Abstract

We study lifetime modifications induced by luminescent microcavities in the case of praseodymium-doped planar Ta2O5SiO2 multidielectric structures. From the experimental point of view we measure different decay times of the 1D2 excited level for different wavelengths in the inhomogeneous praseodymium emission spectrum. Decay times depend on the spectral detuning between considered ions and the cavity, and we observe significant changes around the resonance wavelength of the microcavity. The decay times are explained with an electromagnetic modal analysis of spontaneous emission developed in the case of less-loss microcavities.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Haroche, Fundamentals Systems in Quantum Optics, J. Dalibard, J. M. Raimond, and J. Zinn-Justin, eds. (North-Holland, Amsterdam, 1991), p. 767.
  2. P. R. Berman, Cavity Quantum Electrodynamics (Academic, New York, 1994).
  3. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  4. F. De Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955–2958 (1987).
    [CrossRef] [PubMed]
  5. D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58, 1320–1323 (1987).
    [CrossRef] [PubMed]
  6. K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1–2, 693–701 (1970).
    [CrossRef]
  7. M. Suzuki, H. Yokoyama, S. D. Brorson, and E. D. Ippen, “Observation of spontaneous emission lifetime change of dye-containing Langmuir–Blodgett films in optical microcavities,” Appl. Phys. Lett. 58, 998–1000 (1991).
    [CrossRef]
  8. A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, D. C. Jacobson, J. M. Poate, and G. J. Zydzik, “Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity,” Phys. Rev. Lett. 71, 517–520 (1993).
    [CrossRef] [PubMed]
  9. H. A. Macleod, Thin Film Optical Filters, 2nd ed. (Hilger, London, 1986).
  10. G. Björk, S. Michida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).
    [CrossRef] [PubMed]
  11. E. F. Schubert, A. M. Vredenberg, N. E. J. Hunt, Y. H. Wong, P. C. Becker, J. M. Poate, D. C. Jacobson, L. C. Feldman, and G. J. Zydzik, “Giant enhancement of luminescence intensity in Er-doped Si/SiO2 resonant cavities,” Appl. Phys. Lett. 61, 1381–1383 (1992).
    [CrossRef]
  12. A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82, 1–39 (1997).
    [CrossRef]
  13. D. G. Deppe and C. Lei, “Spontaneous emission from a dipole in a semiconductor microcavity,” J. Appl. Phys. 70, 3443–3448 (1991).
    [CrossRef]
  14. H. Rigneault, S. Robert, C. Amra, F. Lamarque, S. Monneret, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission of rare earth ions confined in planar multilayer microcavities,” Proc. SPIE 3133, 78–87 (1997).
    [CrossRef]
  15. H. K. Pulker, Coating on Glass (Elsevier, Amsterdam, 1994), pp. 247–256.
  16. S. Robert, H. Rigneault, and F. Lamarque, “Spontaneous emission properties of Pr ions located in planar dielectric microcavities,” J. Opt. Soc. Am. B 15, 1773–1779 (1998).
    [CrossRef]
  17. P. N. Favennec, “L’implantation ionique pour la microélectronique et pour l’optique,” (Masson, Paris, 1993), Chap. 3.
  18. H. Rigneault, F. Flory, S. Monneret, S. Robert, and L. Roux, “Fluorescence of Ta2O5 thin films doped by keV Er implantation: application to microcavities,” Appl. Opt. 35, 5005–5012 (1996).
    [CrossRef] [PubMed]
  19. G. H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals (Wiley, New York, 1968).
  20. H. Rigneault, B. Jacquier, P. Moretti, A. M. Jurdyc, A. Belarouci, A. Auffret, and S. Robert, “Optical properties of dielectric microcavities implanted with rare earth atoms,” Mater. Sci. Forum 239–241, 717–720 (1997).
    [CrossRef]
  21. A. Belarouci, F. Menchini, B. Jacquier, P. Moretti, H. Rigneault, and S. Robert, “Luminescence properties of Pr3+-doped optical microcavities,” J. Lumin. 83–84, 275–282 (1999).
    [CrossRef]
  22. C. Amra and S. Maure, “Electromagnetic power provided by sources within multilayer optics: free space and modal patterns,” J. Opt. Soc. Am. A 14, 3102–3113 (1997).
    [CrossRef]
  23. C. Amra and S. Maure, “Mutual coherence and conical pattern of sources optimally excited within multilayer optics,” J. Opt. Soc. Am. A 14, 3114–3124 (1997).
    [CrossRef]
  24. H. Rigneault, S. Maure, and C. Amra, “Spontaneous emission in multilayer microcavities: modal theory extended with Fourier–Green analysis for dissipative structures,” Pure Appl. Opt. 7, 549–563 (1998).
    [CrossRef]
  25. H. Rigneault and S. Monneret, “Modal analysis of spontaneous emission in a planar microcavity,” Phys. Rev. A 54, 2356–2368 (1996).
    [CrossRef] [PubMed]
  26. N. J. Hunt, E. F. Schubert, D. L. Sivco, A. Y. Cho, R. F. Kopf, R. A. Logan, and G. J. Zydzik, “Spontaneous emission control in planar structures Er3+ in Si/SiO2 microcavities,” in Confined Electrons and Photons: New Physics and Applications, C. Weisbuch and E. Burstein, eds., Vol. 340 of NATO ASI Series (Plenum, New York, 1995), pp. 715–728.
    [CrossRef]
  27. E. F. Schubert, N. E. J. Hunt, A. M. Vredenberg, T. D. Harris, J. M. Poate, D. C. Jacobson, Y. H. Wong, and G. J. Zydzik, “Enhanced photoluminescence by resonant absorption in Er-doped Si/SiO2 microcavities,” Appl. Phys. Lett. 63, 2603–2605 (1993).
    [CrossRef]
  28. H. Rigneault, C. Amra, S. Robert, C. Begon, F. Lamarque, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission into planar multi-dielectric microcavities: theoretical and experimental analysis of rare earth ions radiations,” Opt. Mater. 11, 167–180 (1999).
    [CrossRef]
  29. R. H. Jordan, L. J. Rothberg, A. Dodabalapur, and R. E. Slusher, “Efficiency enhancement of microcavity organic light emitting diodes,” Appl. Phys. Lett. 69, 1997–1999 (1999).
    [CrossRef]
  30. A. Remillieux, B. Jacquier, C. Linarès, C. Lesergent, S. Artigaud, D. Bayart, L. Hamon, and J. L. Beylat, “Upconversion mechanisms of a praseodymium-doped fluoride fiber amplifier,” J. Phys. D 29, 963–974 (1996).
    [CrossRef]
  31. E. Snoeks, A. Lajendijk, and A. Polman, “Measuring and modifying the spontaneous emission rate of erbium near an interface,” Phys. Rev. Lett. 74, 2459–2463 (1995).
    [CrossRef] [PubMed]

1999 (3)

H. Rigneault, C. Amra, S. Robert, C. Begon, F. Lamarque, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission into planar multi-dielectric microcavities: theoretical and experimental analysis of rare earth ions radiations,” Opt. Mater. 11, 167–180 (1999).
[CrossRef]

R. H. Jordan, L. J. Rothberg, A. Dodabalapur, and R. E. Slusher, “Efficiency enhancement of microcavity organic light emitting diodes,” Appl. Phys. Lett. 69, 1997–1999 (1999).
[CrossRef]

A. Belarouci, F. Menchini, B. Jacquier, P. Moretti, H. Rigneault, and S. Robert, “Luminescence properties of Pr3+-doped optical microcavities,” J. Lumin. 83–84, 275–282 (1999).
[CrossRef]

1998 (2)

S. Robert, H. Rigneault, and F. Lamarque, “Spontaneous emission properties of Pr ions located in planar dielectric microcavities,” J. Opt. Soc. Am. B 15, 1773–1779 (1998).
[CrossRef]

H. Rigneault, S. Maure, and C. Amra, “Spontaneous emission in multilayer microcavities: modal theory extended with Fourier–Green analysis for dissipative structures,” Pure Appl. Opt. 7, 549–563 (1998).
[CrossRef]

1997 (5)

H. Rigneault, S. Robert, C. Amra, F. Lamarque, S. Monneret, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission of rare earth ions confined in planar multilayer microcavities,” Proc. SPIE 3133, 78–87 (1997).
[CrossRef]

A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82, 1–39 (1997).
[CrossRef]

C. Amra and S. Maure, “Electromagnetic power provided by sources within multilayer optics: free space and modal patterns,” J. Opt. Soc. Am. A 14, 3102–3113 (1997).
[CrossRef]

C. Amra and S. Maure, “Mutual coherence and conical pattern of sources optimally excited within multilayer optics,” J. Opt. Soc. Am. A 14, 3114–3124 (1997).
[CrossRef]

H. Rigneault, B. Jacquier, P. Moretti, A. M. Jurdyc, A. Belarouci, A. Auffret, and S. Robert, “Optical properties of dielectric microcavities implanted with rare earth atoms,” Mater. Sci. Forum 239–241, 717–720 (1997).
[CrossRef]

1996 (3)

H. Rigneault, F. Flory, S. Monneret, S. Robert, and L. Roux, “Fluorescence of Ta2O5 thin films doped by keV Er implantation: application to microcavities,” Appl. Opt. 35, 5005–5012 (1996).
[CrossRef] [PubMed]

H. Rigneault and S. Monneret, “Modal analysis of spontaneous emission in a planar microcavity,” Phys. Rev. A 54, 2356–2368 (1996).
[CrossRef] [PubMed]

A. Remillieux, B. Jacquier, C. Linarès, C. Lesergent, S. Artigaud, D. Bayart, L. Hamon, and J. L. Beylat, “Upconversion mechanisms of a praseodymium-doped fluoride fiber amplifier,” J. Phys. D 29, 963–974 (1996).
[CrossRef]

1995 (1)

E. Snoeks, A. Lajendijk, and A. Polman, “Measuring and modifying the spontaneous emission rate of erbium near an interface,” Phys. Rev. Lett. 74, 2459–2463 (1995).
[CrossRef] [PubMed]

1993 (2)

E. F. Schubert, N. E. J. Hunt, A. M. Vredenberg, T. D. Harris, J. M. Poate, D. C. Jacobson, Y. H. Wong, and G. J. Zydzik, “Enhanced photoluminescence by resonant absorption in Er-doped Si/SiO2 microcavities,” Appl. Phys. Lett. 63, 2603–2605 (1993).
[CrossRef]

A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, D. C. Jacobson, J. M. Poate, and G. J. Zydzik, “Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity,” Phys. Rev. Lett. 71, 517–520 (1993).
[CrossRef] [PubMed]

1992 (1)

E. F. Schubert, A. M. Vredenberg, N. E. J. Hunt, Y. H. Wong, P. C. Becker, J. M. Poate, D. C. Jacobson, L. C. Feldman, and G. J. Zydzik, “Giant enhancement of luminescence intensity in Er-doped Si/SiO2 resonant cavities,” Appl. Phys. Lett. 61, 1381–1383 (1992).
[CrossRef]

1991 (3)

G. Björk, S. Michida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).
[CrossRef] [PubMed]

D. G. Deppe and C. Lei, “Spontaneous emission from a dipole in a semiconductor microcavity,” J. Appl. Phys. 70, 3443–3448 (1991).
[CrossRef]

M. Suzuki, H. Yokoyama, S. D. Brorson, and E. D. Ippen, “Observation of spontaneous emission lifetime change of dye-containing Langmuir–Blodgett films in optical microcavities,” Appl. Phys. Lett. 58, 998–1000 (1991).
[CrossRef]

1987 (2)

F. De Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955–2958 (1987).
[CrossRef] [PubMed]

D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58, 1320–1323 (1987).
[CrossRef] [PubMed]

1970 (1)

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1–2, 693–701 (1970).
[CrossRef]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Amra, C.

H. Rigneault, C. Amra, S. Robert, C. Begon, F. Lamarque, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission into planar multi-dielectric microcavities: theoretical and experimental analysis of rare earth ions radiations,” Opt. Mater. 11, 167–180 (1999).
[CrossRef]

H. Rigneault, S. Maure, and C. Amra, “Spontaneous emission in multilayer microcavities: modal theory extended with Fourier–Green analysis for dissipative structures,” Pure Appl. Opt. 7, 549–563 (1998).
[CrossRef]

H. Rigneault, S. Robert, C. Amra, F. Lamarque, S. Monneret, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission of rare earth ions confined in planar multilayer microcavities,” Proc. SPIE 3133, 78–87 (1997).
[CrossRef]

C. Amra and S. Maure, “Mutual coherence and conical pattern of sources optimally excited within multilayer optics,” J. Opt. Soc. Am. A 14, 3114–3124 (1997).
[CrossRef]

C. Amra and S. Maure, “Electromagnetic power provided by sources within multilayer optics: free space and modal patterns,” J. Opt. Soc. Am. A 14, 3102–3113 (1997).
[CrossRef]

Artigaud, S.

A. Remillieux, B. Jacquier, C. Linarès, C. Lesergent, S. Artigaud, D. Bayart, L. Hamon, and J. L. Beylat, “Upconversion mechanisms of a praseodymium-doped fluoride fiber amplifier,” J. Phys. D 29, 963–974 (1996).
[CrossRef]

Auffret, A.

H. Rigneault, B. Jacquier, P. Moretti, A. M. Jurdyc, A. Belarouci, A. Auffret, and S. Robert, “Optical properties of dielectric microcavities implanted with rare earth atoms,” Mater. Sci. Forum 239–241, 717–720 (1997).
[CrossRef]

Bayart, D.

A. Remillieux, B. Jacquier, C. Linarès, C. Lesergent, S. Artigaud, D. Bayart, L. Hamon, and J. L. Beylat, “Upconversion mechanisms of a praseodymium-doped fluoride fiber amplifier,” J. Phys. D 29, 963–974 (1996).
[CrossRef]

Becker, P. C.

E. F. Schubert, A. M. Vredenberg, N. E. J. Hunt, Y. H. Wong, P. C. Becker, J. M. Poate, D. C. Jacobson, L. C. Feldman, and G. J. Zydzik, “Giant enhancement of luminescence intensity in Er-doped Si/SiO2 resonant cavities,” Appl. Phys. Lett. 61, 1381–1383 (1992).
[CrossRef]

Begon, C.

H. Rigneault, C. Amra, S. Robert, C. Begon, F. Lamarque, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission into planar multi-dielectric microcavities: theoretical and experimental analysis of rare earth ions radiations,” Opt. Mater. 11, 167–180 (1999).
[CrossRef]

Belarouci, A.

H. Rigneault, C. Amra, S. Robert, C. Begon, F. Lamarque, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission into planar multi-dielectric microcavities: theoretical and experimental analysis of rare earth ions radiations,” Opt. Mater. 11, 167–180 (1999).
[CrossRef]

A. Belarouci, F. Menchini, B. Jacquier, P. Moretti, H. Rigneault, and S. Robert, “Luminescence properties of Pr3+-doped optical microcavities,” J. Lumin. 83–84, 275–282 (1999).
[CrossRef]

H. Rigneault, B. Jacquier, P. Moretti, A. M. Jurdyc, A. Belarouci, A. Auffret, and S. Robert, “Optical properties of dielectric microcavities implanted with rare earth atoms,” Mater. Sci. Forum 239–241, 717–720 (1997).
[CrossRef]

H. Rigneault, S. Robert, C. Amra, F. Lamarque, S. Monneret, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission of rare earth ions confined in planar multilayer microcavities,” Proc. SPIE 3133, 78–87 (1997).
[CrossRef]

Beylat, J. L.

A. Remillieux, B. Jacquier, C. Linarès, C. Lesergent, S. Artigaud, D. Bayart, L. Hamon, and J. L. Beylat, “Upconversion mechanisms of a praseodymium-doped fluoride fiber amplifier,” J. Phys. D 29, 963–974 (1996).
[CrossRef]

Björk, G.

G. Björk, S. Michida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).
[CrossRef] [PubMed]

Brorson, S. D.

M. Suzuki, H. Yokoyama, S. D. Brorson, and E. D. Ippen, “Observation of spontaneous emission lifetime change of dye-containing Langmuir–Blodgett films in optical microcavities,” Appl. Phys. Lett. 58, 998–1000 (1991).
[CrossRef]

Childs, J. J.

D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58, 1320–1323 (1987).
[CrossRef] [PubMed]

De Martini, F.

F. De Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955–2958 (1987).
[CrossRef] [PubMed]

Deppe, D. G.

D. G. Deppe and C. Lei, “Spontaneous emission from a dipole in a semiconductor microcavity,” J. Appl. Phys. 70, 3443–3448 (1991).
[CrossRef]

Dodabalapur, A.

R. H. Jordan, L. J. Rothberg, A. Dodabalapur, and R. E. Slusher, “Efficiency enhancement of microcavity organic light emitting diodes,” Appl. Phys. Lett. 69, 1997–1999 (1999).
[CrossRef]

Drexhage, K. H.

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1–2, 693–701 (1970).
[CrossRef]

Feld, M. S.

D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58, 1320–1323 (1987).
[CrossRef] [PubMed]

Feldman, L. C.

E. F. Schubert, A. M. Vredenberg, N. E. J. Hunt, Y. H. Wong, P. C. Becker, J. M. Poate, D. C. Jacobson, L. C. Feldman, and G. J. Zydzik, “Giant enhancement of luminescence intensity in Er-doped Si/SiO2 resonant cavities,” Appl. Phys. Lett. 61, 1381–1383 (1992).
[CrossRef]

Flory, F.

Hamon, L.

A. Remillieux, B. Jacquier, C. Linarès, C. Lesergent, S. Artigaud, D. Bayart, L. Hamon, and J. L. Beylat, “Upconversion mechanisms of a praseodymium-doped fluoride fiber amplifier,” J. Phys. D 29, 963–974 (1996).
[CrossRef]

Harris, T. D.

E. F. Schubert, N. E. J. Hunt, A. M. Vredenberg, T. D. Harris, J. M. Poate, D. C. Jacobson, Y. H. Wong, and G. J. Zydzik, “Enhanced photoluminescence by resonant absorption in Er-doped Si/SiO2 microcavities,” Appl. Phys. Lett. 63, 2603–2605 (1993).
[CrossRef]

Heinzen, D. J.

D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58, 1320–1323 (1987).
[CrossRef] [PubMed]

Hunt, N. E. J.

A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, D. C. Jacobson, J. M. Poate, and G. J. Zydzik, “Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity,” Phys. Rev. Lett. 71, 517–520 (1993).
[CrossRef] [PubMed]

E. F. Schubert, N. E. J. Hunt, A. M. Vredenberg, T. D. Harris, J. M. Poate, D. C. Jacobson, Y. H. Wong, and G. J. Zydzik, “Enhanced photoluminescence by resonant absorption in Er-doped Si/SiO2 microcavities,” Appl. Phys. Lett. 63, 2603–2605 (1993).
[CrossRef]

E. F. Schubert, A. M. Vredenberg, N. E. J. Hunt, Y. H. Wong, P. C. Becker, J. M. Poate, D. C. Jacobson, L. C. Feldman, and G. J. Zydzik, “Giant enhancement of luminescence intensity in Er-doped Si/SiO2 resonant cavities,” Appl. Phys. Lett. 61, 1381–1383 (1992).
[CrossRef]

Igeta, K.

G. Björk, S. Michida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).
[CrossRef] [PubMed]

Innocenti, G.

F. De Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955–2958 (1987).
[CrossRef] [PubMed]

Ippen, E. D.

M. Suzuki, H. Yokoyama, S. D. Brorson, and E. D. Ippen, “Observation of spontaneous emission lifetime change of dye-containing Langmuir–Blodgett films in optical microcavities,” Appl. Phys. Lett. 58, 998–1000 (1991).
[CrossRef]

Jacobovitz, G. R.

F. De Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955–2958 (1987).
[CrossRef] [PubMed]

Jacobson, D. C.

A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, D. C. Jacobson, J. M. Poate, and G. J. Zydzik, “Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity,” Phys. Rev. Lett. 71, 517–520 (1993).
[CrossRef] [PubMed]

E. F. Schubert, N. E. J. Hunt, A. M. Vredenberg, T. D. Harris, J. M. Poate, D. C. Jacobson, Y. H. Wong, and G. J. Zydzik, “Enhanced photoluminescence by resonant absorption in Er-doped Si/SiO2 microcavities,” Appl. Phys. Lett. 63, 2603–2605 (1993).
[CrossRef]

E. F. Schubert, A. M. Vredenberg, N. E. J. Hunt, Y. H. Wong, P. C. Becker, J. M. Poate, D. C. Jacobson, L. C. Feldman, and G. J. Zydzik, “Giant enhancement of luminescence intensity in Er-doped Si/SiO2 resonant cavities,” Appl. Phys. Lett. 61, 1381–1383 (1992).
[CrossRef]

Jacquier, B.

H. Rigneault, C. Amra, S. Robert, C. Begon, F. Lamarque, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission into planar multi-dielectric microcavities: theoretical and experimental analysis of rare earth ions radiations,” Opt. Mater. 11, 167–180 (1999).
[CrossRef]

A. Belarouci, F. Menchini, B. Jacquier, P. Moretti, H. Rigneault, and S. Robert, “Luminescence properties of Pr3+-doped optical microcavities,” J. Lumin. 83–84, 275–282 (1999).
[CrossRef]

H. Rigneault, B. Jacquier, P. Moretti, A. M. Jurdyc, A. Belarouci, A. Auffret, and S. Robert, “Optical properties of dielectric microcavities implanted with rare earth atoms,” Mater. Sci. Forum 239–241, 717–720 (1997).
[CrossRef]

H. Rigneault, S. Robert, C. Amra, F. Lamarque, S. Monneret, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission of rare earth ions confined in planar multilayer microcavities,” Proc. SPIE 3133, 78–87 (1997).
[CrossRef]

A. Remillieux, B. Jacquier, C. Linarès, C. Lesergent, S. Artigaud, D. Bayart, L. Hamon, and J. L. Beylat, “Upconversion mechanisms of a praseodymium-doped fluoride fiber amplifier,” J. Phys. D 29, 963–974 (1996).
[CrossRef]

Jordan, R. H.

R. H. Jordan, L. J. Rothberg, A. Dodabalapur, and R. E. Slusher, “Efficiency enhancement of microcavity organic light emitting diodes,” Appl. Phys. Lett. 69, 1997–1999 (1999).
[CrossRef]

Jurdyc, A. M.

H. Rigneault, C. Amra, S. Robert, C. Begon, F. Lamarque, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission into planar multi-dielectric microcavities: theoretical and experimental analysis of rare earth ions radiations,” Opt. Mater. 11, 167–180 (1999).
[CrossRef]

H. Rigneault, S. Robert, C. Amra, F. Lamarque, S. Monneret, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission of rare earth ions confined in planar multilayer microcavities,” Proc. SPIE 3133, 78–87 (1997).
[CrossRef]

H. Rigneault, B. Jacquier, P. Moretti, A. M. Jurdyc, A. Belarouci, A. Auffret, and S. Robert, “Optical properties of dielectric microcavities implanted with rare earth atoms,” Mater. Sci. Forum 239–241, 717–720 (1997).
[CrossRef]

Lajendijk, A.

E. Snoeks, A. Lajendijk, and A. Polman, “Measuring and modifying the spontaneous emission rate of erbium near an interface,” Phys. Rev. Lett. 74, 2459–2463 (1995).
[CrossRef] [PubMed]

Lamarque, F.

H. Rigneault, C. Amra, S. Robert, C. Begon, F. Lamarque, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission into planar multi-dielectric microcavities: theoretical and experimental analysis of rare earth ions radiations,” Opt. Mater. 11, 167–180 (1999).
[CrossRef]

S. Robert, H. Rigneault, and F. Lamarque, “Spontaneous emission properties of Pr ions located in planar dielectric microcavities,” J. Opt. Soc. Am. B 15, 1773–1779 (1998).
[CrossRef]

H. Rigneault, S. Robert, C. Amra, F. Lamarque, S. Monneret, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission of rare earth ions confined in planar multilayer microcavities,” Proc. SPIE 3133, 78–87 (1997).
[CrossRef]

Lei, C.

D. G. Deppe and C. Lei, “Spontaneous emission from a dipole in a semiconductor microcavity,” J. Appl. Phys. 70, 3443–3448 (1991).
[CrossRef]

Lesergent, C.

A. Remillieux, B. Jacquier, C. Linarès, C. Lesergent, S. Artigaud, D. Bayart, L. Hamon, and J. L. Beylat, “Upconversion mechanisms of a praseodymium-doped fluoride fiber amplifier,” J. Phys. D 29, 963–974 (1996).
[CrossRef]

Linarès, C.

A. Remillieux, B. Jacquier, C. Linarès, C. Lesergent, S. Artigaud, D. Bayart, L. Hamon, and J. L. Beylat, “Upconversion mechanisms of a praseodymium-doped fluoride fiber amplifier,” J. Phys. D 29, 963–974 (1996).
[CrossRef]

Mataloni, P.

F. De Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955–2958 (1987).
[CrossRef] [PubMed]

Maure, S.

Menchini, F.

A. Belarouci, F. Menchini, B. Jacquier, P. Moretti, H. Rigneault, and S. Robert, “Luminescence properties of Pr3+-doped optical microcavities,” J. Lumin. 83–84, 275–282 (1999).
[CrossRef]

Michida, S.

G. Björk, S. Michida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).
[CrossRef] [PubMed]

Monneret, S.

H. Rigneault, S. Robert, C. Amra, F. Lamarque, S. Monneret, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission of rare earth ions confined in planar multilayer microcavities,” Proc. SPIE 3133, 78–87 (1997).
[CrossRef]

H. Rigneault and S. Monneret, “Modal analysis of spontaneous emission in a planar microcavity,” Phys. Rev. A 54, 2356–2368 (1996).
[CrossRef] [PubMed]

H. Rigneault, F. Flory, S. Monneret, S. Robert, and L. Roux, “Fluorescence of Ta2O5 thin films doped by keV Er implantation: application to microcavities,” Appl. Opt. 35, 5005–5012 (1996).
[CrossRef] [PubMed]

Moretti, P.

A. Belarouci, F. Menchini, B. Jacquier, P. Moretti, H. Rigneault, and S. Robert, “Luminescence properties of Pr3+-doped optical microcavities,” J. Lumin. 83–84, 275–282 (1999).
[CrossRef]

H. Rigneault, C. Amra, S. Robert, C. Begon, F. Lamarque, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission into planar multi-dielectric microcavities: theoretical and experimental analysis of rare earth ions radiations,” Opt. Mater. 11, 167–180 (1999).
[CrossRef]

H. Rigneault, S. Robert, C. Amra, F. Lamarque, S. Monneret, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission of rare earth ions confined in planar multilayer microcavities,” Proc. SPIE 3133, 78–87 (1997).
[CrossRef]

H. Rigneault, B. Jacquier, P. Moretti, A. M. Jurdyc, A. Belarouci, A. Auffret, and S. Robert, “Optical properties of dielectric microcavities implanted with rare earth atoms,” Mater. Sci. Forum 239–241, 717–720 (1997).
[CrossRef]

Poate, J. M.

E. F. Schubert, N. E. J. Hunt, A. M. Vredenberg, T. D. Harris, J. M. Poate, D. C. Jacobson, Y. H. Wong, and G. J. Zydzik, “Enhanced photoluminescence by resonant absorption in Er-doped Si/SiO2 microcavities,” Appl. Phys. Lett. 63, 2603–2605 (1993).
[CrossRef]

A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, D. C. Jacobson, J. M. Poate, and G. J. Zydzik, “Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity,” Phys. Rev. Lett. 71, 517–520 (1993).
[CrossRef] [PubMed]

E. F. Schubert, A. M. Vredenberg, N. E. J. Hunt, Y. H. Wong, P. C. Becker, J. M. Poate, D. C. Jacobson, L. C. Feldman, and G. J. Zydzik, “Giant enhancement of luminescence intensity in Er-doped Si/SiO2 resonant cavities,” Appl. Phys. Lett. 61, 1381–1383 (1992).
[CrossRef]

Polman, A.

A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82, 1–39 (1997).
[CrossRef]

E. Snoeks, A. Lajendijk, and A. Polman, “Measuring and modifying the spontaneous emission rate of erbium near an interface,” Phys. Rev. Lett. 74, 2459–2463 (1995).
[CrossRef] [PubMed]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Remillieux, A.

A. Remillieux, B. Jacquier, C. Linarès, C. Lesergent, S. Artigaud, D. Bayart, L. Hamon, and J. L. Beylat, “Upconversion mechanisms of a praseodymium-doped fluoride fiber amplifier,” J. Phys. D 29, 963–974 (1996).
[CrossRef]

Rigneault, H.

H. Rigneault, C. Amra, S. Robert, C. Begon, F. Lamarque, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission into planar multi-dielectric microcavities: theoretical and experimental analysis of rare earth ions radiations,” Opt. Mater. 11, 167–180 (1999).
[CrossRef]

A. Belarouci, F. Menchini, B. Jacquier, P. Moretti, H. Rigneault, and S. Robert, “Luminescence properties of Pr3+-doped optical microcavities,” J. Lumin. 83–84, 275–282 (1999).
[CrossRef]

S. Robert, H. Rigneault, and F. Lamarque, “Spontaneous emission properties of Pr ions located in planar dielectric microcavities,” J. Opt. Soc. Am. B 15, 1773–1779 (1998).
[CrossRef]

H. Rigneault, S. Maure, and C. Amra, “Spontaneous emission in multilayer microcavities: modal theory extended with Fourier–Green analysis for dissipative structures,” Pure Appl. Opt. 7, 549–563 (1998).
[CrossRef]

H. Rigneault, S. Robert, C. Amra, F. Lamarque, S. Monneret, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission of rare earth ions confined in planar multilayer microcavities,” Proc. SPIE 3133, 78–87 (1997).
[CrossRef]

H. Rigneault, B. Jacquier, P. Moretti, A. M. Jurdyc, A. Belarouci, A. Auffret, and S. Robert, “Optical properties of dielectric microcavities implanted with rare earth atoms,” Mater. Sci. Forum 239–241, 717–720 (1997).
[CrossRef]

H. Rigneault, F. Flory, S. Monneret, S. Robert, and L. Roux, “Fluorescence of Ta2O5 thin films doped by keV Er implantation: application to microcavities,” Appl. Opt. 35, 5005–5012 (1996).
[CrossRef] [PubMed]

H. Rigneault and S. Monneret, “Modal analysis of spontaneous emission in a planar microcavity,” Phys. Rev. A 54, 2356–2368 (1996).
[CrossRef] [PubMed]

Robert, S.

H. Rigneault, C. Amra, S. Robert, C. Begon, F. Lamarque, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission into planar multi-dielectric microcavities: theoretical and experimental analysis of rare earth ions radiations,” Opt. Mater. 11, 167–180 (1999).
[CrossRef]

A. Belarouci, F. Menchini, B. Jacquier, P. Moretti, H. Rigneault, and S. Robert, “Luminescence properties of Pr3+-doped optical microcavities,” J. Lumin. 83–84, 275–282 (1999).
[CrossRef]

S. Robert, H. Rigneault, and F. Lamarque, “Spontaneous emission properties of Pr ions located in planar dielectric microcavities,” J. Opt. Soc. Am. B 15, 1773–1779 (1998).
[CrossRef]

H. Rigneault, B. Jacquier, P. Moretti, A. M. Jurdyc, A. Belarouci, A. Auffret, and S. Robert, “Optical properties of dielectric microcavities implanted with rare earth atoms,” Mater. Sci. Forum 239–241, 717–720 (1997).
[CrossRef]

H. Rigneault, S. Robert, C. Amra, F. Lamarque, S. Monneret, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission of rare earth ions confined in planar multilayer microcavities,” Proc. SPIE 3133, 78–87 (1997).
[CrossRef]

H. Rigneault, F. Flory, S. Monneret, S. Robert, and L. Roux, “Fluorescence of Ta2O5 thin films doped by keV Er implantation: application to microcavities,” Appl. Opt. 35, 5005–5012 (1996).
[CrossRef] [PubMed]

Rothberg, L. J.

R. H. Jordan, L. J. Rothberg, A. Dodabalapur, and R. E. Slusher, “Efficiency enhancement of microcavity organic light emitting diodes,” Appl. Phys. Lett. 69, 1997–1999 (1999).
[CrossRef]

Roux, L.

Schubert, E. F.

E. F. Schubert, N. E. J. Hunt, A. M. Vredenberg, T. D. Harris, J. M. Poate, D. C. Jacobson, Y. H. Wong, and G. J. Zydzik, “Enhanced photoluminescence by resonant absorption in Er-doped Si/SiO2 microcavities,” Appl. Phys. Lett. 63, 2603–2605 (1993).
[CrossRef]

A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, D. C. Jacobson, J. M. Poate, and G. J. Zydzik, “Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity,” Phys. Rev. Lett. 71, 517–520 (1993).
[CrossRef] [PubMed]

E. F. Schubert, A. M. Vredenberg, N. E. J. Hunt, Y. H. Wong, P. C. Becker, J. M. Poate, D. C. Jacobson, L. C. Feldman, and G. J. Zydzik, “Giant enhancement of luminescence intensity in Er-doped Si/SiO2 resonant cavities,” Appl. Phys. Lett. 61, 1381–1383 (1992).
[CrossRef]

Slusher, R. E.

R. H. Jordan, L. J. Rothberg, A. Dodabalapur, and R. E. Slusher, “Efficiency enhancement of microcavity organic light emitting diodes,” Appl. Phys. Lett. 69, 1997–1999 (1999).
[CrossRef]

Snoeks, E.

E. Snoeks, A. Lajendijk, and A. Polman, “Measuring and modifying the spontaneous emission rate of erbium near an interface,” Phys. Rev. Lett. 74, 2459–2463 (1995).
[CrossRef] [PubMed]

Suzuki, M.

M. Suzuki, H. Yokoyama, S. D. Brorson, and E. D. Ippen, “Observation of spontaneous emission lifetime change of dye-containing Langmuir–Blodgett films in optical microcavities,” Appl. Phys. Lett. 58, 998–1000 (1991).
[CrossRef]

Thomas, J. E.

D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58, 1320–1323 (1987).
[CrossRef] [PubMed]

Vredenberg, A. M.

A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, D. C. Jacobson, J. M. Poate, and G. J. Zydzik, “Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity,” Phys. Rev. Lett. 71, 517–520 (1993).
[CrossRef] [PubMed]

E. F. Schubert, N. E. J. Hunt, A. M. Vredenberg, T. D. Harris, J. M. Poate, D. C. Jacobson, Y. H. Wong, and G. J. Zydzik, “Enhanced photoluminescence by resonant absorption in Er-doped Si/SiO2 microcavities,” Appl. Phys. Lett. 63, 2603–2605 (1993).
[CrossRef]

E. F. Schubert, A. M. Vredenberg, N. E. J. Hunt, Y. H. Wong, P. C. Becker, J. M. Poate, D. C. Jacobson, L. C. Feldman, and G. J. Zydzik, “Giant enhancement of luminescence intensity in Er-doped Si/SiO2 resonant cavities,” Appl. Phys. Lett. 61, 1381–1383 (1992).
[CrossRef]

Wong, Y. H.

E. F. Schubert, N. E. J. Hunt, A. M. Vredenberg, T. D. Harris, J. M. Poate, D. C. Jacobson, Y. H. Wong, and G. J. Zydzik, “Enhanced photoluminescence by resonant absorption in Er-doped Si/SiO2 microcavities,” Appl. Phys. Lett. 63, 2603–2605 (1993).
[CrossRef]

E. F. Schubert, A. M. Vredenberg, N. E. J. Hunt, Y. H. Wong, P. C. Becker, J. M. Poate, D. C. Jacobson, L. C. Feldman, and G. J. Zydzik, “Giant enhancement of luminescence intensity in Er-doped Si/SiO2 resonant cavities,” Appl. Phys. Lett. 61, 1381–1383 (1992).
[CrossRef]

Yamamoto, Y.

G. Björk, S. Michida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).
[CrossRef] [PubMed]

Yokoyama, H.

M. Suzuki, H. Yokoyama, S. D. Brorson, and E. D. Ippen, “Observation of spontaneous emission lifetime change of dye-containing Langmuir–Blodgett films in optical microcavities,” Appl. Phys. Lett. 58, 998–1000 (1991).
[CrossRef]

Zydzik, G. J.

A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, D. C. Jacobson, J. M. Poate, and G. J. Zydzik, “Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity,” Phys. Rev. Lett. 71, 517–520 (1993).
[CrossRef] [PubMed]

E. F. Schubert, N. E. J. Hunt, A. M. Vredenberg, T. D. Harris, J. M. Poate, D. C. Jacobson, Y. H. Wong, and G. J. Zydzik, “Enhanced photoluminescence by resonant absorption in Er-doped Si/SiO2 microcavities,” Appl. Phys. Lett. 63, 2603–2605 (1993).
[CrossRef]

E. F. Schubert, A. M. Vredenberg, N. E. J. Hunt, Y. H. Wong, P. C. Becker, J. M. Poate, D. C. Jacobson, L. C. Feldman, and G. J. Zydzik, “Giant enhancement of luminescence intensity in Er-doped Si/SiO2 resonant cavities,” Appl. Phys. Lett. 61, 1381–1383 (1992).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

R. H. Jordan, L. J. Rothberg, A. Dodabalapur, and R. E. Slusher, “Efficiency enhancement of microcavity organic light emitting diodes,” Appl. Phys. Lett. 69, 1997–1999 (1999).
[CrossRef]

M. Suzuki, H. Yokoyama, S. D. Brorson, and E. D. Ippen, “Observation of spontaneous emission lifetime change of dye-containing Langmuir–Blodgett films in optical microcavities,” Appl. Phys. Lett. 58, 998–1000 (1991).
[CrossRef]

E. F. Schubert, A. M. Vredenberg, N. E. J. Hunt, Y. H. Wong, P. C. Becker, J. M. Poate, D. C. Jacobson, L. C. Feldman, and G. J. Zydzik, “Giant enhancement of luminescence intensity in Er-doped Si/SiO2 resonant cavities,” Appl. Phys. Lett. 61, 1381–1383 (1992).
[CrossRef]

E. F. Schubert, N. E. J. Hunt, A. M. Vredenberg, T. D. Harris, J. M. Poate, D. C. Jacobson, Y. H. Wong, and G. J. Zydzik, “Enhanced photoluminescence by resonant absorption in Er-doped Si/SiO2 microcavities,” Appl. Phys. Lett. 63, 2603–2605 (1993).
[CrossRef]

J. Appl. Phys. (2)

A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82, 1–39 (1997).
[CrossRef]

D. G. Deppe and C. Lei, “Spontaneous emission from a dipole in a semiconductor microcavity,” J. Appl. Phys. 70, 3443–3448 (1991).
[CrossRef]

J. Lumin. (2)

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1–2, 693–701 (1970).
[CrossRef]

A. Belarouci, F. Menchini, B. Jacquier, P. Moretti, H. Rigneault, and S. Robert, “Luminescence properties of Pr3+-doped optical microcavities,” J. Lumin. 83–84, 275–282 (1999).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

A. Remillieux, B. Jacquier, C. Linarès, C. Lesergent, S. Artigaud, D. Bayart, L. Hamon, and J. L. Beylat, “Upconversion mechanisms of a praseodymium-doped fluoride fiber amplifier,” J. Phys. D 29, 963–974 (1996).
[CrossRef]

Mater. Sci. Forum (1)

H. Rigneault, B. Jacquier, P. Moretti, A. M. Jurdyc, A. Belarouci, A. Auffret, and S. Robert, “Optical properties of dielectric microcavities implanted with rare earth atoms,” Mater. Sci. Forum 239–241, 717–720 (1997).
[CrossRef]

Opt. Mater. (1)

H. Rigneault, C. Amra, S. Robert, C. Begon, F. Lamarque, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission into planar multi-dielectric microcavities: theoretical and experimental analysis of rare earth ions radiations,” Opt. Mater. 11, 167–180 (1999).
[CrossRef]

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. A (2)

G. Björk, S. Michida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).
[CrossRef] [PubMed]

H. Rigneault and S. Monneret, “Modal analysis of spontaneous emission in a planar microcavity,” Phys. Rev. A 54, 2356–2368 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (4)

A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, D. C. Jacobson, J. M. Poate, and G. J. Zydzik, “Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity,” Phys. Rev. Lett. 71, 517–520 (1993).
[CrossRef] [PubMed]

F. De Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955–2958 (1987).
[CrossRef] [PubMed]

D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58, 1320–1323 (1987).
[CrossRef] [PubMed]

E. Snoeks, A. Lajendijk, and A. Polman, “Measuring and modifying the spontaneous emission rate of erbium near an interface,” Phys. Rev. Lett. 74, 2459–2463 (1995).
[CrossRef] [PubMed]

Proc. SPIE (1)

H. Rigneault, S. Robert, C. Amra, F. Lamarque, S. Monneret, B. Jacquier, P. Moretti, A. M. Jurdyc, and A. Belarouci, “Spontaneous emission of rare earth ions confined in planar multilayer microcavities,” Proc. SPIE 3133, 78–87 (1997).
[CrossRef]

Pure Appl. Opt. (1)

H. Rigneault, S. Maure, and C. Amra, “Spontaneous emission in multilayer microcavities: modal theory extended with Fourier–Green analysis for dissipative structures,” Pure Appl. Opt. 7, 549–563 (1998).
[CrossRef]

Other (7)

P. N. Favennec, “L’implantation ionique pour la microélectronique et pour l’optique,” (Masson, Paris, 1993), Chap. 3.

G. H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals (Wiley, New York, 1968).

H. K. Pulker, Coating on Glass (Elsevier, Amsterdam, 1994), pp. 247–256.

N. J. Hunt, E. F. Schubert, D. L. Sivco, A. Y. Cho, R. F. Kopf, R. A. Logan, and G. J. Zydzik, “Spontaneous emission control in planar structures Er3+ in Si/SiO2 microcavities,” in Confined Electrons and Photons: New Physics and Applications, C. Weisbuch and E. Burstein, eds., Vol. 340 of NATO ASI Series (Plenum, New York, 1995), pp. 715–728.
[CrossRef]

S. Haroche, Fundamentals Systems in Quantum Optics, J. Dalibard, J. M. Raimond, and J. Zinn-Justin, eds. (North-Holland, Amsterdam, 1991), p. 767.

P. R. Berman, Cavity Quantum Electrodynamics (Academic, New York, 1994).

H. A. Macleod, Thin Film Optical Filters, 2nd ed. (Hilger, London, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for transient measurements.

Fig. 2
Fig. 2

Photoluminescence spectrum for a 0.5-at.%Pr3+-doped half-cavity and a symmetrical microcavity (pulsed excitation at 585 nm).

Fig. 3
Fig. 3

Time-resolved photoluminescence on resonance (630 nm) and off resonance (620 nm and 640 nm) for a M8 2H M8 cavity tuned at 630 nm.

Fig. 4
Fig. 4

Time constant τ obtained for different wavelengths for a M8 2H M8 Fabry–Perot cavity tuned at 630 nm.

Fig. 5
Fig. 5

Contribution of the different modal normalized powers (P/Pn) for a M8 2H M8 symmetrical cavity at 630 nm.

Fig. 6
Fig. 6

Normalized lifetime (τ/τn) as a function of the emission wavelength for a M8 2H M8 cavity tuned at 630 nm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

τ=0I(t)dtI(t=0),
PradiativePn,
PsubstratePn,
PguidedPn.
Pradiative+Psubstrate+PguidedPn=PtotPn.
τnτtot=PtotPn,
τAτnτBτn=τAτB

Metrics