Abstract

Because of the reciprocal behavior of the optical rectification and the electro-optic effect in a nonlinear optical crystal, an electro-optic transceiver can alternately transmit pulsed electromagnetic radiation (optical rectification) and detect the return signal (electro-optic effect) in the same crystal. However, the optimal condition of the electro-optic transceiver may be very different from that of the spatially separated emitter and receiver. We present a detailed description of the crystal-orientation dependence of the electro-optic terahertz devices (transmitter, receiver, and transceiver). It is found that for a (110) zinc-blende electro-optical crystal, the efficiency of the electro-optic transceiver will be optimized when the angle between the polarization of the optical pump beam and the crystallographic z axis [0, 0, 1] is 26°. Meanwhile, for a (111) crystal, the angle between the optical beam and the crystallographic direction [-1, -1, 2] should be 23°. The experimental results from a (110) ZnTe transceiver verify theoretical calculations and demonstrate a direct way to optimize the working efficiency of an electro-optic terahertz transceiver.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beam,” Appl. Phys. Lett. 67, 3523–3525 (1995).
    [CrossRef]
  2. Q. Wu and X.-C. Zhang, “Ultrafast electro-optic field sensor,” Appl. Phys. Lett. 68, 1604–1606 (1996).
    [CrossRef]
  3. P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schya, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, 3052–3054 (1996).
    [CrossRef]
  4. C. Winnewisser, P. Uhd Jepsen, M. Schall, V. Schyja, and H. Helm, “Electro-optic detection of THz radiation in LiTaO3,LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
    [CrossRef]
  5. A. Nahata, D. H. Auston, and T. F. Heinz, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68, 150–152 (1996).
    [CrossRef]
  6. A. Nahata, A. Weling, and T. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2322 (1996).
    [CrossRef]
  7. M. Li, G. C. Cho, T.-M. Lu, X.-C. Zhang, S.-Q. Wang, and J. T. Kennedy, “Time-domain dielectric constant measurement of thin film in GHz–THz frequency range near the Brewster angle,” Appl. Phys. Lett. 74, 2113–2115 (1999).
    [CrossRef]
  8. M. Schall and P. Uhd Jepsen, “Photo-excited GaAs surfaces studied by transient THz time-domain spectroscopy,” Opt. Lett. 25, 13–15 (2000).
    [CrossRef]
  9. J. Shen, A. Weling, E. Knoesel, L. Bartels, and T. Heinz, “Single-shot measurement of terahertz electromagnetic pulses by use of electro-optic sampling,” Opt. Lett. 25, 426–428 (2000).
    [CrossRef]
  10. Q. Chen, Zhiping Jiang, and X.-C. Zhang, “All-optical THz image,” Proc. SPIE 3617, 98–105 (1999).
    [CrossRef]
  11. K. Wynne and D. Jaroszynski, “Superluminal terahertz pulses,” Opt. Lett. 24, 25–27 (1999).
    [CrossRef]
  12. P. Y. Han, G. C. Cho, and X.-C. Zhang, “Time-domain transillumination of biological tissues using THz pulses,” Opt. Lett. 25, 242–244 (2000).
    [CrossRef]
  13. Q. Chen, Zhiping Jiang, M. Tani, and X.-C. Zhang, “Electro-optic terahertz transceiver,” Electron. Lett.1298–1299 (2000).
  14. Zhiping Jiang, F. G. Sun, Q. Chen, and X.-C. Zhang, “Electro-optic sampling near zero optical transmission point,” Appl. Phys. Lett. 74, 1191–1193 (1999).
    [CrossRef]
  15. Q. Chen and X.-C. Zhang, “Polarization modulation in optoelectronic generation and detection of terahertz beams,” Appl. Phys. Lett. 74, 3435–3437 (1999).
    [CrossRef]
  16. R. W. Boyd, Nonlinear Optics (Academic, New York, 1992), Chap. 1.
  17. S. Namba, “Electro-optical effect of zincblende,” J. Opt. Soc. Am. B 51, 76–79 (1961).
    [CrossRef]
  18. A. Yariv, Optical Electronics (Oxford University, London, 1991), Chap. 9.
  19. A. Rice, Y. Jin, X.-F. Ma, X.-C. Zhang, D. Bliss, J. Perkin, and M. Alexander, “Terahertz optical rectification from [110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1993).
    [CrossRef]
  20. A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15-fs light pulses at 100-MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
    [CrossRef]
  21. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716–1718 (1995).
    [CrossRef] [PubMed]

2000 (4)

1999 (5)

M. Li, G. C. Cho, T.-M. Lu, X.-C. Zhang, S.-Q. Wang, and J. T. Kennedy, “Time-domain dielectric constant measurement of thin film in GHz–THz frequency range near the Brewster angle,” Appl. Phys. Lett. 74, 2113–2115 (1999).
[CrossRef]

Zhiping Jiang, F. G. Sun, Q. Chen, and X.-C. Zhang, “Electro-optic sampling near zero optical transmission point,” Appl. Phys. Lett. 74, 1191–1193 (1999).
[CrossRef]

Q. Chen and X.-C. Zhang, “Polarization modulation in optoelectronic generation and detection of terahertz beams,” Appl. Phys. Lett. 74, 3435–3437 (1999).
[CrossRef]

Q. Chen, Zhiping Jiang, and X.-C. Zhang, “All-optical THz image,” Proc. SPIE 3617, 98–105 (1999).
[CrossRef]

K. Wynne and D. Jaroszynski, “Superluminal terahertz pulses,” Opt. Lett. 24, 25–27 (1999).
[CrossRef]

1997 (1)

C. Winnewisser, P. Uhd Jepsen, M. Schall, V. Schyja, and H. Helm, “Electro-optic detection of THz radiation in LiTaO3,LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
[CrossRef]

1996 (4)

A. Nahata, D. H. Auston, and T. F. Heinz, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68, 150–152 (1996).
[CrossRef]

A. Nahata, A. Weling, and T. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2322 (1996).
[CrossRef]

Q. Wu and X.-C. Zhang, “Ultrafast electro-optic field sensor,” Appl. Phys. Lett. 68, 1604–1606 (1996).
[CrossRef]

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schya, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, 3052–3054 (1996).
[CrossRef]

1995 (3)

Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beam,” Appl. Phys. Lett. 67, 3523–3525 (1995).
[CrossRef]

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15-fs light pulses at 100-MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
[CrossRef]

B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716–1718 (1995).
[CrossRef] [PubMed]

1993 (1)

A. Rice, Y. Jin, X.-F. Ma, X.-C. Zhang, D. Bliss, J. Perkin, and M. Alexander, “Terahertz optical rectification from [110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1993).
[CrossRef]

1961 (1)

S. Namba, “Electro-optical effect of zincblende,” J. Opt. Soc. Am. B 51, 76–79 (1961).
[CrossRef]

Alexander, M.

A. Rice, Y. Jin, X.-F. Ma, X.-C. Zhang, D. Bliss, J. Perkin, and M. Alexander, “Terahertz optical rectification from [110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1993).
[CrossRef]

Auston, D. H.

A. Nahata, D. H. Auston, and T. F. Heinz, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68, 150–152 (1996).
[CrossRef]

Bartels, L.

Bliss, D.

A. Rice, Y. Jin, X.-F. Ma, X.-C. Zhang, D. Bliss, J. Perkin, and M. Alexander, “Terahertz optical rectification from [110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1993).
[CrossRef]

Bonvalet, A.

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15-fs light pulses at 100-MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, New York, 1992), Chap. 1.

Chen, Q.

Q. Chen, Zhiping Jiang, M. Tani, and X.-C. Zhang, “Electro-optic terahertz transceiver,” Electron. Lett.1298–1299 (2000).

Q. Chen, Zhiping Jiang, and X.-C. Zhang, “All-optical THz image,” Proc. SPIE 3617, 98–105 (1999).
[CrossRef]

Zhiping Jiang, F. G. Sun, Q. Chen, and X.-C. Zhang, “Electro-optic sampling near zero optical transmission point,” Appl. Phys. Lett. 74, 1191–1193 (1999).
[CrossRef]

Q. Chen and X.-C. Zhang, “Polarization modulation in optoelectronic generation and detection of terahertz beams,” Appl. Phys. Lett. 74, 3435–3437 (1999).
[CrossRef]

Cho, G. C.

P. Y. Han, G. C. Cho, and X.-C. Zhang, “Time-domain transillumination of biological tissues using THz pulses,” Opt. Lett. 25, 242–244 (2000).
[CrossRef]

M. Li, G. C. Cho, T.-M. Lu, X.-C. Zhang, S.-Q. Wang, and J. T. Kennedy, “Time-domain dielectric constant measurement of thin film in GHz–THz frequency range near the Brewster angle,” Appl. Phys. Lett. 74, 2113–2115 (1999).
[CrossRef]

Han, P. Y.

Heinz, T.

J. Shen, A. Weling, E. Knoesel, L. Bartels, and T. Heinz, “Single-shot measurement of terahertz electromagnetic pulses by use of electro-optic sampling,” Opt. Lett. 25, 426–428 (2000).
[CrossRef]

A. Nahata, A. Weling, and T. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2322 (1996).
[CrossRef]

Heinz, T. F.

A. Nahata, D. H. Auston, and T. F. Heinz, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68, 150–152 (1996).
[CrossRef]

Helm, H.

C. Winnewisser, P. Uhd Jepsen, M. Schall, V. Schyja, and H. Helm, “Electro-optic detection of THz radiation in LiTaO3,LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
[CrossRef]

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schya, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, 3052–3054 (1996).
[CrossRef]

Hu, B. B.

Jaroszynski, D.

Jiang, Zhiping

Q. Chen, Zhiping Jiang, M. Tani, and X.-C. Zhang, “Electro-optic terahertz transceiver,” Electron. Lett.1298–1299 (2000).

Q. Chen, Zhiping Jiang, and X.-C. Zhang, “All-optical THz image,” Proc. SPIE 3617, 98–105 (1999).
[CrossRef]

Zhiping Jiang, F. G. Sun, Q. Chen, and X.-C. Zhang, “Electro-optic sampling near zero optical transmission point,” Appl. Phys. Lett. 74, 1191–1193 (1999).
[CrossRef]

Jin, Y.

A. Rice, Y. Jin, X.-F. Ma, X.-C. Zhang, D. Bliss, J. Perkin, and M. Alexander, “Terahertz optical rectification from [110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1993).
[CrossRef]

Joffre, M.

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15-fs light pulses at 100-MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
[CrossRef]

Keiding, S. R.

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schya, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, 3052–3054 (1996).
[CrossRef]

Kennedy, J. T.

M. Li, G. C. Cho, T.-M. Lu, X.-C. Zhang, S.-Q. Wang, and J. T. Kennedy, “Time-domain dielectric constant measurement of thin film in GHz–THz frequency range near the Brewster angle,” Appl. Phys. Lett. 74, 2113–2115 (1999).
[CrossRef]

Knoesel, E.

Li, M.

M. Li, G. C. Cho, T.-M. Lu, X.-C. Zhang, S.-Q. Wang, and J. T. Kennedy, “Time-domain dielectric constant measurement of thin film in GHz–THz frequency range near the Brewster angle,” Appl. Phys. Lett. 74, 2113–2115 (1999).
[CrossRef]

Lu, T.-M.

M. Li, G. C. Cho, T.-M. Lu, X.-C. Zhang, S.-Q. Wang, and J. T. Kennedy, “Time-domain dielectric constant measurement of thin film in GHz–THz frequency range near the Brewster angle,” Appl. Phys. Lett. 74, 2113–2115 (1999).
[CrossRef]

Ma, X.-F.

A. Rice, Y. Jin, X.-F. Ma, X.-C. Zhang, D. Bliss, J. Perkin, and M. Alexander, “Terahertz optical rectification from [110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1993).
[CrossRef]

Martin, J. L.

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15-fs light pulses at 100-MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
[CrossRef]

Migus, A.

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15-fs light pulses at 100-MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
[CrossRef]

Nahata, A.

A. Nahata, A. Weling, and T. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2322 (1996).
[CrossRef]

A. Nahata, D. H. Auston, and T. F. Heinz, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68, 150–152 (1996).
[CrossRef]

Namba, S.

S. Namba, “Electro-optical effect of zincblende,” J. Opt. Soc. Am. B 51, 76–79 (1961).
[CrossRef]

Nuss, M. C.

Perkin, J.

A. Rice, Y. Jin, X.-F. Ma, X.-C. Zhang, D. Bliss, J. Perkin, and M. Alexander, “Terahertz optical rectification from [110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1993).
[CrossRef]

Rice, A.

A. Rice, Y. Jin, X.-F. Ma, X.-C. Zhang, D. Bliss, J. Perkin, and M. Alexander, “Terahertz optical rectification from [110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1993).
[CrossRef]

Schall, M.

M. Schall and P. Uhd Jepsen, “Photo-excited GaAs surfaces studied by transient THz time-domain spectroscopy,” Opt. Lett. 25, 13–15 (2000).
[CrossRef]

C. Winnewisser, P. Uhd Jepsen, M. Schall, V. Schyja, and H. Helm, “Electro-optic detection of THz radiation in LiTaO3,LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
[CrossRef]

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schya, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, 3052–3054 (1996).
[CrossRef]

Schya, V.

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schya, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, 3052–3054 (1996).
[CrossRef]

Schyja, V.

C. Winnewisser, P. Uhd Jepsen, M. Schall, V. Schyja, and H. Helm, “Electro-optic detection of THz radiation in LiTaO3,LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
[CrossRef]

Shen, J.

Sun, F. G.

Zhiping Jiang, F. G. Sun, Q. Chen, and X.-C. Zhang, “Electro-optic sampling near zero optical transmission point,” Appl. Phys. Lett. 74, 1191–1193 (1999).
[CrossRef]

Tani, M.

Q. Chen, Zhiping Jiang, M. Tani, and X.-C. Zhang, “Electro-optic terahertz transceiver,” Electron. Lett.1298–1299 (2000).

Uhd Jepsen, P.

M. Schall and P. Uhd Jepsen, “Photo-excited GaAs surfaces studied by transient THz time-domain spectroscopy,” Opt. Lett. 25, 13–15 (2000).
[CrossRef]

C. Winnewisser, P. Uhd Jepsen, M. Schall, V. Schyja, and H. Helm, “Electro-optic detection of THz radiation in LiTaO3,LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
[CrossRef]

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schya, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, 3052–3054 (1996).
[CrossRef]

Wang, S.-Q.

M. Li, G. C. Cho, T.-M. Lu, X.-C. Zhang, S.-Q. Wang, and J. T. Kennedy, “Time-domain dielectric constant measurement of thin film in GHz–THz frequency range near the Brewster angle,” Appl. Phys. Lett. 74, 2113–2115 (1999).
[CrossRef]

Weling, A.

J. Shen, A. Weling, E. Knoesel, L. Bartels, and T. Heinz, “Single-shot measurement of terahertz electromagnetic pulses by use of electro-optic sampling,” Opt. Lett. 25, 426–428 (2000).
[CrossRef]

A. Nahata, A. Weling, and T. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2322 (1996).
[CrossRef]

Winnewisser, C.

C. Winnewisser, P. Uhd Jepsen, M. Schall, V. Schyja, and H. Helm, “Electro-optic detection of THz radiation in LiTaO3,LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
[CrossRef]

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schya, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, 3052–3054 (1996).
[CrossRef]

Wu, Q.

Q. Wu and X.-C. Zhang, “Ultrafast electro-optic field sensor,” Appl. Phys. Lett. 68, 1604–1606 (1996).
[CrossRef]

Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beam,” Appl. Phys. Lett. 67, 3523–3525 (1995).
[CrossRef]

Wynne, K.

Yariv, A.

A. Yariv, Optical Electronics (Oxford University, London, 1991), Chap. 9.

Zhang, X.-C.

Q. Chen, Zhiping Jiang, M. Tani, and X.-C. Zhang, “Electro-optic terahertz transceiver,” Electron. Lett.1298–1299 (2000).

P. Y. Han, G. C. Cho, and X.-C. Zhang, “Time-domain transillumination of biological tissues using THz pulses,” Opt. Lett. 25, 242–244 (2000).
[CrossRef]

Q. Chen and X.-C. Zhang, “Polarization modulation in optoelectronic generation and detection of terahertz beams,” Appl. Phys. Lett. 74, 3435–3437 (1999).
[CrossRef]

Zhiping Jiang, F. G. Sun, Q. Chen, and X.-C. Zhang, “Electro-optic sampling near zero optical transmission point,” Appl. Phys. Lett. 74, 1191–1193 (1999).
[CrossRef]

Q. Chen, Zhiping Jiang, and X.-C. Zhang, “All-optical THz image,” Proc. SPIE 3617, 98–105 (1999).
[CrossRef]

M. Li, G. C. Cho, T.-M. Lu, X.-C. Zhang, S.-Q. Wang, and J. T. Kennedy, “Time-domain dielectric constant measurement of thin film in GHz–THz frequency range near the Brewster angle,” Appl. Phys. Lett. 74, 2113–2115 (1999).
[CrossRef]

Q. Wu and X.-C. Zhang, “Ultrafast electro-optic field sensor,” Appl. Phys. Lett. 68, 1604–1606 (1996).
[CrossRef]

Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beam,” Appl. Phys. Lett. 67, 3523–3525 (1995).
[CrossRef]

A. Rice, Y. Jin, X.-F. Ma, X.-C. Zhang, D. Bliss, J. Perkin, and M. Alexander, “Terahertz optical rectification from [110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1993).
[CrossRef]

Appl. Phys. Lett. (10)

C. Winnewisser, P. Uhd Jepsen, M. Schall, V. Schyja, and H. Helm, “Electro-optic detection of THz radiation in LiTaO3,LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
[CrossRef]

A. Nahata, D. H. Auston, and T. F. Heinz, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68, 150–152 (1996).
[CrossRef]

A. Nahata, A. Weling, and T. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2322 (1996).
[CrossRef]

M. Li, G. C. Cho, T.-M. Lu, X.-C. Zhang, S.-Q. Wang, and J. T. Kennedy, “Time-domain dielectric constant measurement of thin film in GHz–THz frequency range near the Brewster angle,” Appl. Phys. Lett. 74, 2113–2115 (1999).
[CrossRef]

Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beam,” Appl. Phys. Lett. 67, 3523–3525 (1995).
[CrossRef]

Q. Wu and X.-C. Zhang, “Ultrafast electro-optic field sensor,” Appl. Phys. Lett. 68, 1604–1606 (1996).
[CrossRef]

Zhiping Jiang, F. G. Sun, Q. Chen, and X.-C. Zhang, “Electro-optic sampling near zero optical transmission point,” Appl. Phys. Lett. 74, 1191–1193 (1999).
[CrossRef]

Q. Chen and X.-C. Zhang, “Polarization modulation in optoelectronic generation and detection of terahertz beams,” Appl. Phys. Lett. 74, 3435–3437 (1999).
[CrossRef]

A. Rice, Y. Jin, X.-F. Ma, X.-C. Zhang, D. Bliss, J. Perkin, and M. Alexander, “Terahertz optical rectification from [110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1993).
[CrossRef]

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15-fs light pulses at 100-MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
[CrossRef]

Electron. Lett. (1)

Q. Chen, Zhiping Jiang, M. Tani, and X.-C. Zhang, “Electro-optic terahertz transceiver,” Electron. Lett.1298–1299 (2000).

J. Opt. Soc. Am. B (1)

S. Namba, “Electro-optical effect of zincblende,” J. Opt. Soc. Am. B 51, 76–79 (1961).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. E (1)

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schya, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, 3052–3054 (1996).
[CrossRef]

Proc. SPIE (1)

Q. Chen, Zhiping Jiang, and X.-C. Zhang, “All-optical THz image,” Proc. SPIE 3617, 98–105 (1999).
[CrossRef]

Other (2)

A. Yariv, Optical Electronics (Oxford University, London, 1991), Chap. 9.

R. W. Boyd, Nonlinear Optics (Academic, New York, 1992), Chap. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Geometry of the (110) zinc-blende crystal as a THz transmitter. The plane of the page is the (110) plane of the crystal, and the angles θ and ϕ are measured on the (110) plane.

Fig. 2
Fig. 2

Geometry of the (110) zinc-blende crystal as a THz receiver. The plane of the page is the (110) plane of the crystal, and the angles ϕ and φ are measured on the (110) plane.

Fig. 3
Fig. 3

Geometry of the lab coordinate system xyz and the crystallographic coordinate system for (111) zinc-blende crystals.

Fig. 4
Fig. 4

Geometry of the (111) zinc-blende crystal as a THz transmitter. The plane of the page is the (111) plane of the crystal, and the angles θ and ϕ are measured on the (111) plane.

Fig. 5
Fig. 5

Geometry of the (111) zinc-blende crystal as a THz receiver. The plane of the page is the (111) plane of the crystal, and the angles ϕ and φ are measured on the (111) plane.

Fig. 6
Fig. 6

Schematic experimental setup of the electro-optic THz transceiver. The THz signal is generated and detected on the same ZnTe crystal.

Fig. 7
Fig. 7

Signal intensity as a function of angle θ for an electro-optic THz transceiver constructed by (110) and (111) zinc-blende crystals. The solid and dashed curves show the results of theoretical calculation; the dots show experiment results from a (110) ZnTe crystal.

Fig. 8
Fig. 8

P and S components of the THz electric field as a function of angle θ for (110) zinc-blende crystals. The solid curve shows the results of theoretical calculation; the dots and open circles show experiment results based on a (110) ZnTe crystal.

Fig. 9
Fig. 9

Schematic experimental setup of a THz time-of-flight imaging system. The pump and the probe beams are both S polarized. P1, P2, pellicle; A, attenuator.

Fig. 10
Fig. 10

THz time-of-flight images of (a) a common key and (b) a quarter coin.

Tables (1)

Tables Icon

Table 1 Optimum Orientation of the Zinc-Blende Electro-Optical Crystal as THz Transmittera,c and THz Receiverb,c

Equations (55)

Equations on this page are rendered with MathJax. Learn more.

dijk=dil=000d14000000d14000000d14.
PxPyPz=000d14000000d14000000d14Ex2Ey2Ez22EyEz2ExEz2ExEy.
E=E0(sin θ/2, -sin θ/2, cos θ).
PxPyPz=2d14EyEzEzExExEy=d14E02-2 sin θ cos θ2 sin θ cos θ-sin2 θ.
xyz=1/21/20-1/21/20001xyz.
PxPyPz=Px+PyPx-PyPz=d14E020sin 2θ-sin2 θ.
|ETHz||P|=d14E02[sin2 θ(1+3 cos2 θ)]1/2=d14E02-3sin2 θ-232+431/2,
-PyPztan ϕ=2 cot θ,
ETHz max43 d14E02.
x2+y2+z2n02+2r41Exyz+2r41Eyzx+2r41Ezxy=1.
ETHz=ETHz(sin ϕ/2,-sin ϕ/2, cos ϕ).
x2+y2+z2n02+2r41ETHz sin ϕ2yz-2r41ETHz sin ϕ2zx
+2r41ETHz cos ϕ xy=1.
x2+y2+z2n02+2r41ETHz sin ϕ yz
+r41ETHz cos ϕ(x2-y2)=1.
1n02-r41ETHz cos ϕy2+z2n02+2r41ETHz sin ϕ yz
=1.
det1/n02-γ41ETHz cos ϕ-sγ41ETHz sin ϕγ41ETHz sin ϕ1/n02-s=0.
s1,2=1n02+12γ41ETHz(-cos ϕ±1+3 sin2 ϕ).
1n02+12γ41ETHz(-cos ϕ+1+3 sin2 ϕ)y2
+1n02+12γ41ETHz(-cos ϕ-1+3 sin2 ϕ)z2
=1,
1ny2=1n02+r41ETHz2(-cos ϕ+1+3 sin2 ϕ)  nyn0+n03r41ETHz4(cos ϕ-1+3 sin2 ϕ),
1nz2=1n02+r41ETHz2(-cos ϕ-1+3 sin2 ϕ)  nzn0+n03r41ETHz4(cos ϕ+1+3 sin2 ϕ),
Δn(nz-ny)=n03r41ETHz1+3 sin2 ϕ2.
IsignalETHz1+3 sin2 ϕ2.
1, 2 sin ϕ1+3 sin2 ϕ-cos ϕ
1, -2 sin ϕ1+3 sin2 ϕ+cos ϕ.
tan φ2 sin ϕ1+3 sin2 ϕ-cos ϕ 2 tan ϕ=-tan 2φ,
xyz=13-12-161312-1613026xyz.
E=E0(0, -sin θ, cos θ).
E=E012 sin θ-16 cos θ,-12 sin θ-16 cos θ, 26 cos θ.
PxPyPz=2d14EyEzEzExExEy=d14E02-46 cos θ12 sin θ+16 cos θ46 cos θ12 sin θ-16 cos θ13 cos2 θ-sin2 θ.
PxPyPz=131313-12120-16-1626×-46d14E02 cos θ12 sin θ+16 cos θ46d14E02 cos θ12 sin θ-16 cos θd14E0213 cos2 θ-sin2 θ=d14E02-1326 sin(2θ)26 cos(2θ).
-PyPztan ϕ=-tan(2θ)  ϕ=-2θ,
ETHz=ETHz(0, -sin ϕ,cos ϕ).
ETHz=ETHz12 sin ϕ-16 cos ϕ,-12 sin ϕ-16 cos ϕ, 26 cos ϕ.
x2+y2+z2n02+2r41ETHz12 sin ϕ-16 cos ϕyz
-2r41ETHz12 sin ϕ+16 cos ϕzx
+26r41ETHz cos ϕxy=1.
1n02-16r41ETHz cos ϕy2
+1n02+536r41ETHz cos ϕz2+46r41ETHz sin ϕyz=1.
det1n02-16γ41ETHz cos ϕ-s 26γ41ETHz sin ϕ26γ41ETHz sin ϕ 1n02+536γ41ETHz cos ϕ-s
=0.
s1,2=1n02+136γ41ETHz cos ϕ±12γ41ETHz3227+4027 sin2 ϕ.
1n02+γ41ETHzcos ϕ36+12 3227+4027 sin2 ϕy2
+1n02+γ41ETHzcos ϕ36-12 3227+4027 sin2 ϕz2=1,
1ny2=1n02+γ41ETHzcos ϕ36+12 3227+4027 sin2 ϕ  nyn0-n03r41ETHz2 cos ϕ36+3227+4027 sin2 ϕ2,
1nz2=1n02+γ41ETHzcos ϕ36-12 3227+4027 sin2 ϕ  nzn0-n03r41ETHz2 cos ϕ36-3227+4027 sin2 ϕ2,
Δn(nz-ny)=n03r41ETHz3227+4027 sin2 ϕ2.
IsignalΓ=2πdλΔnETHz3227+4027 sin2 ϕ2,
1, 436 cos ϕ+12 3227+4027 sin2 ϕ26 sin ϕ.
tan φ=436 cos ϕ+12 3227+4027 sin2 ϕ26 sin ϕ 32 tan ϕ=-tan(2φ).
Isignalsin[2(θ-φ)]×Γsin[2(θ-φ)]×sin2 θ(1+3 cos2 θ)×1+3 sin2 ϕ
Isignalsin[2(θ-φ)]×Γsin[2(θ-φ)]×3227+4027 sin2 ϕ

Metrics