Abstract

An efficient continuous-wave Cr2+-doped ZnSe laser pumped by a Co:MgF2 laser is experimentally demonstrated. In a single-pass pump scheme we observed up to 520 mW at ∼2500 nm in 0.4-nm narrow-band operation, with 52% incident-power slope efficiency, and a tuning range between 2180 and 2800 nm. In the multipass pump scheme we also observed and analyzed the effect of dual Q-switching laser action at 1.75 and 2.5 µm in the Co:MgF2Cr:ZnSe coupled-cavity oscillator. Finally, we report the measurement of the passive losses and of the ground-state absorption at the lasing wavelength.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription