Abstract

Infrared (ir) radio-frequency (rf) double-resonance spectroscopy was carried out on the vibrational-overtone band of methyl iodide molecules (CH3I). An optical Fabry-Perot cavity was employed as an absorption cell to record saturated ir spectral lines even by a small-power extended-cavity diode laser with a high sensitivity and a wide tunability in the presence of a rf field. These features allowed investigation of molecules strongly coupled with monochromatic and bichromatic rf fields, or dressed molecules, at various rf power levels and detuning frequencies for a variety of ir and rf transitions. At appropriate energy-level schemes, quantum-interference effects were observed. All resultant spectra showed good agreement with dressed-state theoretical calculations, indicating that the present spectrometer is valid for precise investigation of dressed molecules.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. W. Mollow, “Stimulated emission and absorption near resonance for driven systems,” Phys. Rev. A 5, 2217–2222 (1972).
    [CrossRef]
  2. J. Dalibard and C. Cohen-Tannoudji, “Dressed-atom approach to atomic motion in laser light: the dipole force revisited,” J. Opt. Soc. Am. B 2, 1707–1720 (1985).
    [CrossRef]
  3. S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
    [CrossRef] [PubMed]
  4. G. Z. Zhang, K. Hakuta, and B. P. Stoicheff, “Nonlinear-optical generation using electromagnetically induced transparency in atomic-hydrogen,” Phys. Rev. Lett. 71, 3099–3102 (1993).
    [CrossRef] [PubMed]
  5. R. Shimano and M. Kuwata-Gonokami, “Observation of Autler–Townes splitting of biexcitons in CuCl,” Phys. Rev. Lett. 72, 530–533 (1994).
    [CrossRef] [PubMed]
  6. F. Y. Wu, S. Ezekiel, M. Ducloy, and B. R. Mollow, “Observation of amplification in a strongly driven two-level atomic system,” Phys. Rev. Lett. 38, 1077–1080 (1977).
    [CrossRef]
  7. J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler–Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83, 288–291 (1999).
    [CrossRef]
  8. B. Friedrich and D. Herschbach, “Alignment and trapping of molecules in intense laser fields,” Phys. Rev. Lett. 74, 4623–4626 (1995).
    [CrossRef] [PubMed]
  9. T. Takekoshi, B. M. Patterson, and R. J. Kinze, “Observation of optically trapped cold cesium molecules,” Phys. Rev. Lett. 81, 5105–5108 (1998).
    [CrossRef]
  10. D. A. McWhorter, S. B. Cupp, C. Y. Lee, and B. H. Pate, “Molecular-beam electric-resonance optothermal spectroscopy study of the rotational spectrum of the less stable conformer of methyl vinyl ether,” J. Mol. Spectrosc. 193, 150–158 (1999).
    [CrossRef] [PubMed]
  11. M. Mitsunaga, T. Mukai, K. Watanabe, and T. Mukai, “Dressed-atom spectroscopy of cold Cs atoms,” J. Opt. Soc. Am. B 13, 2696–2700 (1996).
    [CrossRef]
  12. C. Wei and N. B. Manson, “Observation of the dynamic Stark effect on electromagnetically induced transparency,” Phys. Rev. A 60, 2540–2546 (1999).
    [CrossRef]
  13. E. Arimondo and P. Glorieux, “Saturated absorption experiments on a dressed molecule: application to the spectroscopy of the ν6 band of CH3I,” Phys. Rev. A 19, 1067–1083 (1979).
    [CrossRef]
  14. A. Jacques and P. Glorieux, “Radiofrequency-induced cross-over resonances,” Appl. Phys. B 26, 217–226 (1981).
    [CrossRef]
  15. B. Macke, P. Glorieux, A. Jaques, and J. Legrand, “Observation of a ‘return’ Autler–Townes effect,” J. Phys. B 14, 447–457 (1981).
    [CrossRef]
  16. A. Jacques and P. Glorieux, “Proof of the dressed molecule energy levels by infrared radiofrequency double resonance,” Opt. Commun. 40, 201–204 (1982).
    [CrossRef]
  17. F. Shimizu, “Theory of two-photon Lamb dips,” Phys. Rev. A 10, 950–959 (1974).
    [CrossRef]
  18. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions (Wiley, New York, 1992), Chap. 6.
  19. M. de Labachelerie, K. Nakagawa, and M. Ohtsu, “Ultranarrow 13C2H2 saturated-absorption lines at 1.5 μm,” Opt. Lett. 19, 840–842 (1994).
    [CrossRef] [PubMed]
  20. L. S. Ma, J. Ye, P. Dubé, and J. L. Hall, Proceedings of the Twelfth International Conference on Laser Spectroscopy, M. Inguscio, M. Allegrini, and A. Sasso, eds. (World Scientific, Singapore, 1996), pp. 199–203.
  21. J. Ye, L. S. Ma, and J. L. Hall, “Sub-Doppler optical frequency reference at 1.064 μm by means of ultrasensitive cavity-enhanced frequency modulation spectroscopy of a C2HD overtone transition,” Opt. Lett. 21, 1000–1002 (1996).
    [CrossRef] [PubMed]
  22. J. Ye, L. S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998).
    [CrossRef]
  23. C. Ishibashi and H. Sasada, “Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66 μm tunable diode laser,” Jpn. J. Appl. Phys. 38, 920–922 (1999).
    [CrossRef]
  24. C. Ishibashi and H. Sasada, “Near-infrared laser spectrometer with sub-Doppler resolution, high sensitivity, and wide tunability: a case study in the 1.65-μm region of CH3I spectrum,” J. Mol. Spectrosc. 200, 147–149 (2000).
    [CrossRef] [PubMed]
  25. E. Arimondo, P. Glorieux, and T. Oka, “Radio-frequency spectroscopy inside a laser cavity; ‘pure’ nuclear quadrapole resonance of gaseous CH3I,” Phys. Rev. A 17, 1375–1393 (1978).
    [CrossRef]
  26. G. Guelachvili and K. Narahari Rao, Handbook of Infrared Standards II (Academic, London, 1993), pp. 516–519.
  27. S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955).
    [CrossRef]
  28. T. G. Rudolph, H. S. Freedhoff, and Z. Ficek, “Multiphoton ac Stark effect in a bichromatically driven two-level atom,” Phys. Rev. A 58, 1296–1309 (1998).
    [CrossRef]
  29. C. C. Yu, J. R. Bochinski, T. M. B. Kordich, T. W. Mossberg, and Z. Ficek, “Driving the driven atom: spectral signatures,” Phys. Rev. A 56, R4381–R4384 (1997).
    [CrossRef]
  30. J. Söding, R. Grimm, Y. B. Ovchinnikov, Ph. Bouyer, and Ch. Salomon, “Short-distance atomic beam deceleration with a stimulated light force,” Phys. Rev. Lett. 78, 1420–1423 (1997).
    [CrossRef]
  31. M. F. van Leeuwen, S. Papademetriou, and C. R. Stroud, Jr., “Autler–Townes effect for an atom in a 100% amplitude-modulated laser field. I. A dressed-atom approach,” Phys. Rev. A 53, 990–996 (1996).
    [CrossRef] [PubMed]
  32. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [CrossRef]
  33. S. M. Freund and T. Oka, “Two-photon spectroscopy of ammonia using infrared lasers,” IEEE J. Quantum Electron. QE-8, 604 (1972).
    [CrossRef]

2000

C. Ishibashi and H. Sasada, “Near-infrared laser spectrometer with sub-Doppler resolution, high sensitivity, and wide tunability: a case study in the 1.65-μm region of CH3I spectrum,” J. Mol. Spectrosc. 200, 147–149 (2000).
[CrossRef] [PubMed]

1999

C. Ishibashi and H. Sasada, “Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66 μm tunable diode laser,” Jpn. J. Appl. Phys. 38, 920–922 (1999).
[CrossRef]

J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler–Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83, 288–291 (1999).
[CrossRef]

D. A. McWhorter, S. B. Cupp, C. Y. Lee, and B. H. Pate, “Molecular-beam electric-resonance optothermal spectroscopy study of the rotational spectrum of the less stable conformer of methyl vinyl ether,” J. Mol. Spectrosc. 193, 150–158 (1999).
[CrossRef] [PubMed]

C. Wei and N. B. Manson, “Observation of the dynamic Stark effect on electromagnetically induced transparency,” Phys. Rev. A 60, 2540–2546 (1999).
[CrossRef]

1998

T. Takekoshi, B. M. Patterson, and R. J. Kinze, “Observation of optically trapped cold cesium molecules,” Phys. Rev. Lett. 81, 5105–5108 (1998).
[CrossRef]

J. Ye, L. S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998).
[CrossRef]

T. G. Rudolph, H. S. Freedhoff, and Z. Ficek, “Multiphoton ac Stark effect in a bichromatically driven two-level atom,” Phys. Rev. A 58, 1296–1309 (1998).
[CrossRef]

1997

C. C. Yu, J. R. Bochinski, T. M. B. Kordich, T. W. Mossberg, and Z. Ficek, “Driving the driven atom: spectral signatures,” Phys. Rev. A 56, R4381–R4384 (1997).
[CrossRef]

J. Söding, R. Grimm, Y. B. Ovchinnikov, Ph. Bouyer, and Ch. Salomon, “Short-distance atomic beam deceleration with a stimulated light force,” Phys. Rev. Lett. 78, 1420–1423 (1997).
[CrossRef]

1996

1995

B. Friedrich and D. Herschbach, “Alignment and trapping of molecules in intense laser fields,” Phys. Rev. Lett. 74, 4623–4626 (1995).
[CrossRef] [PubMed]

1994

R. Shimano and M. Kuwata-Gonokami, “Observation of Autler–Townes splitting of biexcitons in CuCl,” Phys. Rev. Lett. 72, 530–533 (1994).
[CrossRef] [PubMed]

M. de Labachelerie, K. Nakagawa, and M. Ohtsu, “Ultranarrow 13C2H2 saturated-absorption lines at 1.5 μm,” Opt. Lett. 19, 840–842 (1994).
[CrossRef] [PubMed]

1993

G. Z. Zhang, K. Hakuta, and B. P. Stoicheff, “Nonlinear-optical generation using electromagnetically induced transparency in atomic-hydrogen,” Phys. Rev. Lett. 71, 3099–3102 (1993).
[CrossRef] [PubMed]

1990

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[CrossRef] [PubMed]

1985

1983

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

1982

A. Jacques and P. Glorieux, “Proof of the dressed molecule energy levels by infrared radiofrequency double resonance,” Opt. Commun. 40, 201–204 (1982).
[CrossRef]

1981

A. Jacques and P. Glorieux, “Radiofrequency-induced cross-over resonances,” Appl. Phys. B 26, 217–226 (1981).
[CrossRef]

B. Macke, P. Glorieux, A. Jaques, and J. Legrand, “Observation of a ‘return’ Autler–Townes effect,” J. Phys. B 14, 447–457 (1981).
[CrossRef]

1979

E. Arimondo and P. Glorieux, “Saturated absorption experiments on a dressed molecule: application to the spectroscopy of the ν6 band of CH3I,” Phys. Rev. A 19, 1067–1083 (1979).
[CrossRef]

1978

E. Arimondo, P. Glorieux, and T. Oka, “Radio-frequency spectroscopy inside a laser cavity; ‘pure’ nuclear quadrapole resonance of gaseous CH3I,” Phys. Rev. A 17, 1375–1393 (1978).
[CrossRef]

1977

F. Y. Wu, S. Ezekiel, M. Ducloy, and B. R. Mollow, “Observation of amplification in a strongly driven two-level atomic system,” Phys. Rev. Lett. 38, 1077–1080 (1977).
[CrossRef]

1974

F. Shimizu, “Theory of two-photon Lamb dips,” Phys. Rev. A 10, 950–959 (1974).
[CrossRef]

1972

B. W. Mollow, “Stimulated emission and absorption near resonance for driven systems,” Phys. Rev. A 5, 2217–2222 (1972).
[CrossRef]

S. M. Freund and T. Oka, “Two-photon spectroscopy of ammonia using infrared lasers,” IEEE J. Quantum Electron. QE-8, 604 (1972).
[CrossRef]

1955

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955).
[CrossRef]

Arimondo, E.

E. Arimondo and P. Glorieux, “Saturated absorption experiments on a dressed molecule: application to the spectroscopy of the ν6 band of CH3I,” Phys. Rev. A 19, 1067–1083 (1979).
[CrossRef]

E. Arimondo, P. Glorieux, and T. Oka, “Radio-frequency spectroscopy inside a laser cavity; ‘pure’ nuclear quadrapole resonance of gaseous CH3I,” Phys. Rev. A 17, 1375–1393 (1978).
[CrossRef]

Autler, S. H.

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955).
[CrossRef]

Bochinski, J. R.

C. C. Yu, J. R. Bochinski, T. M. B. Kordich, T. W. Mossberg, and Z. Ficek, “Driving the driven atom: spectral signatures,” Phys. Rev. A 56, R4381–R4384 (1997).
[CrossRef]

Bouyer, Ph.

J. Söding, R. Grimm, Y. B. Ovchinnikov, Ph. Bouyer, and Ch. Salomon, “Short-distance atomic beam deceleration with a stimulated light force,” Phys. Rev. Lett. 78, 1420–1423 (1997).
[CrossRef]

Cohen-Tannoudji, C.

Cupp, S. B.

D. A. McWhorter, S. B. Cupp, C. Y. Lee, and B. H. Pate, “Molecular-beam electric-resonance optothermal spectroscopy study of the rotational spectrum of the less stable conformer of methyl vinyl ether,” J. Mol. Spectrosc. 193, 150–158 (1999).
[CrossRef] [PubMed]

Dalibard, J.

de Labachelerie, M.

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Ducloy, M.

F. Y. Wu, S. Ezekiel, M. Ducloy, and B. R. Mollow, “Observation of amplification in a strongly driven two-level atomic system,” Phys. Rev. Lett. 38, 1077–1080 (1977).
[CrossRef]

Ezekiel, S.

F. Y. Wu, S. Ezekiel, M. Ducloy, and B. R. Mollow, “Observation of amplification in a strongly driven two-level atomic system,” Phys. Rev. Lett. 38, 1077–1080 (1977).
[CrossRef]

Ficek, Z.

T. G. Rudolph, H. S. Freedhoff, and Z. Ficek, “Multiphoton ac Stark effect in a bichromatically driven two-level atom,” Phys. Rev. A 58, 1296–1309 (1998).
[CrossRef]

C. C. Yu, J. R. Bochinski, T. M. B. Kordich, T. W. Mossberg, and Z. Ficek, “Driving the driven atom: spectral signatures,” Phys. Rev. A 56, R4381–R4384 (1997).
[CrossRef]

Field, J. E.

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[CrossRef] [PubMed]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Freedhoff, H. S.

T. G. Rudolph, H. S. Freedhoff, and Z. Ficek, “Multiphoton ac Stark effect in a bichromatically driven two-level atom,” Phys. Rev. A 58, 1296–1309 (1998).
[CrossRef]

Freund, S. M.

S. M. Freund and T. Oka, “Two-photon spectroscopy of ammonia using infrared lasers,” IEEE J. Quantum Electron. QE-8, 604 (1972).
[CrossRef]

Friedrich, B.

B. Friedrich and D. Herschbach, “Alignment and trapping of molecules in intense laser fields,” Phys. Rev. Lett. 74, 4623–4626 (1995).
[CrossRef] [PubMed]

Glorieux, P.

A. Jacques and P. Glorieux, “Proof of the dressed molecule energy levels by infrared radiofrequency double resonance,” Opt. Commun. 40, 201–204 (1982).
[CrossRef]

B. Macke, P. Glorieux, A. Jaques, and J. Legrand, “Observation of a ‘return’ Autler–Townes effect,” J. Phys. B 14, 447–457 (1981).
[CrossRef]

A. Jacques and P. Glorieux, “Radiofrequency-induced cross-over resonances,” Appl. Phys. B 26, 217–226 (1981).
[CrossRef]

E. Arimondo and P. Glorieux, “Saturated absorption experiments on a dressed molecule: application to the spectroscopy of the ν6 band of CH3I,” Phys. Rev. A 19, 1067–1083 (1979).
[CrossRef]

E. Arimondo, P. Glorieux, and T. Oka, “Radio-frequency spectroscopy inside a laser cavity; ‘pure’ nuclear quadrapole resonance of gaseous CH3I,” Phys. Rev. A 17, 1375–1393 (1978).
[CrossRef]

Grimm, R.

J. Söding, R. Grimm, Y. B. Ovchinnikov, Ph. Bouyer, and Ch. Salomon, “Short-distance atomic beam deceleration with a stimulated light force,” Phys. Rev. Lett. 78, 1420–1423 (1997).
[CrossRef]

Hakuta, K.

G. Z. Zhang, K. Hakuta, and B. P. Stoicheff, “Nonlinear-optical generation using electromagnetically induced transparency in atomic-hydrogen,” Phys. Rev. Lett. 71, 3099–3102 (1993).
[CrossRef] [PubMed]

Hall, J. L.

Harris, S. E.

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[CrossRef] [PubMed]

Herschbach, D.

B. Friedrich and D. Herschbach, “Alignment and trapping of molecules in intense laser fields,” Phys. Rev. Lett. 74, 4623–4626 (1995).
[CrossRef] [PubMed]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Imamoglu, A.

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[CrossRef] [PubMed]

Ishibashi, C.

C. Ishibashi and H. Sasada, “Near-infrared laser spectrometer with sub-Doppler resolution, high sensitivity, and wide tunability: a case study in the 1.65-μm region of CH3I spectrum,” J. Mol. Spectrosc. 200, 147–149 (2000).
[CrossRef] [PubMed]

C. Ishibashi and H. Sasada, “Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66 μm tunable diode laser,” Jpn. J. Appl. Phys. 38, 920–922 (1999).
[CrossRef]

Jacques, A.

A. Jacques and P. Glorieux, “Proof of the dressed molecule energy levels by infrared radiofrequency double resonance,” Opt. Commun. 40, 201–204 (1982).
[CrossRef]

A. Jacques and P. Glorieux, “Radiofrequency-induced cross-over resonances,” Appl. Phys. B 26, 217–226 (1981).
[CrossRef]

Jaques, A.

B. Macke, P. Glorieux, A. Jaques, and J. Legrand, “Observation of a ‘return’ Autler–Townes effect,” J. Phys. B 14, 447–457 (1981).
[CrossRef]

Kinze, R. J.

T. Takekoshi, B. M. Patterson, and R. J. Kinze, “Observation of optically trapped cold cesium molecules,” Phys. Rev. Lett. 81, 5105–5108 (1998).
[CrossRef]

Kordich, T. M. B.

C. C. Yu, J. R. Bochinski, T. M. B. Kordich, T. W. Mossberg, and Z. Ficek, “Driving the driven atom: spectral signatures,” Phys. Rev. A 56, R4381–R4384 (1997).
[CrossRef]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Kuwata-Gonokami, M.

R. Shimano and M. Kuwata-Gonokami, “Observation of Autler–Townes splitting of biexcitons in CuCl,” Phys. Rev. Lett. 72, 530–533 (1994).
[CrossRef] [PubMed]

Lazarov, G.

J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler–Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83, 288–291 (1999).
[CrossRef]

Lee, C. Y.

D. A. McWhorter, S. B. Cupp, C. Y. Lee, and B. H. Pate, “Molecular-beam electric-resonance optothermal spectroscopy study of the rotational spectrum of the less stable conformer of methyl vinyl ether,” J. Mol. Spectrosc. 193, 150–158 (1999).
[CrossRef] [PubMed]

Legrand, J.

B. Macke, P. Glorieux, A. Jaques, and J. Legrand, “Observation of a ‘return’ Autler–Townes effect,” J. Phys. B 14, 447–457 (1981).
[CrossRef]

Li, L.

J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler–Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83, 288–291 (1999).
[CrossRef]

Lyyra, A. M.

J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler–Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83, 288–291 (1999).
[CrossRef]

Ma, L. S.

Macke, B.

B. Macke, P. Glorieux, A. Jaques, and J. Legrand, “Observation of a ‘return’ Autler–Townes effect,” J. Phys. B 14, 447–457 (1981).
[CrossRef]

Manson, N. B.

C. Wei and N. B. Manson, “Observation of the dynamic Stark effect on electromagnetically induced transparency,” Phys. Rev. A 60, 2540–2546 (1999).
[CrossRef]

McWhorter, D. A.

D. A. McWhorter, S. B. Cupp, C. Y. Lee, and B. H. Pate, “Molecular-beam electric-resonance optothermal spectroscopy study of the rotational spectrum of the less stable conformer of methyl vinyl ether,” J. Mol. Spectrosc. 193, 150–158 (1999).
[CrossRef] [PubMed]

Mitsunaga, M.

Mollow, B. R.

F. Y. Wu, S. Ezekiel, M. Ducloy, and B. R. Mollow, “Observation of amplification in a strongly driven two-level atomic system,” Phys. Rev. Lett. 38, 1077–1080 (1977).
[CrossRef]

Mollow, B. W.

B. W. Mollow, “Stimulated emission and absorption near resonance for driven systems,” Phys. Rev. A 5, 2217–2222 (1972).
[CrossRef]

Mossberg, T. W.

C. C. Yu, J. R. Bochinski, T. M. B. Kordich, T. W. Mossberg, and Z. Ficek, “Driving the driven atom: spectral signatures,” Phys. Rev. A 56, R4381–R4384 (1997).
[CrossRef]

Mukai, T.

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Nakagawa, K.

Narducci, L. M.

J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler–Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83, 288–291 (1999).
[CrossRef]

Ohtsu, M.

Oka, T.

E. Arimondo, P. Glorieux, and T. Oka, “Radio-frequency spectroscopy inside a laser cavity; ‘pure’ nuclear quadrapole resonance of gaseous CH3I,” Phys. Rev. A 17, 1375–1393 (1978).
[CrossRef]

S. M. Freund and T. Oka, “Two-photon spectroscopy of ammonia using infrared lasers,” IEEE J. Quantum Electron. QE-8, 604 (1972).
[CrossRef]

Ovchinnikov, Y. B.

J. Söding, R. Grimm, Y. B. Ovchinnikov, Ph. Bouyer, and Ch. Salomon, “Short-distance atomic beam deceleration with a stimulated light force,” Phys. Rev. Lett. 78, 1420–1423 (1997).
[CrossRef]

Papademetriou, S.

M. F. van Leeuwen, S. Papademetriou, and C. R. Stroud, Jr., “Autler–Townes effect for an atom in a 100% amplitude-modulated laser field. I. A dressed-atom approach,” Phys. Rev. A 53, 990–996 (1996).
[CrossRef] [PubMed]

Pate, B. H.

D. A. McWhorter, S. B. Cupp, C. Y. Lee, and B. H. Pate, “Molecular-beam electric-resonance optothermal spectroscopy study of the rotational spectrum of the less stable conformer of methyl vinyl ether,” J. Mol. Spectrosc. 193, 150–158 (1999).
[CrossRef] [PubMed]

Patterson, B. M.

T. Takekoshi, B. M. Patterson, and R. J. Kinze, “Observation of optically trapped cold cesium molecules,” Phys. Rev. Lett. 81, 5105–5108 (1998).
[CrossRef]

Qi, J.

J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler–Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83, 288–291 (1999).
[CrossRef]

Rudolph, T. G.

T. G. Rudolph, H. S. Freedhoff, and Z. Ficek, “Multiphoton ac Stark effect in a bichromatically driven two-level atom,” Phys. Rev. A 58, 1296–1309 (1998).
[CrossRef]

Salomon, Ch.

J. Söding, R. Grimm, Y. B. Ovchinnikov, Ph. Bouyer, and Ch. Salomon, “Short-distance atomic beam deceleration with a stimulated light force,” Phys. Rev. Lett. 78, 1420–1423 (1997).
[CrossRef]

Sasada, H.

C. Ishibashi and H. Sasada, “Near-infrared laser spectrometer with sub-Doppler resolution, high sensitivity, and wide tunability: a case study in the 1.65-μm region of CH3I spectrum,” J. Mol. Spectrosc. 200, 147–149 (2000).
[CrossRef] [PubMed]

C. Ishibashi and H. Sasada, “Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66 μm tunable diode laser,” Jpn. J. Appl. Phys. 38, 920–922 (1999).
[CrossRef]

Shimano, R.

R. Shimano and M. Kuwata-Gonokami, “Observation of Autler–Townes splitting of biexcitons in CuCl,” Phys. Rev. Lett. 72, 530–533 (1994).
[CrossRef] [PubMed]

Shimizu, F.

F. Shimizu, “Theory of two-photon Lamb dips,” Phys. Rev. A 10, 950–959 (1974).
[CrossRef]

Söding, J.

J. Söding, R. Grimm, Y. B. Ovchinnikov, Ph. Bouyer, and Ch. Salomon, “Short-distance atomic beam deceleration with a stimulated light force,” Phys. Rev. Lett. 78, 1420–1423 (1997).
[CrossRef]

Spano, F. C.

J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler–Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83, 288–291 (1999).
[CrossRef]

Stoicheff, B. P.

G. Z. Zhang, K. Hakuta, and B. P. Stoicheff, “Nonlinear-optical generation using electromagnetically induced transparency in atomic-hydrogen,” Phys. Rev. Lett. 71, 3099–3102 (1993).
[CrossRef] [PubMed]

Stroud Jr., C. R.

M. F. van Leeuwen, S. Papademetriou, and C. R. Stroud, Jr., “Autler–Townes effect for an atom in a 100% amplitude-modulated laser field. I. A dressed-atom approach,” Phys. Rev. A 53, 990–996 (1996).
[CrossRef] [PubMed]

Takekoshi, T.

T. Takekoshi, B. M. Patterson, and R. J. Kinze, “Observation of optically trapped cold cesium molecules,” Phys. Rev. Lett. 81, 5105–5108 (1998).
[CrossRef]

Townes, C. H.

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955).
[CrossRef]

van Leeuwen, M. F.

M. F. van Leeuwen, S. Papademetriou, and C. R. Stroud, Jr., “Autler–Townes effect for an atom in a 100% amplitude-modulated laser field. I. A dressed-atom approach,” Phys. Rev. A 53, 990–996 (1996).
[CrossRef] [PubMed]

Wang, X.

J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler–Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83, 288–291 (1999).
[CrossRef]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Watanabe, K.

Wei, C.

C. Wei and N. B. Manson, “Observation of the dynamic Stark effect on electromagnetically induced transparency,” Phys. Rev. A 60, 2540–2546 (1999).
[CrossRef]

Wu, F. Y.

F. Y. Wu, S. Ezekiel, M. Ducloy, and B. R. Mollow, “Observation of amplification in a strongly driven two-level atomic system,” Phys. Rev. Lett. 38, 1077–1080 (1977).
[CrossRef]

Ye, J.

Yu, C. C.

C. C. Yu, J. R. Bochinski, T. M. B. Kordich, T. W. Mossberg, and Z. Ficek, “Driving the driven atom: spectral signatures,” Phys. Rev. A 56, R4381–R4384 (1997).
[CrossRef]

Zhang, G. Z.

G. Z. Zhang, K. Hakuta, and B. P. Stoicheff, “Nonlinear-optical generation using electromagnetically induced transparency in atomic-hydrogen,” Phys. Rev. Lett. 71, 3099–3102 (1993).
[CrossRef] [PubMed]

Appl. Phys. B

A. Jacques and P. Glorieux, “Radiofrequency-induced cross-over resonances,” Appl. Phys. B 26, 217–226 (1981).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

IEEE J. Quantum Electron.

S. M. Freund and T. Oka, “Two-photon spectroscopy of ammonia using infrared lasers,” IEEE J. Quantum Electron. QE-8, 604 (1972).
[CrossRef]

J. Mol. Spectrosc.

C. Ishibashi and H. Sasada, “Near-infrared laser spectrometer with sub-Doppler resolution, high sensitivity, and wide tunability: a case study in the 1.65-μm region of CH3I spectrum,” J. Mol. Spectrosc. 200, 147–149 (2000).
[CrossRef] [PubMed]

D. A. McWhorter, S. B. Cupp, C. Y. Lee, and B. H. Pate, “Molecular-beam electric-resonance optothermal spectroscopy study of the rotational spectrum of the less stable conformer of methyl vinyl ether,” J. Mol. Spectrosc. 193, 150–158 (1999).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

J. Phys. B

B. Macke, P. Glorieux, A. Jaques, and J. Legrand, “Observation of a ‘return’ Autler–Townes effect,” J. Phys. B 14, 447–457 (1981).
[CrossRef]

Jpn. J. Appl. Phys.

C. Ishibashi and H. Sasada, “Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66 μm tunable diode laser,” Jpn. J. Appl. Phys. 38, 920–922 (1999).
[CrossRef]

Opt. Commun.

A. Jacques and P. Glorieux, “Proof of the dressed molecule energy levels by infrared radiofrequency double resonance,” Opt. Commun. 40, 201–204 (1982).
[CrossRef]

Opt. Lett.

Phys. Rev.

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955).
[CrossRef]

Phys. Rev. A

T. G. Rudolph, H. S. Freedhoff, and Z. Ficek, “Multiphoton ac Stark effect in a bichromatically driven two-level atom,” Phys. Rev. A 58, 1296–1309 (1998).
[CrossRef]

C. C. Yu, J. R. Bochinski, T. M. B. Kordich, T. W. Mossberg, and Z. Ficek, “Driving the driven atom: spectral signatures,” Phys. Rev. A 56, R4381–R4384 (1997).
[CrossRef]

M. F. van Leeuwen, S. Papademetriou, and C. R. Stroud, Jr., “Autler–Townes effect for an atom in a 100% amplitude-modulated laser field. I. A dressed-atom approach,” Phys. Rev. A 53, 990–996 (1996).
[CrossRef] [PubMed]

B. W. Mollow, “Stimulated emission and absorption near resonance for driven systems,” Phys. Rev. A 5, 2217–2222 (1972).
[CrossRef]

E. Arimondo, P. Glorieux, and T. Oka, “Radio-frequency spectroscopy inside a laser cavity; ‘pure’ nuclear quadrapole resonance of gaseous CH3I,” Phys. Rev. A 17, 1375–1393 (1978).
[CrossRef]

F. Shimizu, “Theory of two-photon Lamb dips,” Phys. Rev. A 10, 950–959 (1974).
[CrossRef]

C. Wei and N. B. Manson, “Observation of the dynamic Stark effect on electromagnetically induced transparency,” Phys. Rev. A 60, 2540–2546 (1999).
[CrossRef]

E. Arimondo and P. Glorieux, “Saturated absorption experiments on a dressed molecule: application to the spectroscopy of the ν6 band of CH3I,” Phys. Rev. A 19, 1067–1083 (1979).
[CrossRef]

Phys. Rev. Lett.

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[CrossRef] [PubMed]

G. Z. Zhang, K. Hakuta, and B. P. Stoicheff, “Nonlinear-optical generation using electromagnetically induced transparency in atomic-hydrogen,” Phys. Rev. Lett. 71, 3099–3102 (1993).
[CrossRef] [PubMed]

R. Shimano and M. Kuwata-Gonokami, “Observation of Autler–Townes splitting of biexcitons in CuCl,” Phys. Rev. Lett. 72, 530–533 (1994).
[CrossRef] [PubMed]

F. Y. Wu, S. Ezekiel, M. Ducloy, and B. R. Mollow, “Observation of amplification in a strongly driven two-level atomic system,” Phys. Rev. Lett. 38, 1077–1080 (1977).
[CrossRef]

J. Qi, G. Lazarov, X. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler–Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83, 288–291 (1999).
[CrossRef]

B. Friedrich and D. Herschbach, “Alignment and trapping of molecules in intense laser fields,” Phys. Rev. Lett. 74, 4623–4626 (1995).
[CrossRef] [PubMed]

T. Takekoshi, B. M. Patterson, and R. J. Kinze, “Observation of optically trapped cold cesium molecules,” Phys. Rev. Lett. 81, 5105–5108 (1998).
[CrossRef]

J. Söding, R. Grimm, Y. B. Ovchinnikov, Ph. Bouyer, and Ch. Salomon, “Short-distance atomic beam deceleration with a stimulated light force,” Phys. Rev. Lett. 78, 1420–1423 (1997).
[CrossRef]

Other

G. Guelachvili and K. Narahari Rao, Handbook of Infrared Standards II (Academic, London, 1993), pp. 516–519.

L. S. Ma, J. Ye, P. Dubé, and J. L. Hall, Proceedings of the Twelfth International Conference on Laser Spectroscopy, M. Inguscio, M. Allegrini, and A. Sasso, eds. (World Scientific, Singapore, 1996), pp. 199–203.

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions (Wiley, New York, 1992), Chap. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Energy-level diagram of the  QR(7,3) transition of CH3I. Allowed ir transitions and driven rf transitions are indicated by arrows. The rf transitions are driven by the field having the indicated frequencies.

Fig. 2
Fig. 2

Four-level system: (a) energy-level diagram of molecules; (b) the dressed states coupled by a monochromatic rf field at a frequency of ω=ω12+δ. Ir transitions are indicated by arrows. Dashed arrows indicate crossover resonances. Expected ir spectra are also shown for δ=0 and δ0.

Fig. 3
Fig. 3

(a) Energy-level diagram of molecules and a monochromatic rf field at a frequency of ω=ω12+δ=ω34-δ. (b) The dressed states coupled by the monochromatic rf field. Ir transitions are indicated by thick and by thin solid arrows for the constructive and the destructive interfering components, respectively. Crossover transitions are shown by dashed arrows. An expected ir spectrum is also shown.

Fig. 4
Fig. 4

(a) Energy-level diagram of molecules and a bichromatic rf radiation at frequencies of ωα=ω12 and ωβ=ω34. (b) The dressed states coupled by the bichromatic rf field, where nα and nβ are the photon numbers of the ωα and the ωβ frequency modes, respectively. Ir transitions are indicated by solid and dashed arrows for ordinary and crossover transitions, respectively. An expected ir spectrum is also shown.

Fig. 5
Fig. 5

(a) Energy-level diagram of molecules and a bichromatic rf field at frequencies of ωα=ω34+δ and ωβ=ω34-δ. (b) The dressed states coupled by the bichromatic rf field, where n+ and n- are the photon numbers of ωα and ωβ frequency modes, respectively. Ir transitions are indicated by solid and by dashed arrows for ordinary and crossover transitions, respectively. Ir transitions induced by the high-order Bessel functions (|m-n|2) (see context) are not shown for simplicity. An expected ir spectrum is also shown.

Fig. 6
Fig. 6

Experimental setup: EOM, electro-optic modulator; PBS, polarized beam splitter; FR, Faraday rotator; PD1, PD2, photodiodes; FP cell, Fabry–Perot cavity cell.

Fig. 7
Fig. 7

Fabry–Perot cavity cell (FP cell) for double-resonance spectroscopy. The width of the electrode pair is 25 mm. M, mirror; PZT, piezoelectric transducer.

Fig. 8
Fig. 8

Four hyperfine components of the  QR(7,3) transition observed at 6055.49 cm-1 in the presence of the rf field of 46.5 MHz resonant to the F=15/2F=17/2 component and at power levels of (a) 0.00 W, (b) 0.06 W, (c) 0.25 W, and (d) 2.3 W, respectively.

Fig. 9
Fig. 9

Observed spectra with the rf field at frequencies of (a) 46.5 MHz, (b) 47.5 MHz, (c) 48.5 MHz, and (d) 49.5 MHz, in various detunings from the F=15/2F=17/2 component.

Fig. 10
Fig. 10

Calculated spectra corresponding to Fig. 8. The linewidth and the values of Ωrf(MF=1/2)/2π are determined to be (a) 0 MHz (HWHM), (b) 0.5 MHz, (c) 1.0 MHz, and (d) 2.9 MHz. We assumed that two thirds of the molecules in the optical path interact with the rf field.

Fig. 11
Fig. 11

Observed and calculated spectra corresponding to Fig. 9 with the value of Ωrf(MF=1/2)/2π=2.9 MHz at the detuning of (a) δ/2π=0 MHz, (b) 1 MHz, (c) 2 MHz, and (d) 3 MHz.

Fig. 12
Fig. 12

(a) Observed and (b) calculated spectra with a 42.0-MHz rf field resonant to the F=13/2F=15/2 component in the vibrational ground state and the F=15/2F=17/2 component in the vibrationally excited state at various power levels.

Fig. 13
Fig. 13

(a) Observed and (b) calculated spectra with the 46.5- and 60.5-MHz rf fields, respectively, resonant to the F=15/2F=17/2 component in the vibrational ground state and the F=17/2F=19/2 component in the vibrationally excited state at various power levels.

Fig. 14
Fig. 14

(a) Observed and (b) calculated spectra with the rf field at the frequencies of 62.5 and 58.5 MHz resonant to the F=17/2F=19/2 component in the vibrational excited state.

Tables (2)

Tables Icon

Table 1 Experimental Configurations of the RF Frequencies and Results

Tables Icon

Table 2 Theoretical Center Frequencies and Relative Intensities of the Infrared Transitions of Dressed Molecules

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

|a, n}=sin θ|1, n+1+cos θ|2, n,
|b, n}=cos θ|1, n+1-sin θ|2, n,
tan(2θ)=-Ωrfδ(0<θπ/2).
μa3=n{a, n|μˆir|3, n=sin θ1, n+1|μˆir|3, n+1=μ13 sin θ,
|c, n}=sin θ|3, n+1+cos θ|4, n,
|d, n}=cos θ|3,n+1-sin θ|4,n.
μad=μbc=μ cos(2θ),
μbd=μac=μ sin(2θ).
EN,m=(Nω34+mδ),
|N, m}=n=-Jm-nΩrfδ|N, n,
|ν4, F, MF, K; J, I
=|ν4|J, KMJ|J, MJ|I, MF-MJ×J, I; MJ, MF-MJ|F, MF,
Ωrf(MF)=Erfν4, F, MF, K; J, I|μˆrf|ν4, F+1, MF, K; J, I=Erfμrfν4J, K|λZ|J, K MJJ, MJ|λz|J, MJ×F, MF|J, I; MJ, MF-MJ×J, I; MJ, MF-MJ|F+1, MF=Erfμrfν4 KJ(J+1)×MJ MJJ(J+1)×F, MF|J, I; MJ, MF-MJ×J, I; MJ, MF-MJ|F+1, MF,
Sir(MF)=|ν4=0, F, MF, K; J, I|μˆir|ν4=2, F+1, MF, K; J+1, I|2=|μir2ν4J, K|λZ|J+1, K|2 MJ|J, MJ|λz|J+1, MJF, MF|J, I; MJ, MF-MJ×J+1, I; MJ, MF-MJ|F+1, MF|2=|μir2ν4|2 (J+1)-K2J(J+1) MJ (J+1)2-MJ2J(J+1)×|F, MF|J, I; MJ, MF-MJ×J+1, I; MJ, MF-MJ|F+1, MF|2

Metrics