Abstract

An efficient continuous-wave Cr2+-doped ZnSe laser pumped by a Co:MgF2 laser is experimentally demonstrated. In a single-pass pump scheme we observed up to 520 mW at ∼2500 nm in 0.4-nm narrow-band operation, with 52% incident-power slope efficiency, and a tuning range between 2180 and 2800 nm. In the multipass pump scheme we also observed and analyzed the effect of dual Q-switching laser action at 1.75 and 2.5 µm in the Co:MgF2Cr:ZnSe coupled-cavity oscillator. Finally, we report the measurement of the passive losses and of the ground-state absorption at the lasing wavelength.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Page, L. D. DeLoach, K. I. Schaffers, F. D. Patel, R. J. Beach, S. A. Payne, W. F. Krupke, and A. Burger, “Recent developments in Cr2+-doped II–VI compound laser,” in Advanced Solid-State Lasers, S. A. Payne and C. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 130–136.
  2. L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
    [CrossRef]
  3. R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–619 (1997).
    [CrossRef]
  4. R. H. Page, J. A. Skidmore, K. I. Schaffers, R. J. Beach, S. A. Payne, and W. F. Krupke, “Demonstration of diode-pumped and grating tuned ZnSe:Cr2+ lasers,” in Advanced Solid State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 208–210.
  5. U. Hömmerich, X. Wu, V. R. Davis, S. B. Trivedi, K. Grasza, R. J. Chen, and S. Kutcher, “Demonstration of room-temperature laser action at 2.5 μm from Cr2+:Cd0.85Mn0.15Te,” Opt. Lett. 22, 1180–1182 (1997).
    [CrossRef]
  6. K. L. Schepler, S. Kück, and L. Shiozawa, “Cr2+ emission spectroscopy in CdSe,” J. Lumin. 72–74, 116–117 (1997).
    [CrossRef]
  7. J. McKay, K. L. Schepler, and G. C. Catella, “Efficient grating tuned mid-infrared Cr2+:CdSe laser,” Opt. Lett. 24, 1575–1577 (1999).
    [CrossRef]
  8. J. T. Seo, U. Hömmerich, S. B. Trivedi, R. J. Chen, and S. Kutcher, “Slope efficiency and tunability of a Cr2+:Cd0.85Mn0.15.Te mid-infrared laser,” Opt. Commun. 153, 267–270 (1998).
    [CrossRef]
  9. U. Hömmerich, M. Turner, A. Bluiett, J. T. Seo, H. Zong, S. B. Trivedi, S. W. Kutcher, C. C. Wang, R. J. Chen, P. R. Boyd, and W. Tardiff, “Mid-infrared luminescence properties of Cr2+ and Co2+ doped CdTe and cadmium manganese telluride,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1999), p. 421.
  10. G. J. Wagner, T. J. Carrig, R. H. Page, K. I. Schaffers, J. Ndap, X. Ma, and A. Burger, “Continuous-wave broadly tunable Cr2+:ZnSe laser,” Opt. Lett. 24, 19–21 (1999).
    [CrossRef]
  11. G. J. Wagner, T. J. Carrig, R. H. Page, K. I. Schaffers, J. Ndap, X. Ma, and A. Burger, “High-efficiency, broadly tunable continuous-wave Cr2+:ZnSe laser,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 427–434.
  12. T. J. Carrig, G. J. Wagner, A. Sennaroglu, J. Y. Jeong, and C. R. Pollock, “Mode-locked Cr2+:ZnSe laser,” Opt. Lett. 25, 168–170 (2000).
    [CrossRef]
  13. E. Sorokin, I. T. Sorokina, and R. H. Page, “Room-temperature CW diode-pumped Cr2+:ZnSe laser,” in Advanced Solid-State Lasers, OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper MB11.
  14. A. V. Podlipensky, V. G. Shcherbitsky, N. V. Kuleshov, V. I. Levchenko, V. N. Yakimovich, A. Diening, M. Mond, E. Heumann, S. Kück, and G. Huber, “1 W continuous-wave laser generation and excited state absorption measurements in Cr2+:ZnSe,” in Advanced Solid State Lasers, H. Injeyan, U. Keller, and Ch. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 201–206.
  15. P. F. Moulton, “An investigation of the Co:MgF2 laser system,” IEEE J. Quantum Electron. 21, 1582–1595 (1985).
    [CrossRef]
  16. D. Findlay and R. A. Clay, “Measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 277–278 (1966).
    [CrossRef]
  17. J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
    [CrossRef]
  18. T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 24, 895–912 (1988).
    [CrossRef]
  19. B. Nygren, J. T. Vallin, and G. A. Slack, “Direct observation of the Jahn–Teller splitting in ZnSe:Cr2+,” Solid State Commun. 11, 35–38 (1972).
    [CrossRef]
  20. M. Kaminska, J. M. Baranowski, S. M. Uba, and J. T. Vallin, “Absorption and luminescence of Cr2+(d4) in II-VI compounds,” J. Phys. C 12, 2197–2214 (1979).
    [CrossRef]
  21. E. Sorokin and I. T. Sorokina, “Coupled-cavity passive Q-switching,” in Conference on Lasers and ElectroOptics/Europe (IEEE, New York, 2000), p. 359.

2000 (1)

1999 (2)

1998 (1)

J. T. Seo, U. Hömmerich, S. B. Trivedi, R. J. Chen, and S. Kutcher, “Slope efficiency and tunability of a Cr2+:Cd0.85Mn0.15.Te mid-infrared laser,” Opt. Commun. 153, 267–270 (1998).
[CrossRef]

1997 (3)

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–619 (1997).
[CrossRef]

U. Hömmerich, X. Wu, V. R. Davis, S. B. Trivedi, K. Grasza, R. J. Chen, and S. Kutcher, “Demonstration of room-temperature laser action at 2.5 μm from Cr2+:Cd0.85Mn0.15Te,” Opt. Lett. 22, 1180–1182 (1997).
[CrossRef]

K. L. Schepler, S. Kück, and L. Shiozawa, “Cr2+ emission spectroscopy in CdSe,” J. Lumin. 72–74, 116–117 (1997).
[CrossRef]

1996 (1)

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[CrossRef]

1988 (2)

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[CrossRef]

T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 24, 895–912 (1988).
[CrossRef]

1985 (1)

P. F. Moulton, “An investigation of the Co:MgF2 laser system,” IEEE J. Quantum Electron. 21, 1582–1595 (1985).
[CrossRef]

1979 (1)

M. Kaminska, J. M. Baranowski, S. M. Uba, and J. T. Vallin, “Absorption and luminescence of Cr2+(d4) in II-VI compounds,” J. Phys. C 12, 2197–2214 (1979).
[CrossRef]

1972 (1)

B. Nygren, J. T. Vallin, and G. A. Slack, “Direct observation of the Jahn–Teller splitting in ZnSe:Cr2+,” Solid State Commun. 11, 35–38 (1972).
[CrossRef]

1966 (1)

D. Findlay and R. A. Clay, “Measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 277–278 (1966).
[CrossRef]

Baranowski, J. M.

M. Kaminska, J. M. Baranowski, S. M. Uba, and J. T. Vallin, “Absorption and luminescence of Cr2+(d4) in II-VI compounds,” J. Phys. C 12, 2197–2214 (1979).
[CrossRef]

Burger, A.

G. J. Wagner, T. J. Carrig, R. H. Page, K. I. Schaffers, J. Ndap, X. Ma, and A. Burger, “Continuous-wave broadly tunable Cr2+:ZnSe laser,” Opt. Lett. 24, 19–21 (1999).
[CrossRef]

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–619 (1997).
[CrossRef]

Byer, R. L.

T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 24, 895–912 (1988).
[CrossRef]

Caird, J. A.

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[CrossRef]

Carrig, T. J.

Catella, G. C.

Chase, L. L.

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[CrossRef]

Chen, K.-T.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–619 (1997).
[CrossRef]

Chen, R. J.

J. T. Seo, U. Hömmerich, S. B. Trivedi, R. J. Chen, and S. Kutcher, “Slope efficiency and tunability of a Cr2+:Cd0.85Mn0.15.Te mid-infrared laser,” Opt. Commun. 153, 267–270 (1998).
[CrossRef]

U. Hömmerich, X. Wu, V. R. Davis, S. B. Trivedi, K. Grasza, R. J. Chen, and S. Kutcher, “Demonstration of room-temperature laser action at 2.5 μm from Cr2+:Cd0.85Mn0.15Te,” Opt. Lett. 22, 1180–1182 (1997).
[CrossRef]

Clay, R. A.

D. Findlay and R. A. Clay, “Measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 277–278 (1966).
[CrossRef]

Davis, V. R.

DeLoach, L. D.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–619 (1997).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[CrossRef]

Fan, T. Y.

T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 24, 895–912 (1988).
[CrossRef]

Findlay, D.

D. Findlay and R. A. Clay, “Measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 277–278 (1966).
[CrossRef]

Grasza, K.

Hömmerich, U.

J. T. Seo, U. Hömmerich, S. B. Trivedi, R. J. Chen, and S. Kutcher, “Slope efficiency and tunability of a Cr2+:Cd0.85Mn0.15.Te mid-infrared laser,” Opt. Commun. 153, 267–270 (1998).
[CrossRef]

U. Hömmerich, X. Wu, V. R. Davis, S. B. Trivedi, K. Grasza, R. J. Chen, and S. Kutcher, “Demonstration of room-temperature laser action at 2.5 μm from Cr2+:Cd0.85Mn0.15Te,” Opt. Lett. 22, 1180–1182 (1997).
[CrossRef]

Jeong, J. Y.

Kaminska, M.

M. Kaminska, J. M. Baranowski, S. M. Uba, and J. T. Vallin, “Absorption and luminescence of Cr2+(d4) in II-VI compounds,” J. Phys. C 12, 2197–2214 (1979).
[CrossRef]

Krupke, W. F.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–619 (1997).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[CrossRef]

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[CrossRef]

Kück, S.

K. L. Schepler, S. Kück, and L. Shiozawa, “Cr2+ emission spectroscopy in CdSe,” J. Lumin. 72–74, 116–117 (1997).
[CrossRef]

Kutcher, S.

J. T. Seo, U. Hömmerich, S. B. Trivedi, R. J. Chen, and S. Kutcher, “Slope efficiency and tunability of a Cr2+:Cd0.85Mn0.15.Te mid-infrared laser,” Opt. Commun. 153, 267–270 (1998).
[CrossRef]

U. Hömmerich, X. Wu, V. R. Davis, S. B. Trivedi, K. Grasza, R. J. Chen, and S. Kutcher, “Demonstration of room-temperature laser action at 2.5 μm from Cr2+:Cd0.85Mn0.15Te,” Opt. Lett. 22, 1180–1182 (1997).
[CrossRef]

Ma, X.

McKay, J.

Moulton, P. F.

P. F. Moulton, “An investigation of the Co:MgF2 laser system,” IEEE J. Quantum Electron. 21, 1582–1595 (1985).
[CrossRef]

Ndap, J.

Nygren, B.

B. Nygren, J. T. Vallin, and G. A. Slack, “Direct observation of the Jahn–Teller splitting in ZnSe:Cr2+,” Solid State Commun. 11, 35–38 (1972).
[CrossRef]

Page, R. H.

G. J. Wagner, T. J. Carrig, R. H. Page, K. I. Schaffers, J. Ndap, X. Ma, and A. Burger, “Continuous-wave broadly tunable Cr2+:ZnSe laser,” Opt. Lett. 24, 19–21 (1999).
[CrossRef]

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–619 (1997).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[CrossRef]

Patel, F. D.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–619 (1997).
[CrossRef]

Payne, S. A.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–619 (1997).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[CrossRef]

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[CrossRef]

Pollock, C. R.

Ramponi, A. J.

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[CrossRef]

Schaffers, K. I.

G. J. Wagner, T. J. Carrig, R. H. Page, K. I. Schaffers, J. Ndap, X. Ma, and A. Burger, “Continuous-wave broadly tunable Cr2+:ZnSe laser,” Opt. Lett. 24, 19–21 (1999).
[CrossRef]

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–619 (1997).
[CrossRef]

Schepler, K. L.

J. McKay, K. L. Schepler, and G. C. Catella, “Efficient grating tuned mid-infrared Cr2+:CdSe laser,” Opt. Lett. 24, 1575–1577 (1999).
[CrossRef]

K. L. Schepler, S. Kück, and L. Shiozawa, “Cr2+ emission spectroscopy in CdSe,” J. Lumin. 72–74, 116–117 (1997).
[CrossRef]

Sennaroglu, A.

Seo, J. T.

J. T. Seo, U. Hömmerich, S. B. Trivedi, R. J. Chen, and S. Kutcher, “Slope efficiency and tunability of a Cr2+:Cd0.85Mn0.15.Te mid-infrared laser,” Opt. Commun. 153, 267–270 (1998).
[CrossRef]

Shiozawa, L.

K. L. Schepler, S. Kück, and L. Shiozawa, “Cr2+ emission spectroscopy in CdSe,” J. Lumin. 72–74, 116–117 (1997).
[CrossRef]

Slack, G. A.

B. Nygren, J. T. Vallin, and G. A. Slack, “Direct observation of the Jahn–Teller splitting in ZnSe:Cr2+,” Solid State Commun. 11, 35–38 (1972).
[CrossRef]

Staver, P. R.

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[CrossRef]

Tassano, J. B.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–619 (1997).
[CrossRef]

Trivedi, S. B.

J. T. Seo, U. Hömmerich, S. B. Trivedi, R. J. Chen, and S. Kutcher, “Slope efficiency and tunability of a Cr2+:Cd0.85Mn0.15.Te mid-infrared laser,” Opt. Commun. 153, 267–270 (1998).
[CrossRef]

U. Hömmerich, X. Wu, V. R. Davis, S. B. Trivedi, K. Grasza, R. J. Chen, and S. Kutcher, “Demonstration of room-temperature laser action at 2.5 μm from Cr2+:Cd0.85Mn0.15Te,” Opt. Lett. 22, 1180–1182 (1997).
[CrossRef]

Uba, S. M.

M. Kaminska, J. M. Baranowski, S. M. Uba, and J. T. Vallin, “Absorption and luminescence of Cr2+(d4) in II-VI compounds,” J. Phys. C 12, 2197–2214 (1979).
[CrossRef]

Vallin, J. T.

M. Kaminska, J. M. Baranowski, S. M. Uba, and J. T. Vallin, “Absorption and luminescence of Cr2+(d4) in II-VI compounds,” J. Phys. C 12, 2197–2214 (1979).
[CrossRef]

B. Nygren, J. T. Vallin, and G. A. Slack, “Direct observation of the Jahn–Teller splitting in ZnSe:Cr2+,” Solid State Commun. 11, 35–38 (1972).
[CrossRef]

Wagner, G. J.

Wilke, G. D.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–619 (1997).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[CrossRef]

Wu, X.

IEEE J. Quantum Electron. (5)

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[CrossRef]

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–619 (1997).
[CrossRef]

P. F. Moulton, “An investigation of the Co:MgF2 laser system,” IEEE J. Quantum Electron. 21, 1582–1595 (1985).
[CrossRef]

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[CrossRef]

T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 24, 895–912 (1988).
[CrossRef]

J. Lumin. (1)

K. L. Schepler, S. Kück, and L. Shiozawa, “Cr2+ emission spectroscopy in CdSe,” J. Lumin. 72–74, 116–117 (1997).
[CrossRef]

J. Phys. C (1)

M. Kaminska, J. M. Baranowski, S. M. Uba, and J. T. Vallin, “Absorption and luminescence of Cr2+(d4) in II-VI compounds,” J. Phys. C 12, 2197–2214 (1979).
[CrossRef]

Opt. Commun. (1)

J. T. Seo, U. Hömmerich, S. B. Trivedi, R. J. Chen, and S. Kutcher, “Slope efficiency and tunability of a Cr2+:Cd0.85Mn0.15.Te mid-infrared laser,” Opt. Commun. 153, 267–270 (1998).
[CrossRef]

Opt. Lett. (4)

Phys. Lett. (1)

D. Findlay and R. A. Clay, “Measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 277–278 (1966).
[CrossRef]

Solid State Commun. (1)

B. Nygren, J. T. Vallin, and G. A. Slack, “Direct observation of the Jahn–Teller splitting in ZnSe:Cr2+,” Solid State Commun. 11, 35–38 (1972).
[CrossRef]

Other (7)

E. Sorokin and I. T. Sorokina, “Coupled-cavity passive Q-switching,” in Conference on Lasers and ElectroOptics/Europe (IEEE, New York, 2000), p. 359.

G. J. Wagner, T. J. Carrig, R. H. Page, K. I. Schaffers, J. Ndap, X. Ma, and A. Burger, “High-efficiency, broadly tunable continuous-wave Cr2+:ZnSe laser,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 427–434.

R. H. Page, J. A. Skidmore, K. I. Schaffers, R. J. Beach, S. A. Payne, and W. F. Krupke, “Demonstration of diode-pumped and grating tuned ZnSe:Cr2+ lasers,” in Advanced Solid State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 208–210.

U. Hömmerich, M. Turner, A. Bluiett, J. T. Seo, H. Zong, S. B. Trivedi, S. W. Kutcher, C. C. Wang, R. J. Chen, P. R. Boyd, and W. Tardiff, “Mid-infrared luminescence properties of Cr2+ and Co2+ doped CdTe and cadmium manganese telluride,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1999), p. 421.

E. Sorokin, I. T. Sorokina, and R. H. Page, “Room-temperature CW diode-pumped Cr2+:ZnSe laser,” in Advanced Solid-State Lasers, OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper MB11.

A. V. Podlipensky, V. G. Shcherbitsky, N. V. Kuleshov, V. I. Levchenko, V. N. Yakimovich, A. Diening, M. Mond, E. Heumann, S. Kück, and G. Huber, “1 W continuous-wave laser generation and excited state absorption measurements in Cr2+:ZnSe,” in Advanced Solid State Lasers, H. Injeyan, U. Keller, and Ch. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 201–206.

R. H. Page, L. D. DeLoach, K. I. Schaffers, F. D. Patel, R. J. Beach, S. A. Payne, W. F. Krupke, and A. Burger, “Recent developments in Cr2+-doped II–VI compound laser,” in Advanced Solid-State Lasers, S. A. Payne and C. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 130–136.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the experimental setup. The pump at 1.75 µm and the output radiation are polarized in the plane of the figure. L, birefringent filter; A, two-plate variable attenuator; F, uncoated 50-mm focusing lens.

Fig. 2
Fig. 2

Cr2+:ZnSe laser output power versus pump power with different output couplers (OC). In the parentheses the slope efficiency versus the absorbed power is given. Curvature in the threshold region is due to GSA bleaching.16

Fig. 3
Fig. 3

Cr2+:ZnSe passive intracavity-loss determination by two methods: (a) Findlay–Clay plot and (b) the method of inverse slope efficiencies. In both cases the logarithmic round-trip loss value is given by the intersection of the linear fit with the abscissa. The discrepancy is due to the GSA.

Fig. 4
Fig. 4

Absorption spectra of the polycrystalline (curve 2) and single-crystal Cr:ZnSe samples (curve 1). Curves 3 and 4 are the 15× magnifications of curves 1 and 2, respectively. The fine structure in the 3500–4000-cm-1 region is due to atmospheric H2O. The sharp structure at 1600 cm-1 and 2900 cm-1 is likely due to bending and stretching vibrations of OH bonds in the crystals.

Fig. 5
Fig. 5

Tuning range of the laser measured with a 0.8-mm Lyot filter (open circles). Also shown is transmission of the output coupler (OC), the high reflector (HR, five reflections), and 2.2 m of air at ∼70% humidity (Air). Attenuation from intracavity air induces dips in the output power at certain wavelengths.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Pth=Pth01+-ln(1-TOC)2δ+2α(λ0)l,
IsatpumpSpumpIsatSTOCTA>1+-ln(TA)+γα0lPIsatS+12,

Metrics