The role of iron ions in YAG and YAP,” Cryst. Res. Technol. 18, 127–131 (1983).
    [CrossRef]
  8. J. Kvapil, B. Perner, J. Kvapil, J. Kubelka, K. Hamal, and M. Koselja, “Spectral and laser properties of YAP:Nd grown in reducing atmosphere,” Czech. J. Phys. B36, 751–758 (1986).
    [CrossRef]
  9. G. B. Loutts and M. Warren, “Czochralski growth of defect-free yttrium orthoaluminate in iridium crucibles,” Eastern Regional Conference on Crystal Growth and Epitaxy, Atlantic City, NJ, 28 September–1 October, 1997.
  10. V. A. Akkerman, G. R. Bulka, D. I. Vainshtein, V. M. Vinokurov, V. V. Vinokurova, A. A. Galeev, V. M. Garmash, G. A. Ermakov, A. A. Markelov, N. M. Nizmutdinov, and N. M. Khasanova, “Thermally and optically stimulated charge transfer between impurity ions and intrinsic defects in YAlO3,” Sov. Phys. Solid State 31, 1773–1777 (1989).
  11. In Refs. 1234 the axes determination in Mn:YAlO3 was not correct. This should be corrected as follows: aold→cnew, bold→anew, cold→bnew. Here the subscripts “old” refer to the erroneous determination used in Refs. 1234, and the subscripts “new” refer to the correct axes determination done with the x-ray Laue method (Ref. 5). (The Laue measurements were done by H. P. Jenssen, Center for Research and Education in Optics and Lasers, University of Central Florida, Orlando, Fla.)
  12. I. A. Bondar, A. K. Shirvinskaya, V. F. Popova, I. V. Mochalov, and A. O. Ivanov, “Thermal stability of orthoaluminates of rare earth elements of the yttrium subgroup,” Sov. Phys. Dokl. 24, 289–292 (1979).
  13. P. D. Dernier and R. G. Maines, “High pressure synthesis and crystal data of the rare-earth orthoaluminates,” Mater. Res. Bull. 6, 433–440 (1971).
    [CrossRef]
  14. M. J. Weber, “Optical spectra of Ce3+ and Ce3+-sensitized fluorescence in YAlO3,” J. Appl. Phys. 44, 3205–3208 (1973).
    [CrossRef]
  15. M. J. Weber and T. E. Varitimos, “Optical spectra and relaxation of Cr3+ ions in YAlO3,” J. Appl. Phys. 45, 810–816 (1974).
    [CrossRef]
  16. P. W. Anderson, “Theory of flux creep in hard superconductors,” Phys. Rev. Lett. 9, 309–311 (1962).
    [CrossRef]
  17. K. H. Hoffman and P. Sibani, “Relaxation and aging in spin glasses and other complex systems,” Z. Phys. B 80, 429–438 (1990).
    [CrossRef]
  18. W. Götze and L. Sjögren, “Logarithmic decay laws in glassy systems,” J. Phys.: Condens. Matter 1, 4203–4222 (1989).

2000

M. A. Noginov, G. B. Loutts, N. Noginova, S. Hurling, and S. Kück, “Spectroscopic characterization of photoinduced Mn5+ ions in YAlO3,” Phys. Rev. B 61, 1884–1891 (2000).
[CrossRef]

1999

1998

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, J. C. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

M. A. Noginov, N. Noginova, M. Curley, N. Kukhtarev, H. J. Caulfield, P. Venkateswarlu, and G. B. Loutts, “Optical characterization of Mn:YAlO3, a material for holographic recording and data storage,” J. Opt. Soc. Am. B 15, 1463–1468 (1998).
[CrossRef]

1990

K. H. Hoffman and P. Sibani, “Relaxation and aging in spin glasses and other complex systems,” Z. Phys. B 80, 429–438 (1990).
[CrossRef]

1989

W. Götze and L. Sjögren, “Logarithmic decay laws in glassy systems,” J. Phys.: Condens. Matter 1, 4203–4222 (1989).

V. A. Akkerman, G. R. Bulka, D. I. Vainshtein, V. M. Vinokurov, V. V. Vinokurova, A. A. Galeev, V. M. Garmash, G. A. Ermakov, A. A. Markelov, N. M. Nizmutdinov, and N. M. Khasanova, “Thermally and optically stimulated charge transfer between impurity ions and intrinsic defects in YAlO3,” Sov. Phys. Solid State 31, 1773–1777 (1989).

1986

J. Kvapil, B. Perner, J. Kvapil, J. Kubelka, K. Hamal, and M. Koselja, “Spectral and laser properties of YAP:Nd grown in reducing atmosphere,” Czech. J. Phys. B36, 751–758 (1986).
[CrossRef]

1983

J. Kvapil, J. Kvapil, J. Kubelka, and R. Autrata, “The role of iron ions in YAG and YAP,” Cryst. Res. Technol. 18, 127–131 (1983).
[CrossRef]

1979

I. A. Bondar, A. K. Shirvinskaya, V. F. Popova, I. V. Mochalov, and A. O. Ivanov, “Thermal stability of orthoaluminates of rare earth elements of the yttrium subgroup,” Sov. Phys. Dokl. 24, 289–292 (1979).

1974

M. J. Weber and T. E. Varitimos, “Optical spectra and relaxation of Cr3+ ions in YAlO3,” J. Appl. Phys. 45, 810–816 (1974).
[CrossRef]

R. F. Belt, J. R. Latore, R. Uhrin, and J. Paxton, “EPR and optical study of Fe in Nd:YAlO3 crystals,” Appl. Phys. Lett. 25, 218–220 (1974).
[CrossRef]

1973

M. J. Weber, “Optical spectra of Ce3+ and Ce3+-sensitized fluorescence in YAlO3,” J. Appl. Phys. 44, 3205–3208 (1973).
[CrossRef]

1971

P. D. Dernier and R. G. Maines, “High pressure synthesis and crystal data of the rare-earth orthoaluminates,” Mater. Res. Bull. 6, 433–440 (1971).
[CrossRef]

1962

P. W. Anderson, “Theory of flux creep in hard superconductors,” Phys. Rev. Lett. 9, 309–311 (1962).
[CrossRef]

Akkerman, V. A.

V. A. Akkerman, G. R. Bulka, D. I. Vainshtein, V. M. Vinokurov, V. V. Vinokurova, A. A. Galeev, V. M. Garmash, G. A. Ermakov, A. A. Markelov, N. M. Nizmutdinov, and N. M. Khasanova, “Thermally and optically stimulated charge transfer between impurity ions and intrinsic defects in YAlO3,” Sov. Phys. Solid State 31, 1773–1777 (1989).

Anderson, P. W.

P. W. Anderson, “Theory of flux creep in hard superconductors,” Phys. Rev. Lett. 9, 309–311 (1962).
[CrossRef]

Autrata, R.

J. Kvapil, J. Kvapil, J. Kubelka, and R. Autrata, “The role of iron ions in YAG and YAP,” Cryst. Res. Technol. 18, 127–131 (1983).
[CrossRef]

Belt, R. F.

R. F. Belt, J. R. Latore, R. Uhrin, and J. Paxton, “EPR and optical study of Fe in Nd:YAlO3 crystals,” Appl. Phys. Lett. 25, 218–220 (1974).
[CrossRef]

Bondar, I. A.

I. A. Bondar, A. K. Shirvinskaya, V. F. Popova, I. V. Mochalov, and A. O. Ivanov, “Thermal stability of orthoaluminates of rare earth elements of the yttrium subgroup,” Sov. Phys. Dokl. 24, 289–292 (1979).

Bulka, G. R.

V. A. Akkerman, G. R. Bulka, D. I. Vainshtein, V. M. Vinokurov, V. V. Vinokurova, A. A. Galeev, V. M. Garmash, G. A. Ermakov, A. A. Markelov, N. M. Nizmutdinov, and N. M. Khasanova, “Thermally and optically stimulated charge transfer between impurity ions and intrinsic defects in YAlO3,” Sov. Phys. Solid State 31, 1773–1777 (1989).

Caulfield, H. J.

Caulfield, J. C.

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, J. C. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

Curley, M.

M. A. Noginov, N. Noginova, M. Curley, N. Kukhtarev, H. J. Caulfield, P. Venkateswarlu, and G. B. Loutts, “Optical characterization of Mn:YAlO3, a material for holographic recording and data storage,” J. Opt. Soc. Am. B 15, 1463–1468 (1998).
[CrossRef]

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, J. C. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

Dernier, P. D.

P. D. Dernier and R. G. Maines, “High pressure synthesis and crystal data of the rare-earth orthoaluminates,” Mater. Res. Bull. 6, 433–440 (1971).
[CrossRef]

Ermakov, G. A.

V. A. Akkerman, G. R. Bulka, D. I. Vainshtein, V. M. Vinokurov, V. V. Vinokurova, A. A. Galeev, V. M. Garmash, G. A. Ermakov, A. A. Markelov, N. M. Nizmutdinov, and N. M. Khasanova, “Thermally and optically stimulated charge transfer between impurity ions and intrinsic defects in YAlO3,” Sov. Phys. Solid State 31, 1773–1777 (1989).

Galeev, A. A.

V. A. Akkerman, G. R. Bulka, D. I. Vainshtein, V. M. Vinokurov, V. V. Vinokurova, A. A. Galeev, V. M. Garmash, G. A. Ermakov, A. A. Markelov, N. M. Nizmutdinov, and N. M. Khasanova, “Thermally and optically stimulated charge transfer between impurity ions and intrinsic defects in YAlO3,” Sov. Phys. Solid State 31, 1773–1777 (1989).

Garmash, V. M.

V. A. Akkerman, G. R. Bulka, D. I. Vainshtein, V. M. Vinokurov, V. V. Vinokurova, A. A. Galeev, V. M. Garmash, G. A. Ermakov, A. A. Markelov, N. M. Nizmutdinov, and N. M. Khasanova, “Thermally and optically stimulated charge transfer between impurity ions and intrinsic defects in YAlO3,” Sov. Phys. Solid State 31, 1773–1777 (1989).

Götze, W.

W. Götze and L. Sjögren, “Logarithmic decay laws in glassy systems,” J. Phys.: Condens. Matter 1, 4203–4222 (1989).

Hamal, K.

J. Kvapil, B. Perner, J. Kvapil, J. Kubelka, K. Hamal, and M. Koselja, “Spectral and laser properties of YAP:Nd grown in reducing atmosphere,” Czech. J. Phys. B36, 751–758 (1986).
[CrossRef]

Hoffman, K. H.

K. H. Hoffman and P. Sibani, “Relaxation and aging in spin glasses and other complex systems,” Z. Phys. B 80, 429–438 (1990).
[CrossRef]

Hurling, S.

M. A. Noginov, G. B. Loutts, N. Noginova, S. Hurling, and S. Kück, “Spectroscopic characterization of photoinduced Mn5+ ions in YAlO3,” Phys. Rev. B 61, 1884–1891 (2000).
[CrossRef]

Ivanov, A. O.

I. A. Bondar, A. K. Shirvinskaya, V. F. Popova, I. V. Mochalov, and A. O. Ivanov, “Thermal stability of orthoaluminates of rare earth elements of the yttrium subgroup,” Sov. Phys. Dokl. 24, 289–292 (1979).

Khasanova, N. M.

V. A. Akkerman, G. R. Bulka, D. I. Vainshtein, V. M. Vinokurov, V. V. Vinokurova, A. A. Galeev, V. M. Garmash, G. A. Ermakov, A. A. Markelov, N. M. Nizmutdinov, and N. M. Khasanova, “Thermally and optically stimulated charge transfer between impurity ions and intrinsic defects in YAlO3,” Sov. Phys. Solid State 31, 1773–1777 (1989).

Koselja, M.

J. Kvapil, B. Perner, J. Kvapil, J. Kubelka, K. Hamal, and M. Koselja, “Spectral and laser properties of YAP:Nd grown in reducing atmosphere,” Czech. J. Phys. B36, 751–758 (1986).
[CrossRef]

Kubelka, J.

J. Kvapil, B. Perner, J. Kvapil, J. Kubelka, K. Hamal, and M. Koselja, “Spectral and laser properties of YAP:Nd grown in reducing atmosphere,” Czech. J. Phys. B36, 751–758 (1986).
[CrossRef]

J. Kvapil, J. Kvapil, J. Kubelka, and R. Autrata, “The role of iron ions in YAG and YAP,” Cryst. Res. Technol. 18, 127–131 (1983).
[CrossRef]

Kück, S.

M. A. Noginov, G. B. Loutts, N. Noginova, S. Hurling, and S. Kück, “Spectroscopic characterization of photoinduced Mn5+ ions in YAlO3,” Phys. Rev. B 61, 1884–1891 (2000).
[CrossRef]

Kukhtarev, N.

M. A. Noginov, N. Noginova, M. Curley, N. Kukhtarev, H. J. Caulfield, P. Venkateswarlu, and G. B. Loutts, “Optical characterization of Mn:YAlO3, a material for holographic recording and data storage,” J. Opt. Soc. Am. B 15, 1463–1468 (1998).
[CrossRef]

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, J. C. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

Kvapil, J.

J. Kvapil, B. Perner, J. Kvapil, J. Kubelka, K. Hamal, and M. Koselja, “Spectral and laser properties of YAP:Nd grown in reducing atmosphere,” Czech. J. Phys. B36, 751–758 (1986).
[CrossRef]

J. Kvapil, B. Perner, J. Kvapil, J. Kubelka, K. Hamal, and M. Koselja, “Spectral and laser properties of YAP:Nd grown in reducing atmosphere,” Czech. J. Phys. B36, 751–758 (1986).
[CrossRef]

J. Kvapil, J. Kvapil, J. Kubelka, and R. Autrata, “The role of iron ions in YAG and YAP,” Cryst. Res. Technol. 18, 127–131 (1983).
[CrossRef]

J. Kvapil, J. Kvapil, J. Kubelka, and R. Autrata, “The role of iron ions in YAG and YAP,” Cryst. Res. Technol. 18, 127–131 (1983).
[CrossRef]

Latore, J. R.

R. F. Belt, J. R. Latore, R. Uhrin, and J. Paxton, “EPR and optical study of Fe in Nd:YAlO3 crystals,” Appl. Phys. Lett. 25, 218–220 (1974).
[CrossRef]

Loutts, G. B.

M. A. Noginov, G. B. Loutts, N. Noginova, S. Hurling, and S. Kück, “Spectroscopic characterization of photoinduced Mn5+ ions in YAlO3,” Phys. Rev. B 61, 1884–1891 (2000).
[CrossRef]

M. A. Noginov and G. B. Loutts, “Spectroscopic studies of Mn4+ ions in yttrium orthoaluminate,” J. Opt. Soc. Am. B 16, 3–11 (1999).
[CrossRef]

M. A. Noginov, G. B. Loutts, and M. Warren, “Spectroscopic studies of Mn3+ and Mn2+ ions in YAlO3,” J. Opt. Soc. Am. B 16, 475–483 (1999).
[CrossRef]

M. A. Noginov, N. Noginova, M. Curley, N. Kukhtarev, H. J. Caulfield, P. Venkateswarlu, and G. B. Loutts, “Optical characterization of Mn:YAlO3, a material for holographic recording and data storage,” J. Opt. Soc. Am. B 15, 1463–1468 (1998).
[CrossRef]

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, J. C. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

Maines, R. G.

P. D. Dernier and R. G. Maines, “High pressure synthesis and crystal data of the rare-earth orthoaluminates,” Mater. Res. Bull. 6, 433–440 (1971).
[CrossRef]

Markelov, A. A.

V. A. Akkerman, G. R. Bulka, D. I. Vainshtein, V. M. Vinokurov, V. V. Vinokurova, A. A. Galeev, V. M. Garmash, G. A. Ermakov, A. A. Markelov, N. M. Nizmutdinov, and N. M. Khasanova, “Thermally and optically stimulated charge transfer between impurity ions and intrinsic defects in YAlO3,” Sov. Phys. Solid State 31, 1773–1777 (1989).

Miller III, G.

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, J. C. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

Mochalov, I. V.

I. A. Bondar, A. K. Shirvinskaya, V. F. Popova, I. V. Mochalov, and A. O. Ivanov, “Thermal stability of orthoaluminates of rare earth elements of the yttrium subgroup,” Sov. Phys. Dokl. 24, 289–292 (1979).

Nizmutdinov, N. M.

V. A. Akkerman, G. R. Bulka, D. I. Vainshtein, V. M. Vinokurov, V. V. Vinokurova, A. A. Galeev, V. M. Garmash, G. A. Ermakov, A. A. Markelov, N. M. Nizmutdinov, and N. M. Khasanova, “Thermally and optically stimulated charge transfer between impurity ions and intrinsic defects in YAlO3,” Sov. Phys. Solid State 31, 1773–1777 (1989).

Noginov, M. A.

M. A. Noginov, G. B. Loutts, N. Noginova, S. Hurling, and S. Kück, “Spectroscopic characterization of photoinduced Mn5+ ions in YAlO3,” Phys. Rev. B 61, 1884–1891 (2000).
[CrossRef]

M. A. Noginov and G. B. Loutts, “Spectroscopic studies of Mn4+ ions in yttrium orthoaluminate,” J. Opt. Soc. Am. B 16, 3–11 (1999).
[CrossRef]

M. A. Noginov, G. B. Loutts, and M. Warren, “Spectroscopic studies of Mn3+ and Mn2+ ions in YAlO3,” J. Opt. Soc. Am. B 16, 475–483 (1999).
[CrossRef]

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, J. C. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

M. A. Noginov, N. Noginova, M. Curley, N. Kukhtarev, H. J. Caulfield, P. Venkateswarlu, and G. B. Loutts, “Optical characterization of Mn:YAlO3, a material for holographic recording and data storage,” J. Opt. Soc. Am. B 15, 1463–1468 (1998).
[CrossRef]

Noginova, N.

M. A. Noginov, G. B. Loutts, N. Noginova, S. Hurling, and S. Kück, “Spectroscopic characterization of photoinduced Mn5+ ions in YAlO3,” Phys. Rev. B 61, 1884–1891 (2000).
[CrossRef]

M. A. Noginov, N. Noginova, M. Curley, N. Kukhtarev, H. J. Caulfield, P. Venkateswarlu, and G. B. Loutts, “Optical characterization of Mn:YAlO3, a material for holographic recording and data storage,” J. Opt. Soc. Am. B 15, 1463–1468 (1998).
[CrossRef]

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, J. C. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

Paxton, J.

R. F. Belt, J. R. Latore, R. Uhrin, and J. Paxton, “EPR and optical study of Fe in Nd:YAlO3 crystals,” Appl. Phys. Lett. 25, 218–220 (1974).
[CrossRef]

Perner, B.

J. Kvapil, B. Perner, J. Kvapil, J. Kubelka, K. Hamal, and M. Koselja, “Spectral and laser properties of YAP:Nd grown in reducing atmosphere,” Czech. J. Phys. B36, 751–758 (1986).
[CrossRef]

Popova, V. F.

I. A. Bondar, A. K. Shirvinskaya, V. F. Popova, I. V. Mochalov, and A. O. Ivanov, “Thermal stability of orthoaluminates of rare earth elements of the yttrium subgroup,” Sov. Phys. Dokl. 24, 289–292 (1979).

Rakhimov, R. R.

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, J. C. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

Ries, H. R.

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, J. C. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

Shirvinskaya, A. K.

I. A. Bondar, A. K. Shirvinskaya, V. F. Popova, I. V. Mochalov, and A. O. Ivanov, “Thermal stability of orthoaluminates of rare earth elements of the yttrium subgroup,” Sov. Phys. Dokl. 24, 289–292 (1979).

Sibani, P.

K. H. Hoffman and P. Sibani, “Relaxation and aging in spin glasses and other complex systems,” Z. Phys. B 80, 429–438 (1990).
[CrossRef]

Sjögren, L.

W. Götze and L. Sjögren, “Logarithmic decay laws in glassy systems,” J. Phys.: Condens. Matter 1, 4203–4222 (1989).

Taylor, L.

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, J. C. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

Uhrin, R.

R. F. Belt, J. R. Latore, R. Uhrin, and J. Paxton, “EPR and optical study of Fe in Nd:YAlO3 crystals,” Appl. Phys. Lett. 25, 218–220 (1974).
[CrossRef]

Vainshtein, D. I.

V. A. Akkerman, G. R. Bulka, D. I. Vainshtein, V. M. Vinokurov, V. V. Vinokurova, A. A. Galeev, V. M. Garmash, G. A. Ermakov, A. A. Markelov, N. M. Nizmutdinov, and N. M. Khasanova, “Thermally and optically stimulated charge transfer between impurity ions and intrinsic defects in YAlO3,” Sov. Phys. Solid State 31, 1773–1777 (1989).

Varitimos, T. E.

M. J. Weber and T. E. Varitimos, “Optical spectra and relaxation of Cr3+ ions in YAlO3,” J. Appl. Phys. 45, 810–816 (1974).
[CrossRef]

Venkateswarlu, P.

M. A. Noginov, N. Noginova, M. Curley, N. Kukhtarev, H. J. Caulfield, P. Venkateswarlu, and G. B. Loutts, “Optical characterization of Mn:YAlO3, a material for holographic recording and data storage,” J. Opt. Soc. Am. B 15, 1463–1468 (1998).
[CrossRef]

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, J. C. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

Vinokurov, V. M.

V. A. Akkerman, G. R. Bulka, D. I. Vainshtein, V. M. Vinokurov, V. V. Vinokurova, A. A. Galeev, V. M. Garmash, G. A. Ermakov, A. A. Markelov, N. M. Nizmutdinov, and N. M. Khasanova, “Thermally and optically stimulated charge transfer between impurity ions and intrinsic defects in YAlO3,” Sov. Phys. Solid State 31, 1773–1777 (1989).

Vinokurova, V. V.

V. A. Akkerman, G. R. Bulka, D. I. Vainshtein, V. M. Vinokurov, V. V. Vinokurova, A. A. Galeev, V. M. Garmash, G. A. Ermakov, A. A. Markelov, N. M. Nizmutdinov, and N. M. Khasanova, “Thermally and optically stimulated charge transfer between impurity ions and intrinsic defects in YAlO3,” Sov. Phys. Solid State 31, 1773–1777 (1989).

Warren, M.

M. A. Noginov, G. B. Loutts, and M. Warren, “Spectroscopic studies of Mn3+ and Mn2+ ions in YAlO3,” J. Opt. Soc. Am. B 16, 475–483 (1999).
[CrossRef]

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, J. C. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

Weber, M. J.

M. J. Weber and T. E. Varitimos, “Optical spectra and relaxation of Cr3+ ions in YAlO3,” J. Appl. Phys. 45, 810–816 (1974).
[CrossRef]

M. J. Weber, “Optical spectra of Ce3+ and Ce3+-sensitized fluorescence in YAlO3,” J. Appl. Phys. 44, 3205–3208 (1973).
[CrossRef]

Appl. Phys. Lett.

R. F. Belt, J. R. Latore, R. Uhrin, and J. Paxton, “EPR and optical study of Fe in Nd:YAlO3 crystals,” Appl. Phys. Lett. 25, 218–220 (1974).
[CrossRef]

Cryst. Res. Technol.

J. Kvapil, J. Kvapil, J. Kubelka, and R. Autrata, “The role of iron ions in YAG and YAP,” Cryst. Res. Technol. 18, 127–131 (1983).
[CrossRef]

Czech. J. Phys.

J. Kvapil, B. Perner, J. Kvapil, J. Kubelka, K. Hamal, and M. Koselja, “Spectral and laser properties of YAP:Nd grown in reducing atmosphere,” Czech. J. Phys. B36, 751–758 (1986).
[CrossRef]

J. Appl. Phys.

M. J. Weber, “Optical spectra of Ce3+ and Ce3+-sensitized fluorescence in YAlO3,” J. Appl. Phys. 44, 3205–3208 (1973).
[CrossRef]

M. J. Weber and T. E. Varitimos, “Optical spectra and relaxation of Cr3+ ions in YAlO3,” J. Appl. Phys. 45, 810–816 (1974).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys.: Condens. Matter

W. Götze and L. Sjögren, “Logarithmic decay laws in glassy systems,” J. Phys.: Condens. Matter 1, 4203–4222 (1989).

Mater. Res. Bull.

P. D. Dernier and R. G. Maines, “High pressure synthesis and crystal data of the rare-earth orthoaluminates,” Mater. Res. Bull. 6, 433–440 (1971).
[CrossRef]

Phys. Rev. B

M. A. Noginov, G. B. Loutts, N. Noginova, S. Hurling, and S. Kück, “Spectroscopic characterization of photoinduced Mn5+ ions in YAlO3,” Phys. Rev. B 61, 1884–1891 (2000).
[CrossRef]

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, J. C. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

Phys. Rev. Lett.

P. W. Anderson, “Theory of flux creep in hard superconductors,” Phys. Rev. Lett. 9, 309–311 (1962).
[CrossRef]

Sov. Phys. Dokl.

I. A. Bondar, A. K. Shirvinskaya, V. F. Popova, I. V. Mochalov, and A. O. Ivanov, “Thermal stability of orthoaluminates of rare earth elements of the yttrium subgroup,” Sov. Phys. Dokl. 24, 289–292 (1979).

Sov. Phys. Solid State

V. A. Akkerman, G. R. Bulka, D. I. Vainshtein, V. M. Vinokurov, V. V. Vinokurova, A. A. Galeev, V. M. Garmash, G. A. Ermakov, A. A. Markelov, N. M. Nizmutdinov, and N. M. Khasanova, “Thermally and optically stimulated charge transfer between impurity ions and intrinsic defects in YAlO3,” Sov. Phys. Solid State 31, 1773–1777 (1989).

Z. Phys. B

K. H. Hoffman and P. Sibani, “Relaxation and aging in spin glasses and other complex systems,” Z. Phys. B 80, 429–438 (1990).
[CrossRef]

Other

In Refs. 1234 the axes determination in Mn:YAlO3 was not correct. This should be corrected as follows: aold→cnew, bold→anew, cold→bnew. Here the subscripts “old” refer to the erroneous determination used in Refs. 1234, and the subscripts “new” refer to the correct axes determination done with the x-ray Laue method (Ref. 5). (The Laue measurements were done by H. P. Jenssen, Center for Research and Education in Optics and Lasers, University of Central Florida, Orlando, Fla.)

G. B. Loutts and M. Warren, “Czochralski growth of defect-free yttrium orthoaluminate in iridium crucibles,” Eastern Regional Conference on Crystal Growth and Epitaxy, Atlantic City, NJ, 28 September–1 October, 1997.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Absorption spectra: curves 1, 2, Mn(0.5%):YAlO3; curves 3, 4, Mn(0.5%):GdAlO3; curves 5, 6, Mn(0.5%):YbAlO3. Curves 1, 3, and 5 are relevant to an unilluminated samples, and curves 2, 4, and 6 are relevant to photoexposed samples. The absorption at 950 nm is due to Yb3+ ions (curves 5, 6).

Fig. 2
Fig. 2

Photocoloration buildup rates [measured at 632.8 nm between levels kabs=0 and kabs=(1-e-1)kmaxabs] in YAlO3 crystals with different Mn concentrations. Room temperature. The pumping density at 488 nm is 10W/cm2.

Fig. 3
Fig. 3

Transient absorption kinetics (λprobe=632.8 nm) in Mn(0.5%):YAlO3 pumped with a Q-switched 532-nm laser pulse. Pulse energy is equal to 1, 0.45 mJ; 2, 0.8 mJ; 3, 2.8 mJ; 4, 5.5 mJ; 5, 8.5 mJ.

Fig. 4
Fig. 4

Schematic diagram of the two-photon ionization of Mn4+ ions with, a, a short light pulse and b, following recombination of the released electrons with traps and Mn ions.

Fig. 5
Fig. 5

Calculated transient absorption kinetics in Mn:YAlO3. The pumping energy is equal to 1, 0.1; 2, 0.3; 3, 0.6; 4, 1; 5, 1.5; 6, 2; and 7, 3 relative units.

Fig. 6
Fig. 6

Dynamics of the spatial distribution of electronic density around the Mn5+ ion that lost an electron in the process of photoionization. Different traces correspond to snapshots taken in different moments of time: 1, t=20t0; 2, t=40t0; 3, t=60t0, etc.; t0 is the time step of calculation and r0 is the radius of the inner circle: a, ΔE/kT=1; b, ΔE/kT=2, where ΔEZe2/r0.

Fig. 7
Fig. 7

Discoloration kinetics in Mn(0.5%):YAlO3: 1,2, room temperature; 3, 120 °C; 4, 200 °C; 5, 240 °C; 6, 260 °C; 7, 280 °C. Curve 1 corresponds to the maximum achievable photocoloration in Mn:YAlO3; curve 2 (which is scaled to fit curve 1) corresponds to twice weaker initial photocoloration intensity; curve 8, room-temperature discoloration kinetics in Ce(0.05%),Mn(0.5%):YAlO3; curve 9, room-temperature discoloration kinetics in Mn(0.5%):YbAlO3.

Fig. 8
Fig. 8

Room-temperature discoloration kinetics in Mn:YAlO3 (curve 1 in Fig. 7) plotted versus log(time).

Fig. 9
Fig. 9

Dependence of the effective discoloration time on temperature in ⋄, Mn(0.5%):YAlO3; △, Mn(0.5%):Ce(0.05%):YAlO3; □, Mn(0.5%):YbAlO3; ○, Mn(0.5%):GdAlO3. The estimated activation energies (of deep traps) are given in the text.

Fig. 10
Fig. 10

Different model assumptions used at calculation of discoloration kinetics: a, An electron can recombine only with that Mn ion which released it in the process of photoionization. Other Mn ions are very far away and their presence is neglected. b, c, An electron can reach many surrounding Mn5+ ions and recombine with them.

Fig. 11
Fig. 11

Calculated discoloration kinetics in Mn:YAlO3 plotted versus, a, time, and, b, log(time). Curves 1, 2, and 3 are explained in the text.

Fig. 12
Fig. 12

Dependence of Mn5+ absorption (concentration) on temperature in the experiment where the temperature of the sample was increased linearly from 25 °C to 400 °C within 1 h: 1, Mn(0.5%):YAlO3; 2, Mn(0.5%),Ce(0.05%):YAlO3; 3, Cr(0.002%),Ce(0.02%):YAlO3.

Fig. 13
Fig. 13

Dependence of Mn5+ absorption (concentration) on temperature in the experiment where the temperature of the sample increased linearly from 25 to 400 °C within 1 h: 1, Mn(0.5%):GdAlO3; 2, Mn(0.5%):YAlO3; 3, Mn(0.5%):YbAlO3.

Tables (1)

Tables Icon

Table 1 Dopant Concentrations and Lattice Parameters in Orthoaluminate Crystals

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

M(t)1-exp(t/τ),
dN1dt=+F(t)σ01N0-F(t)σ12N1,
dndt=F(t)σ12N1,
Ntot=N0+N1+n,
dndt=-n/τn,
dN1dt=ηn/τn-N1/τ1,
dTdt=(1-η)n/τn,
M=n+T,
kprobeabs=σprobeMn5+M+σprobeMn4+N1,
Wexp-ΔEkT
Wexp-[ΔE+e2(ri-1-ri+1-1)]kT
Wexp-[ΔE+e2(ri-1-ri-1-1)]kT.
τ(T)A[exp(-ΔE/kT)]-1,

Metrics