Abstract

The hyperfine structure of the 4d2D3/2,5/2 levels of  69,71Ga is determined. The 4p2P3/24d2D3/2 (294.50-nm) and 4p2P3/24d2D5/2 (294.45-nm) transitions are studied by laser-induced fluorescence in an atomic Ga beam. The hyperfine A constant measured for the 4d2D5/2 level is 77.3±0.9 MHz for  69Ga and 97.9±0.7 MHz for  71Ga (3σ errors). The A constant measured for the 4d2D3/2 level is -36.3±2.2 MHz for  69Ga and -46.2±3.8 MHz for  71Ga. These measurements correct sign errors in the previous determination of these constants. For  69Ga the hyperfine B constants measured for the 4d2D5/2 and the 4d2D3/2 levels are 5.3±4.1 MHz and 4.6±4.2 MHz, respectively. The isotope shift is determined to be 114±8 MHz for the 4p2P3/24d2D3/2 transition and 115±7 MHz for the 4p2P3/24d2D5/2 transition. The lines of  71Ga are shifted to the blue. This is in agreement with previous measurement.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Thywissen, K. S. Johnson, R. Younkin, N. H. Dekker, K. K. Berggren, A. P. Chu, M. Prentiss, and S. A. Lee, “Nanofabrication using neutral atomic beams,” J. Vac. Sci. Technol. B 15, 2093–2100 (1997).
    [CrossRef]
  2. For a discussion of light forces and applications, see, for example, the following special issues: P. Meystre and S. Stenholm, eds., “The mechanical effects of light” J. Opt. Soc. Am. B 2, 1706–1853 (1985); S. Chu and C. Wieman, eds., “Laser cooling and trapping of atoms,” J. Opt. Soc. Am. B 6, 2020–2270 (1989); J. Mlynek, V. Balykin, and P. Meystre, eds., “Optics and interferometry with atoms,” Appl. Phys. B 54, 319–485 (1992).See also Atom Optics, Proc. SPIE 2995, M. G. Prentiss and W. D. Phillips eds. (SPIE, Bellingham, Washington, 1997), pp. 2–300.
  3. G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69, 1636–1639 (1992).
    [CrossRef] [PubMed]
  4. V. Natarajan, R. E. Behringer, and G. Timp, “High-contrast, high-resolution focusing of neutral atoms using light forces,” Phys. Rev. A 53, 4381–4385 (1996).
    [CrossRef] [PubMed]
  5. J. J. McClelland, R. E. Scholten, E. C. Palm, and R. J. Celotta, “Laser-focused atomic deposition,” Science 262, 877–880 (1993).
    [CrossRef] [PubMed]
  6. R. Gupta, J. J. McClelland, Z. J. Jabbour, and R. J. Celotta, “Nanofabrication of a two-dimensional array using laser-focused atomic deposition,” Appl. Phys. Lett. 67, 1378–1380 (1995).
    [CrossRef]
  7. U. Drodofsky, J. Stuhler, B. Brezger, T. Schulze, M. Drewsen, T. Pfau, and J. Mlynek, “Nanometerscale lithography with chromium atoms using light forces,” Microelectron. Eng. 35, 285–288 (1997).
    [CrossRef]
  8. F. Lison, H.-J. Adams, D. Haubrich, M. Kreis, S. Nowak, and D. Meschede, “Nanoscale atomic lithography with a cesium atomic beam,” Appl. Phys. B 65, 419–421 (1997).
    [CrossRef]
  9. R. W. McGowan, D. M. Giltner, and S. A. Lee, “Light force cooling, focusing, and nanometer-scale deposition of aluminum atoms,” Opt. Lett. 20, 2535–2537 (1995).
    [CrossRef] [PubMed]
  10. S. J. Rehse, R. W. McGowan, and S. A. Lee, “Optical manipulation of Group III atoms,” Appl. Phys. B 70, 657–660 (2000).
    [CrossRef]
  11. R. T. Daly, Jr., and J. H. Holloway, “Nuclear magnetic octupole moments of the stable gallium isotopes,” Phys. Rev. 96, 539–540 (1954).Specifically, the constants for the 42P3/2 level are, for 69Ga, A=190.79428(15) MHz and B=62.52247(30) MHz, and for 71Ga, A= 242.43395(20) MHz and B=39.39904(40) MHz.
    [CrossRef]
  12. K. H. Weber, J. Lawrenz, A. Obrebski, and K. Niemax, “High-resolution laser spectroscopy of aluminum, gallium, and thallium,” Phys. Scr. 35, 309–312 (1987).
    [CrossRef]
  13. C. E. Moore, Atomic Energy Levels (U.S. GPO, Washington, D.C., 1971), Vol. II.
  14. G. T. Emery, “Hyperfine structure,” in Atomic, Molecular, and Optical Physics Handbook, G. W. F. Drake, ed. (American Institute of Physics, Woodbury, N.Y., 1996), pp. 198–205.
  15. The pump laser was a Spectra Physics Nd:YVO4 Millenia™ laser. The tunable dye laser was a Coherent 699–21 with Rhodamine 6G dye.
  16. ADA (NH4H2AsO4) is a hygroscopic, temperature-tunable nonlinear second-harmonic-generation crystal. Our crystal was a 45° Z-cut crystal purchased from Quantum Technology, Inc. We have measured its second-harmonic-generation efficiency to be between 6×10−5 W/W2 and 2×10−4 W/W2. These numbers may not represent optimum second-harmonic-generation efficiency, as the focusing of the doubling cavity's waist was not optimized for this particular crystal.
  17. J. L. Hall and S. A. Lee, “Interferometric real-time display of cw dye laser wavelength with sub-Doppler accuracy,” Appl. Phys. Lett. 29, 367–369 (1976).
    [CrossRef]
  18. L. Hlousek, S. A. Lee, and W. M. Fairbank, Jr., “Precision wavelength measurements and new experimental Lamb shifts in helium,” Phys. Rev. Lett. 50, 328–331 (1983).
    [CrossRef]
  19. The tunable UV laser was linearly polarized, and the saturation intensities calculated for the transitions between mF levels of the F=3→F=4 transition are 202 mW/cm2 for the mF=0→mF=0 transition, 215 mW/cm2 for the mF=1→mF=1 transition, 269 mW/cm2 for the mF=2→mF=2 transition, and 464 mW/cm2 for the mF=3→mF=3 transition. These values are typical of the other F→F transitions as well.
  20. G. H. Fuller, “Nuclear spins and moments,” J. Phys. Chem. Ref. Data 5, 835–1016 (1976).
    [CrossRef]

2000 (1)

S. J. Rehse, R. W. McGowan, and S. A. Lee, “Optical manipulation of Group III atoms,” Appl. Phys. B 70, 657–660 (2000).
[CrossRef]

1997 (3)

U. Drodofsky, J. Stuhler, B. Brezger, T. Schulze, M. Drewsen, T. Pfau, and J. Mlynek, “Nanometerscale lithography with chromium atoms using light forces,” Microelectron. Eng. 35, 285–288 (1997).
[CrossRef]

F. Lison, H.-J. Adams, D. Haubrich, M. Kreis, S. Nowak, and D. Meschede, “Nanoscale atomic lithography with a cesium atomic beam,” Appl. Phys. B 65, 419–421 (1997).
[CrossRef]

J. H. Thywissen, K. S. Johnson, R. Younkin, N. H. Dekker, K. K. Berggren, A. P. Chu, M. Prentiss, and S. A. Lee, “Nanofabrication using neutral atomic beams,” J. Vac. Sci. Technol. B 15, 2093–2100 (1997).
[CrossRef]

1996 (1)

V. Natarajan, R. E. Behringer, and G. Timp, “High-contrast, high-resolution focusing of neutral atoms using light forces,” Phys. Rev. A 53, 4381–4385 (1996).
[CrossRef] [PubMed]

1995 (2)

R. W. McGowan, D. M. Giltner, and S. A. Lee, “Light force cooling, focusing, and nanometer-scale deposition of aluminum atoms,” Opt. Lett. 20, 2535–2537 (1995).
[CrossRef] [PubMed]

R. Gupta, J. J. McClelland, Z. J. Jabbour, and R. J. Celotta, “Nanofabrication of a two-dimensional array using laser-focused atomic deposition,” Appl. Phys. Lett. 67, 1378–1380 (1995).
[CrossRef]

1993 (1)

J. J. McClelland, R. E. Scholten, E. C. Palm, and R. J. Celotta, “Laser-focused atomic deposition,” Science 262, 877–880 (1993).
[CrossRef] [PubMed]

1992 (1)

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69, 1636–1639 (1992).
[CrossRef] [PubMed]

1987 (1)

K. H. Weber, J. Lawrenz, A. Obrebski, and K. Niemax, “High-resolution laser spectroscopy of aluminum, gallium, and thallium,” Phys. Scr. 35, 309–312 (1987).
[CrossRef]

1983 (1)

L. Hlousek, S. A. Lee, and W. M. Fairbank, Jr., “Precision wavelength measurements and new experimental Lamb shifts in helium,” Phys. Rev. Lett. 50, 328–331 (1983).
[CrossRef]

1976 (2)

G. H. Fuller, “Nuclear spins and moments,” J. Phys. Chem. Ref. Data 5, 835–1016 (1976).
[CrossRef]

J. L. Hall and S. A. Lee, “Interferometric real-time display of cw dye laser wavelength with sub-Doppler accuracy,” Appl. Phys. Lett. 29, 367–369 (1976).
[CrossRef]

Adams, H.-J.

F. Lison, H.-J. Adams, D. Haubrich, M. Kreis, S. Nowak, and D. Meschede, “Nanoscale atomic lithography with a cesium atomic beam,” Appl. Phys. B 65, 419–421 (1997).
[CrossRef]

Behringer, R. E.

V. Natarajan, R. E. Behringer, and G. Timp, “High-contrast, high-resolution focusing of neutral atoms using light forces,” Phys. Rev. A 53, 4381–4385 (1996).
[CrossRef] [PubMed]

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69, 1636–1639 (1992).
[CrossRef] [PubMed]

Berggren, K. K.

J. H. Thywissen, K. S. Johnson, R. Younkin, N. H. Dekker, K. K. Berggren, A. P. Chu, M. Prentiss, and S. A. Lee, “Nanofabrication using neutral atomic beams,” J. Vac. Sci. Technol. B 15, 2093–2100 (1997).
[CrossRef]

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69, 1636–1639 (1992).
[CrossRef] [PubMed]

Brezger, B.

U. Drodofsky, J. Stuhler, B. Brezger, T. Schulze, M. Drewsen, T. Pfau, and J. Mlynek, “Nanometerscale lithography with chromium atoms using light forces,” Microelectron. Eng. 35, 285–288 (1997).
[CrossRef]

Celotta, R. J.

R. Gupta, J. J. McClelland, Z. J. Jabbour, and R. J. Celotta, “Nanofabrication of a two-dimensional array using laser-focused atomic deposition,” Appl. Phys. Lett. 67, 1378–1380 (1995).
[CrossRef]

J. J. McClelland, R. E. Scholten, E. C. Palm, and R. J. Celotta, “Laser-focused atomic deposition,” Science 262, 877–880 (1993).
[CrossRef] [PubMed]

Chu, A. P.

J. H. Thywissen, K. S. Johnson, R. Younkin, N. H. Dekker, K. K. Berggren, A. P. Chu, M. Prentiss, and S. A. Lee, “Nanofabrication using neutral atomic beams,” J. Vac. Sci. Technol. B 15, 2093–2100 (1997).
[CrossRef]

Cunningham, J. E.

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69, 1636–1639 (1992).
[CrossRef] [PubMed]

Dekker, N. H.

J. H. Thywissen, K. S. Johnson, R. Younkin, N. H. Dekker, K. K. Berggren, A. P. Chu, M. Prentiss, and S. A. Lee, “Nanofabrication using neutral atomic beams,” J. Vac. Sci. Technol. B 15, 2093–2100 (1997).
[CrossRef]

Drewsen, M.

U. Drodofsky, J. Stuhler, B. Brezger, T. Schulze, M. Drewsen, T. Pfau, and J. Mlynek, “Nanometerscale lithography with chromium atoms using light forces,” Microelectron. Eng. 35, 285–288 (1997).
[CrossRef]

Drodofsky, U.

U. Drodofsky, J. Stuhler, B. Brezger, T. Schulze, M. Drewsen, T. Pfau, and J. Mlynek, “Nanometerscale lithography with chromium atoms using light forces,” Microelectron. Eng. 35, 285–288 (1997).
[CrossRef]

Fairbank Jr., W. M.

L. Hlousek, S. A. Lee, and W. M. Fairbank, Jr., “Precision wavelength measurements and new experimental Lamb shifts in helium,” Phys. Rev. Lett. 50, 328–331 (1983).
[CrossRef]

Fuller, G. H.

G. H. Fuller, “Nuclear spins and moments,” J. Phys. Chem. Ref. Data 5, 835–1016 (1976).
[CrossRef]

Giltner, D. M.

Gupta, R.

R. Gupta, J. J. McClelland, Z. J. Jabbour, and R. J. Celotta, “Nanofabrication of a two-dimensional array using laser-focused atomic deposition,” Appl. Phys. Lett. 67, 1378–1380 (1995).
[CrossRef]

Hall, J. L.

J. L. Hall and S. A. Lee, “Interferometric real-time display of cw dye laser wavelength with sub-Doppler accuracy,” Appl. Phys. Lett. 29, 367–369 (1976).
[CrossRef]

Haubrich, D.

F. Lison, H.-J. Adams, D. Haubrich, M. Kreis, S. Nowak, and D. Meschede, “Nanoscale atomic lithography with a cesium atomic beam,” Appl. Phys. B 65, 419–421 (1997).
[CrossRef]

Hlousek, L.

L. Hlousek, S. A. Lee, and W. M. Fairbank, Jr., “Precision wavelength measurements and new experimental Lamb shifts in helium,” Phys. Rev. Lett. 50, 328–331 (1983).
[CrossRef]

Jabbour, Z. J.

R. Gupta, J. J. McClelland, Z. J. Jabbour, and R. J. Celotta, “Nanofabrication of a two-dimensional array using laser-focused atomic deposition,” Appl. Phys. Lett. 67, 1378–1380 (1995).
[CrossRef]

Johnson, K. S.

J. H. Thywissen, K. S. Johnson, R. Younkin, N. H. Dekker, K. K. Berggren, A. P. Chu, M. Prentiss, and S. A. Lee, “Nanofabrication using neutral atomic beams,” J. Vac. Sci. Technol. B 15, 2093–2100 (1997).
[CrossRef]

Kreis, M.

F. Lison, H.-J. Adams, D. Haubrich, M. Kreis, S. Nowak, and D. Meschede, “Nanoscale atomic lithography with a cesium atomic beam,” Appl. Phys. B 65, 419–421 (1997).
[CrossRef]

Lawrenz, J.

K. H. Weber, J. Lawrenz, A. Obrebski, and K. Niemax, “High-resolution laser spectroscopy of aluminum, gallium, and thallium,” Phys. Scr. 35, 309–312 (1987).
[CrossRef]

Lee, S. A.

S. J. Rehse, R. W. McGowan, and S. A. Lee, “Optical manipulation of Group III atoms,” Appl. Phys. B 70, 657–660 (2000).
[CrossRef]

J. H. Thywissen, K. S. Johnson, R. Younkin, N. H. Dekker, K. K. Berggren, A. P. Chu, M. Prentiss, and S. A. Lee, “Nanofabrication using neutral atomic beams,” J. Vac. Sci. Technol. B 15, 2093–2100 (1997).
[CrossRef]

R. W. McGowan, D. M. Giltner, and S. A. Lee, “Light force cooling, focusing, and nanometer-scale deposition of aluminum atoms,” Opt. Lett. 20, 2535–2537 (1995).
[CrossRef] [PubMed]

L. Hlousek, S. A. Lee, and W. M. Fairbank, Jr., “Precision wavelength measurements and new experimental Lamb shifts in helium,” Phys. Rev. Lett. 50, 328–331 (1983).
[CrossRef]

J. L. Hall and S. A. Lee, “Interferometric real-time display of cw dye laser wavelength with sub-Doppler accuracy,” Appl. Phys. Lett. 29, 367–369 (1976).
[CrossRef]

Lison, F.

F. Lison, H.-J. Adams, D. Haubrich, M. Kreis, S. Nowak, and D. Meschede, “Nanoscale atomic lithography with a cesium atomic beam,” Appl. Phys. B 65, 419–421 (1997).
[CrossRef]

McClelland, J. J.

R. Gupta, J. J. McClelland, Z. J. Jabbour, and R. J. Celotta, “Nanofabrication of a two-dimensional array using laser-focused atomic deposition,” Appl. Phys. Lett. 67, 1378–1380 (1995).
[CrossRef]

J. J. McClelland, R. E. Scholten, E. C. Palm, and R. J. Celotta, “Laser-focused atomic deposition,” Science 262, 877–880 (1993).
[CrossRef] [PubMed]

McGowan, R. W.

Meschede, D.

F. Lison, H.-J. Adams, D. Haubrich, M. Kreis, S. Nowak, and D. Meschede, “Nanoscale atomic lithography with a cesium atomic beam,” Appl. Phys. B 65, 419–421 (1997).
[CrossRef]

Mlynek, J.

U. Drodofsky, J. Stuhler, B. Brezger, T. Schulze, M. Drewsen, T. Pfau, and J. Mlynek, “Nanometerscale lithography with chromium atoms using light forces,” Microelectron. Eng. 35, 285–288 (1997).
[CrossRef]

Natarajan, V.

V. Natarajan, R. E. Behringer, and G. Timp, “High-contrast, high-resolution focusing of neutral atoms using light forces,” Phys. Rev. A 53, 4381–4385 (1996).
[CrossRef] [PubMed]

Niemax, K.

K. H. Weber, J. Lawrenz, A. Obrebski, and K. Niemax, “High-resolution laser spectroscopy of aluminum, gallium, and thallium,” Phys. Scr. 35, 309–312 (1987).
[CrossRef]

Nowak, S.

F. Lison, H.-J. Adams, D. Haubrich, M. Kreis, S. Nowak, and D. Meschede, “Nanoscale atomic lithography with a cesium atomic beam,” Appl. Phys. B 65, 419–421 (1997).
[CrossRef]

Obrebski, A.

K. H. Weber, J. Lawrenz, A. Obrebski, and K. Niemax, “High-resolution laser spectroscopy of aluminum, gallium, and thallium,” Phys. Scr. 35, 309–312 (1987).
[CrossRef]

Palm, E. C.

J. J. McClelland, R. E. Scholten, E. C. Palm, and R. J. Celotta, “Laser-focused atomic deposition,” Science 262, 877–880 (1993).
[CrossRef] [PubMed]

Pfau, T.

U. Drodofsky, J. Stuhler, B. Brezger, T. Schulze, M. Drewsen, T. Pfau, and J. Mlynek, “Nanometerscale lithography with chromium atoms using light forces,” Microelectron. Eng. 35, 285–288 (1997).
[CrossRef]

Prentiss, M.

J. H. Thywissen, K. S. Johnson, R. Younkin, N. H. Dekker, K. K. Berggren, A. P. Chu, M. Prentiss, and S. A. Lee, “Nanofabrication using neutral atomic beams,” J. Vac. Sci. Technol. B 15, 2093–2100 (1997).
[CrossRef]

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69, 1636–1639 (1992).
[CrossRef] [PubMed]

Rehse, S. J.

S. J. Rehse, R. W. McGowan, and S. A. Lee, “Optical manipulation of Group III atoms,” Appl. Phys. B 70, 657–660 (2000).
[CrossRef]

Scholten, R. E.

J. J. McClelland, R. E. Scholten, E. C. Palm, and R. J. Celotta, “Laser-focused atomic deposition,” Science 262, 877–880 (1993).
[CrossRef] [PubMed]

Schulze, T.

U. Drodofsky, J. Stuhler, B. Brezger, T. Schulze, M. Drewsen, T. Pfau, and J. Mlynek, “Nanometerscale lithography with chromium atoms using light forces,” Microelectron. Eng. 35, 285–288 (1997).
[CrossRef]

Stuhler, J.

U. Drodofsky, J. Stuhler, B. Brezger, T. Schulze, M. Drewsen, T. Pfau, and J. Mlynek, “Nanometerscale lithography with chromium atoms using light forces,” Microelectron. Eng. 35, 285–288 (1997).
[CrossRef]

Tennant, D. M.

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69, 1636–1639 (1992).
[CrossRef] [PubMed]

Thywissen, J. H.

J. H. Thywissen, K. S. Johnson, R. Younkin, N. H. Dekker, K. K. Berggren, A. P. Chu, M. Prentiss, and S. A. Lee, “Nanofabrication using neutral atomic beams,” J. Vac. Sci. Technol. B 15, 2093–2100 (1997).
[CrossRef]

Timp, G.

V. Natarajan, R. E. Behringer, and G. Timp, “High-contrast, high-resolution focusing of neutral atoms using light forces,” Phys. Rev. A 53, 4381–4385 (1996).
[CrossRef] [PubMed]

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69, 1636–1639 (1992).
[CrossRef] [PubMed]

Weber, K. H.

K. H. Weber, J. Lawrenz, A. Obrebski, and K. Niemax, “High-resolution laser spectroscopy of aluminum, gallium, and thallium,” Phys. Scr. 35, 309–312 (1987).
[CrossRef]

Younkin, R.

J. H. Thywissen, K. S. Johnson, R. Younkin, N. H. Dekker, K. K. Berggren, A. P. Chu, M. Prentiss, and S. A. Lee, “Nanofabrication using neutral atomic beams,” J. Vac. Sci. Technol. B 15, 2093–2100 (1997).
[CrossRef]

Appl. Phys. B (2)

F. Lison, H.-J. Adams, D. Haubrich, M. Kreis, S. Nowak, and D. Meschede, “Nanoscale atomic lithography with a cesium atomic beam,” Appl. Phys. B 65, 419–421 (1997).
[CrossRef]

S. J. Rehse, R. W. McGowan, and S. A. Lee, “Optical manipulation of Group III atoms,” Appl. Phys. B 70, 657–660 (2000).
[CrossRef]

Appl. Phys. Lett. (2)

J. L. Hall and S. A. Lee, “Interferometric real-time display of cw dye laser wavelength with sub-Doppler accuracy,” Appl. Phys. Lett. 29, 367–369 (1976).
[CrossRef]

R. Gupta, J. J. McClelland, Z. J. Jabbour, and R. J. Celotta, “Nanofabrication of a two-dimensional array using laser-focused atomic deposition,” Appl. Phys. Lett. 67, 1378–1380 (1995).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

G. H. Fuller, “Nuclear spins and moments,” J. Phys. Chem. Ref. Data 5, 835–1016 (1976).
[CrossRef]

J. Vac. Sci. Technol. B (1)

J. H. Thywissen, K. S. Johnson, R. Younkin, N. H. Dekker, K. K. Berggren, A. P. Chu, M. Prentiss, and S. A. Lee, “Nanofabrication using neutral atomic beams,” J. Vac. Sci. Technol. B 15, 2093–2100 (1997).
[CrossRef]

Microelectron. Eng. (1)

U. Drodofsky, J. Stuhler, B. Brezger, T. Schulze, M. Drewsen, T. Pfau, and J. Mlynek, “Nanometerscale lithography with chromium atoms using light forces,” Microelectron. Eng. 35, 285–288 (1997).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (1)

V. Natarajan, R. E. Behringer, and G. Timp, “High-contrast, high-resolution focusing of neutral atoms using light forces,” Phys. Rev. A 53, 4381–4385 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

L. Hlousek, S. A. Lee, and W. M. Fairbank, Jr., “Precision wavelength measurements and new experimental Lamb shifts in helium,” Phys. Rev. Lett. 50, 328–331 (1983).
[CrossRef]

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69, 1636–1639 (1992).
[CrossRef] [PubMed]

Phys. Scr. (1)

K. H. Weber, J. Lawrenz, A. Obrebski, and K. Niemax, “High-resolution laser spectroscopy of aluminum, gallium, and thallium,” Phys. Scr. 35, 309–312 (1987).
[CrossRef]

Science (1)

J. J. McClelland, R. E. Scholten, E. C. Palm, and R. J. Celotta, “Laser-focused atomic deposition,” Science 262, 877–880 (1993).
[CrossRef] [PubMed]

Other (7)

For a discussion of light forces and applications, see, for example, the following special issues: P. Meystre and S. Stenholm, eds., “The mechanical effects of light” J. Opt. Soc. Am. B 2, 1706–1853 (1985); S. Chu and C. Wieman, eds., “Laser cooling and trapping of atoms,” J. Opt. Soc. Am. B 6, 2020–2270 (1989); J. Mlynek, V. Balykin, and P. Meystre, eds., “Optics and interferometry with atoms,” Appl. Phys. B 54, 319–485 (1992).See also Atom Optics, Proc. SPIE 2995, M. G. Prentiss and W. D. Phillips eds. (SPIE, Bellingham, Washington, 1997), pp. 2–300.

C. E. Moore, Atomic Energy Levels (U.S. GPO, Washington, D.C., 1971), Vol. II.

G. T. Emery, “Hyperfine structure,” in Atomic, Molecular, and Optical Physics Handbook, G. W. F. Drake, ed. (American Institute of Physics, Woodbury, N.Y., 1996), pp. 198–205.

The pump laser was a Spectra Physics Nd:YVO4 Millenia™ laser. The tunable dye laser was a Coherent 699–21 with Rhodamine 6G dye.

ADA (NH4H2AsO4) is a hygroscopic, temperature-tunable nonlinear second-harmonic-generation crystal. Our crystal was a 45° Z-cut crystal purchased from Quantum Technology, Inc. We have measured its second-harmonic-generation efficiency to be between 6×10−5 W/W2 and 2×10−4 W/W2. These numbers may not represent optimum second-harmonic-generation efficiency, as the focusing of the doubling cavity's waist was not optimized for this particular crystal.

The tunable UV laser was linearly polarized, and the saturation intensities calculated for the transitions between mF levels of the F=3→F=4 transition are 202 mW/cm2 for the mF=0→mF=0 transition, 215 mW/cm2 for the mF=1→mF=1 transition, 269 mW/cm2 for the mF=2→mF=2 transition, and 464 mW/cm2 for the mF=3→mF=3 transition. These values are typical of the other F→F transitions as well.

R. T. Daly, Jr., and J. H. Holloway, “Nuclear magnetic octupole moments of the stable gallium isotopes,” Phys. Rev. 96, 539–540 (1954).Specifically, the constants for the 42P3/2 level are, for 69Ga, A=190.79428(15) MHz and B=62.52247(30) MHz, and for 71Ga, A= 242.43395(20) MHz and B=39.39904(40) MHz.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Diagrams of the upper and the lower levels of the two Ga transitions studied in this paper: (a) the 4p2P3/24d2D5/2 transition and (b) the 4p2P3/24d2D3/2 transition. The letters (A, B, C, …) identify particular transitions allowed by use of linearly polarized laser excitation. The numbers indicate the relative theoretical intensities of the transitions.

Fig. 2
Fig. 2

Schematic of the Ga atomic-beam apparatus.

Fig. 3
Fig. 3

Laser-induced fluorescence spectrum (dotted curve) and the fitted spectrum (solid curve) for the (a) 4p2P3/24d2D5/2 and (b) 4p2P3/24d2D3/2 transitions. Frequency 0 denotes the center of mass of the  69Ga transition. Specific hyperfine transitions designated with a letter (A, B, C, …) are identified in Fig. 1. Transitions designated with an asterisk (*) are from the isotope  71Ga. In several instances one or more peaks overlap and are indistinguishable. In (b) the vertical scale of the blue end of the spectrum has been magnified.

Fig. 4
Fig. 4

(a) Laser-induced fluorescence spectrum for the 4p2P3/24d2D5/2 transition obtained in the present study. (b) Calculated peak locations obtained with the hyperfine constants reported in this paper. (c) Calculated peak locations obtained with the hyperfine constants reported in Ref. 12.

Tables (1)

Tables Icon

Table 1 Experimental Values of the Hyperfine Structure Constants and the Isotope Shifts

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΔE=A2[F(F+1)-J(J+1)-I(I+1)]+B4[32K(K+1)-2J(J+1)I(I+1)]J(2J-1)I(2I-1),

Metrics