Abstract

We describe the concept for a passive device that equalizes the power of a multiwavelength optical signal without spectrally dispersing the signal. The proposed device consists of a Fabry–Perot cavity with a photorefractive medium. It is scalable in the number of wavelengths, adapts to time variations in the optical power, and does not require an external power reference, so it is well suited for equalizing the output of erbium-doped fiber amplifiers in reconfigurable, multiwavelength, optical networks. We give an analysis of the device’s operation and of network behavior.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. Giles and D. I. DeGionvanni, “Dynamic gain equalization in two-stage fiber amplifiers,” IEEE Photonics Technol. Lett. 2, 866–868 (1990).
    [CrossRef]
  2. M. Tachibana, R. I. Laming, P. R. Morkel, and D. N. Payne, “Erbium-doped fiber amplifier with flattened gain spectrum,” IEEE Photonics Technol. Lett. 3, 118–120 (1991).
    [CrossRef]
  3. A. E. Willner and S.-M. Hwang, “Transmission of many WDM channels through a cascade of EDFA’s in long distance links and ring networks,” J. Lightwave Technol. 5, 802–816 (1995).
    [CrossRef]
  4. G. K. Chang, G. Ellinas, J. K. Gamelin, M. Z. Iqbal, and C. A. Brackett, “Multiwavelength reconfigurable WDM/ATM/SONET network testbed,” J. Lightwave Technol. 14, 1320–1340 (1996).
    [CrossRef]
  5. R. E. Wagner, R. C. Alferness, A. A. M. Saleh, and M. S. Goodman, “MONET: multiwavelength optical networking,” J. Lightwave Technol. 14, 1349–1355 (1996).
    [CrossRef]
  6. L. Eskildsen, E. Goldstein, V. da Silva, M. Andrejco, and Y. Silberberg, “Optical power equalization for multiwavelength fiber-amplifier cascades using periodic inhomogeneous broadening,” IEEE Photonics Technol. Lett. 5, 1188–1190 (1993).
    [CrossRef]
  7. K. Inoue, T. Kominato, and H. Toba, “Tunable gain equalization using a Mach–Zehnder optical filter in multistage fiber amplifiers,” IEEE Photonics Technol. Lett. 3, 718–720 (1991).
    [CrossRef]
  8. F. Su, R. Olshansky, G. Joyce, D. A. Smith, and J. E. Baran, “Gain equalization in multiwavelength lightwave systems using acoustooptic tunable filters,” IEEE Photonics Technol. Lett. 4, 269–271 (1992).
    [CrossRef]
  9. F. Khaleghi, M. Kavehrad, and C. Barnard, “Tunable coherent optical transversal EDFA gain equalization,” J. Lightwave Technol. 13, 581–587 (1995).
    [CrossRef]
  10. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).
  11. W. A. Schroeder, T. S. Stark, M. D. Dawson, T. F. Boggess, and A. L. Smirl, “Picosecond separation and measurement of coexisting photorefractive, bound-electronic, and free-carrier grating dynamics in GaAs,” Opt. Lett. 16, 159–161 (1991).
    [PubMed]
  12. P. Yeh, “Contra-directional two-wave mixing in photorefractive media,” Opt. Commun. 45, 323–326 (1983).
    [CrossRef]
  13. W. Chen and D. L. Mills, “Optical response of a nonlinear dielectric film,” Phys. Rev. B 35, 524–532 (1987).
    [CrossRef]
  14. W. K. Chan and D. R. Andersen, “Analysis of a photorefractive Fabry–Perot etalon with strong coupling,” J. Appl. Phys. (to be published).

1996 (2)

G. K. Chang, G. Ellinas, J. K. Gamelin, M. Z. Iqbal, and C. A. Brackett, “Multiwavelength reconfigurable WDM/ATM/SONET network testbed,” J. Lightwave Technol. 14, 1320–1340 (1996).
[CrossRef]

R. E. Wagner, R. C. Alferness, A. A. M. Saleh, and M. S. Goodman, “MONET: multiwavelength optical networking,” J. Lightwave Technol. 14, 1349–1355 (1996).
[CrossRef]

1995 (2)

A. E. Willner and S.-M. Hwang, “Transmission of many WDM channels through a cascade of EDFA’s in long distance links and ring networks,” J. Lightwave Technol. 5, 802–816 (1995).
[CrossRef]

F. Khaleghi, M. Kavehrad, and C. Barnard, “Tunable coherent optical transversal EDFA gain equalization,” J. Lightwave Technol. 13, 581–587 (1995).
[CrossRef]

1993 (1)

L. Eskildsen, E. Goldstein, V. da Silva, M. Andrejco, and Y. Silberberg, “Optical power equalization for multiwavelength fiber-amplifier cascades using periodic inhomogeneous broadening,” IEEE Photonics Technol. Lett. 5, 1188–1190 (1993).
[CrossRef]

1992 (1)

F. Su, R. Olshansky, G. Joyce, D. A. Smith, and J. E. Baran, “Gain equalization in multiwavelength lightwave systems using acoustooptic tunable filters,” IEEE Photonics Technol. Lett. 4, 269–271 (1992).
[CrossRef]

1991 (3)

M. Tachibana, R. I. Laming, P. R. Morkel, and D. N. Payne, “Erbium-doped fiber amplifier with flattened gain spectrum,” IEEE Photonics Technol. Lett. 3, 118–120 (1991).
[CrossRef]

K. Inoue, T. Kominato, and H. Toba, “Tunable gain equalization using a Mach–Zehnder optical filter in multistage fiber amplifiers,” IEEE Photonics Technol. Lett. 3, 718–720 (1991).
[CrossRef]

W. A. Schroeder, T. S. Stark, M. D. Dawson, T. F. Boggess, and A. L. Smirl, “Picosecond separation and measurement of coexisting photorefractive, bound-electronic, and free-carrier grating dynamics in GaAs,” Opt. Lett. 16, 159–161 (1991).
[PubMed]

1990 (1)

C. R. Giles and D. I. DeGionvanni, “Dynamic gain equalization in two-stage fiber amplifiers,” IEEE Photonics Technol. Lett. 2, 866–868 (1990).
[CrossRef]

1987 (1)

W. Chen and D. L. Mills, “Optical response of a nonlinear dielectric film,” Phys. Rev. B 35, 524–532 (1987).
[CrossRef]

1983 (1)

P. Yeh, “Contra-directional two-wave mixing in photorefractive media,” Opt. Commun. 45, 323–326 (1983).
[CrossRef]

Alferness, R. C.

R. E. Wagner, R. C. Alferness, A. A. M. Saleh, and M. S. Goodman, “MONET: multiwavelength optical networking,” J. Lightwave Technol. 14, 1349–1355 (1996).
[CrossRef]

Andrejco, M.

L. Eskildsen, E. Goldstein, V. da Silva, M. Andrejco, and Y. Silberberg, “Optical power equalization for multiwavelength fiber-amplifier cascades using periodic inhomogeneous broadening,” IEEE Photonics Technol. Lett. 5, 1188–1190 (1993).
[CrossRef]

Baran, J. E.

F. Su, R. Olshansky, G. Joyce, D. A. Smith, and J. E. Baran, “Gain equalization in multiwavelength lightwave systems using acoustooptic tunable filters,” IEEE Photonics Technol. Lett. 4, 269–271 (1992).
[CrossRef]

Barnard, C.

F. Khaleghi, M. Kavehrad, and C. Barnard, “Tunable coherent optical transversal EDFA gain equalization,” J. Lightwave Technol. 13, 581–587 (1995).
[CrossRef]

Boggess, T. F.

Brackett, C. A.

G. K. Chang, G. Ellinas, J. K. Gamelin, M. Z. Iqbal, and C. A. Brackett, “Multiwavelength reconfigurable WDM/ATM/SONET network testbed,” J. Lightwave Technol. 14, 1320–1340 (1996).
[CrossRef]

Chang, G. K.

G. K. Chang, G. Ellinas, J. K. Gamelin, M. Z. Iqbal, and C. A. Brackett, “Multiwavelength reconfigurable WDM/ATM/SONET network testbed,” J. Lightwave Technol. 14, 1320–1340 (1996).
[CrossRef]

Chen, W.

W. Chen and D. L. Mills, “Optical response of a nonlinear dielectric film,” Phys. Rev. B 35, 524–532 (1987).
[CrossRef]

da Silva, V.

L. Eskildsen, E. Goldstein, V. da Silva, M. Andrejco, and Y. Silberberg, “Optical power equalization for multiwavelength fiber-amplifier cascades using periodic inhomogeneous broadening,” IEEE Photonics Technol. Lett. 5, 1188–1190 (1993).
[CrossRef]

Dawson, M. D.

DeGionvanni, D. I.

C. R. Giles and D. I. DeGionvanni, “Dynamic gain equalization in two-stage fiber amplifiers,” IEEE Photonics Technol. Lett. 2, 866–868 (1990).
[CrossRef]

Ellinas, G.

G. K. Chang, G. Ellinas, J. K. Gamelin, M. Z. Iqbal, and C. A. Brackett, “Multiwavelength reconfigurable WDM/ATM/SONET network testbed,” J. Lightwave Technol. 14, 1320–1340 (1996).
[CrossRef]

Eskildsen, L.

L. Eskildsen, E. Goldstein, V. da Silva, M. Andrejco, and Y. Silberberg, “Optical power equalization for multiwavelength fiber-amplifier cascades using periodic inhomogeneous broadening,” IEEE Photonics Technol. Lett. 5, 1188–1190 (1993).
[CrossRef]

Gamelin, J. K.

G. K. Chang, G. Ellinas, J. K. Gamelin, M. Z. Iqbal, and C. A. Brackett, “Multiwavelength reconfigurable WDM/ATM/SONET network testbed,” J. Lightwave Technol. 14, 1320–1340 (1996).
[CrossRef]

Giles, C. R.

C. R. Giles and D. I. DeGionvanni, “Dynamic gain equalization in two-stage fiber amplifiers,” IEEE Photonics Technol. Lett. 2, 866–868 (1990).
[CrossRef]

Goldstein, E.

L. Eskildsen, E. Goldstein, V. da Silva, M. Andrejco, and Y. Silberberg, “Optical power equalization for multiwavelength fiber-amplifier cascades using periodic inhomogeneous broadening,” IEEE Photonics Technol. Lett. 5, 1188–1190 (1993).
[CrossRef]

Goodman, M. S.

R. E. Wagner, R. C. Alferness, A. A. M. Saleh, and M. S. Goodman, “MONET: multiwavelength optical networking,” J. Lightwave Technol. 14, 1349–1355 (1996).
[CrossRef]

Hwang, S.-M.

A. E. Willner and S.-M. Hwang, “Transmission of many WDM channels through a cascade of EDFA’s in long distance links and ring networks,” J. Lightwave Technol. 5, 802–816 (1995).
[CrossRef]

Inoue, K.

K. Inoue, T. Kominato, and H. Toba, “Tunable gain equalization using a Mach–Zehnder optical filter in multistage fiber amplifiers,” IEEE Photonics Technol. Lett. 3, 718–720 (1991).
[CrossRef]

Iqbal, M. Z.

G. K. Chang, G. Ellinas, J. K. Gamelin, M. Z. Iqbal, and C. A. Brackett, “Multiwavelength reconfigurable WDM/ATM/SONET network testbed,” J. Lightwave Technol. 14, 1320–1340 (1996).
[CrossRef]

Joyce, G.

F. Su, R. Olshansky, G. Joyce, D. A. Smith, and J. E. Baran, “Gain equalization in multiwavelength lightwave systems using acoustooptic tunable filters,” IEEE Photonics Technol. Lett. 4, 269–271 (1992).
[CrossRef]

Kavehrad, M.

F. Khaleghi, M. Kavehrad, and C. Barnard, “Tunable coherent optical transversal EDFA gain equalization,” J. Lightwave Technol. 13, 581–587 (1995).
[CrossRef]

Khaleghi, F.

F. Khaleghi, M. Kavehrad, and C. Barnard, “Tunable coherent optical transversal EDFA gain equalization,” J. Lightwave Technol. 13, 581–587 (1995).
[CrossRef]

Kominato, T.

K. Inoue, T. Kominato, and H. Toba, “Tunable gain equalization using a Mach–Zehnder optical filter in multistage fiber amplifiers,” IEEE Photonics Technol. Lett. 3, 718–720 (1991).
[CrossRef]

Laming, R. I.

M. Tachibana, R. I. Laming, P. R. Morkel, and D. N. Payne, “Erbium-doped fiber amplifier with flattened gain spectrum,” IEEE Photonics Technol. Lett. 3, 118–120 (1991).
[CrossRef]

Mills, D. L.

W. Chen and D. L. Mills, “Optical response of a nonlinear dielectric film,” Phys. Rev. B 35, 524–532 (1987).
[CrossRef]

Morkel, P. R.

M. Tachibana, R. I. Laming, P. R. Morkel, and D. N. Payne, “Erbium-doped fiber amplifier with flattened gain spectrum,” IEEE Photonics Technol. Lett. 3, 118–120 (1991).
[CrossRef]

Olshansky, R.

F. Su, R. Olshansky, G. Joyce, D. A. Smith, and J. E. Baran, “Gain equalization in multiwavelength lightwave systems using acoustooptic tunable filters,” IEEE Photonics Technol. Lett. 4, 269–271 (1992).
[CrossRef]

Payne, D. N.

M. Tachibana, R. I. Laming, P. R. Morkel, and D. N. Payne, “Erbium-doped fiber amplifier with flattened gain spectrum,” IEEE Photonics Technol. Lett. 3, 118–120 (1991).
[CrossRef]

Saleh, A. A. M.

R. E. Wagner, R. C. Alferness, A. A. M. Saleh, and M. S. Goodman, “MONET: multiwavelength optical networking,” J. Lightwave Technol. 14, 1349–1355 (1996).
[CrossRef]

Schroeder, W. A.

Silberberg, Y.

L. Eskildsen, E. Goldstein, V. da Silva, M. Andrejco, and Y. Silberberg, “Optical power equalization for multiwavelength fiber-amplifier cascades using periodic inhomogeneous broadening,” IEEE Photonics Technol. Lett. 5, 1188–1190 (1993).
[CrossRef]

Smirl, A. L.

Smith, D. A.

F. Su, R. Olshansky, G. Joyce, D. A. Smith, and J. E. Baran, “Gain equalization in multiwavelength lightwave systems using acoustooptic tunable filters,” IEEE Photonics Technol. Lett. 4, 269–271 (1992).
[CrossRef]

Stark, T. S.

Su, F.

F. Su, R. Olshansky, G. Joyce, D. A. Smith, and J. E. Baran, “Gain equalization in multiwavelength lightwave systems using acoustooptic tunable filters,” IEEE Photonics Technol. Lett. 4, 269–271 (1992).
[CrossRef]

Tachibana, M.

M. Tachibana, R. I. Laming, P. R. Morkel, and D. N. Payne, “Erbium-doped fiber amplifier with flattened gain spectrum,” IEEE Photonics Technol. Lett. 3, 118–120 (1991).
[CrossRef]

Toba, H.

K. Inoue, T. Kominato, and H. Toba, “Tunable gain equalization using a Mach–Zehnder optical filter in multistage fiber amplifiers,” IEEE Photonics Technol. Lett. 3, 718–720 (1991).
[CrossRef]

Wagner, R. E.

R. E. Wagner, R. C. Alferness, A. A. M. Saleh, and M. S. Goodman, “MONET: multiwavelength optical networking,” J. Lightwave Technol. 14, 1349–1355 (1996).
[CrossRef]

Willner, A. E.

A. E. Willner and S.-M. Hwang, “Transmission of many WDM channels through a cascade of EDFA’s in long distance links and ring networks,” J. Lightwave Technol. 5, 802–816 (1995).
[CrossRef]

Yeh, P.

P. Yeh, “Contra-directional two-wave mixing in photorefractive media,” Opt. Commun. 45, 323–326 (1983).
[CrossRef]

IEEE Photonics Technol. Lett. (5)

C. R. Giles and D. I. DeGionvanni, “Dynamic gain equalization in two-stage fiber amplifiers,” IEEE Photonics Technol. Lett. 2, 866–868 (1990).
[CrossRef]

M. Tachibana, R. I. Laming, P. R. Morkel, and D. N. Payne, “Erbium-doped fiber amplifier with flattened gain spectrum,” IEEE Photonics Technol. Lett. 3, 118–120 (1991).
[CrossRef]

L. Eskildsen, E. Goldstein, V. da Silva, M. Andrejco, and Y. Silberberg, “Optical power equalization for multiwavelength fiber-amplifier cascades using periodic inhomogeneous broadening,” IEEE Photonics Technol. Lett. 5, 1188–1190 (1993).
[CrossRef]

K. Inoue, T. Kominato, and H. Toba, “Tunable gain equalization using a Mach–Zehnder optical filter in multistage fiber amplifiers,” IEEE Photonics Technol. Lett. 3, 718–720 (1991).
[CrossRef]

F. Su, R. Olshansky, G. Joyce, D. A. Smith, and J. E. Baran, “Gain equalization in multiwavelength lightwave systems using acoustooptic tunable filters,” IEEE Photonics Technol. Lett. 4, 269–271 (1992).
[CrossRef]

J. Lightwave Technol. (4)

F. Khaleghi, M. Kavehrad, and C. Barnard, “Tunable coherent optical transversal EDFA gain equalization,” J. Lightwave Technol. 13, 581–587 (1995).
[CrossRef]

A. E. Willner and S.-M. Hwang, “Transmission of many WDM channels through a cascade of EDFA’s in long distance links and ring networks,” J. Lightwave Technol. 5, 802–816 (1995).
[CrossRef]

G. K. Chang, G. Ellinas, J. K. Gamelin, M. Z. Iqbal, and C. A. Brackett, “Multiwavelength reconfigurable WDM/ATM/SONET network testbed,” J. Lightwave Technol. 14, 1320–1340 (1996).
[CrossRef]

R. E. Wagner, R. C. Alferness, A. A. M. Saleh, and M. S. Goodman, “MONET: multiwavelength optical networking,” J. Lightwave Technol. 14, 1349–1355 (1996).
[CrossRef]

Opt. Commun. (1)

P. Yeh, “Contra-directional two-wave mixing in photorefractive media,” Opt. Commun. 45, 323–326 (1983).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

W. Chen and D. L. Mills, “Optical response of a nonlinear dielectric film,” Phys. Rev. B 35, 524–532 (1987).
[CrossRef]

Other (2)

W. K. Chan and D. R. Andersen, “Analysis of a photorefractive Fabry–Perot etalon with strong coupling,” J. Appl. Phys. (to be published).

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Geometry of the proposed equalizer. The incident light creates a standing wave in the Fabry–Perot cavity. This standing wave, in turn, creates an index modulation through the photorefractive effect that alters the transmission coefficient T. Because the Fabry–Perot is lossless, the reflection coefficient is 1-T.

Fig. 2
Fig. 2

Calculated equalizer power transmission coefficient T as a function of k0D for various values of κIin. The value κIin=0 corresponds to a linear Fabry–Perot cavity. The transmission coefficient decreases with increasing Iin for all k0D when k<0, but decreases with increasing Iin only within bands of k0D centered at the linear Fabry–Perot transmission peaks when k>0. The width of these bands increases with increasing Iin.

Fig. 3
Fig. 3

Calculated equalizer reflection coefficient, 1-T, as a function of κIin for positive and negative values of κ. The value of k0D is fixed at the linear Fabry–Perot transmission peak near k0D=48.11. For small values of |κIin|, the reflection coefficient approaches a square-law dependence on κIin for both signs of κ.

Fig. 4
Fig. 4

Schematic of part of an optical network. The ith segment has an element Li representing all optical losses in that segment, including coupling losses, fiber losses, and splitting losses. The element Gi represents the gain of the EDFA, and the element Ti represents the equalizer with the input-intensity-dependent transmission coefficient shown in Fig. 3. Iin is the intensity leaving the ith equalizer.

Fig. 5
Fig. 5

Calculated intensity of a signal after it traverses 1000 loss–gain-equalization segments. The transmission coefficient for the equalizer is approximated by tanh2(54.8κIi). The solid curve assumes that LiGi has the same value LG in each segment. Circles are calculated assuming that LiGi is a random variable with values uniformly distributed between LG-0.2 and LG+0.2.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Fbit=(50 mW)(10-10 s)/[π(10 µm/22]=6.4 µJ/cm2,
1-T=αγIinγ,
Ii=LiGiIi-1.
Ii=LiGi(1-αγLiγGiγIi-1γ)Ii-1.
αIi=1LiGi1-1LiGi1/γ,

Metrics