Abstract

Because of the reciprocal behavior of the optical rectification and the electro-optic effect in a nonlinear optical crystal, an electro-optic transceiver can alternately transmit pulsed electromagnetic radiation (optical rectification) and detect the return signal (electro-optic effect) in the same crystal. However, the optimal condition of the electro-optic transceiver may be very different from that of the spatially separated emitter and receiver. We present a detailed description of the crystal-orientation dependence of the electro-optic terahertz devices (transmitter, receiver, and transceiver). It is found that for a (110) zinc-blende electro-optical crystal, the efficiency of the electro-optic transceiver will be optimized when the angle between the polarization of the optical pump beam and the crystallographic z axis [0, 0, 1] is 26°. Meanwhile, for a (111) crystal, the angle between the optical beam and the crystallographic direction [-1, -1, 2] should be 23°. The experimental results from a (110) ZnTe transceiver verify theoretical calculations and demonstrate a direct way to optimize the working efficiency of an electro-optic terahertz transceiver.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beam,” Appl. Phys. Lett. 67, 3523–3525 (1995).
    [CrossRef]
  2. Q. Wu and X.-C. Zhang, “Ultrafast electro-optic field sensor,” Appl. Phys. Lett. 68, 1604–1606 (1996).
    [CrossRef]
  3. P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schya, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, 3052–3054 (1996).
    [CrossRef]
  4. C. Winnewisser, P. Uhd Jepsen, M. Schall, V. Schyja, and H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
    [CrossRef]
  5. A. Nahata, D. H. Auston, and T. F. Heinz, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68, 150–152 (1996).
    [CrossRef]
  6. A. Nahata, A. Weling, and T. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2322 (1996).
    [CrossRef]
  7. M. Li, G. C. Cho, T.-M. Lu, X.-C. Zhang, S.-Q. Wang, and J. T. Kennedy, “Time-domain dielectric constant measurement of thin film in GHz–THz frequency range near the Brewster angle,” Appl. Phys. Lett. 74, 2113–2115 (1999).
    [CrossRef]
  8. M. Schall and P. Uhd Jepsen, “Photo-excited GaAs surfaces studied by transient THz time-domain spectroscopy,” Opt. Lett. 25, 13–15 (2000).
    [CrossRef]
  9. J. Shen, A. Weling, E. Knoesel, L. Bartels, and T. Heinz, “Single-shot measurement of terahertz electromagnetic pulses by use of electro-optic sampling,” Opt. Lett. 25, 426–428 (2000).
    [CrossRef]
  10. Q. Chen, Zhiping Jiang, and X.-C. Zhang, “All-optical THz image,” Proc. SPIE 3617, 98–105 (1999).
    [CrossRef]
  11. K. Wynne and D. Jaroszynski, “Superluminal terahertz pulses,” Opt. Lett. 24, 25–27 (1999).
    [CrossRef]
  12. P. Y. Han, G. C. Cho, and X.-C. Zhang, “Time-domain transillumination of biological tissues using THz pulses,” Opt. Lett. 25, 242–244 (2000).
    [CrossRef]
  13. Q. Chen, Zhiping Jiang, M. Tani, and X.-C. Zhang, “Electro-optic terahertz transceiver,” Electron. Lett. 1298–1299 (2000).
  14. Zhiping Jiang, F. G. Sun, Q. Chen, and X.-C. Zhang, “Electro-optic sampling near zero optical transmission point,” Appl. Phys. Lett. 74, 1191–1193 (1999).
    [CrossRef]
  15. Q. Chen and X.-C. Zhang, “Polarization modulation in optoelectronic generation and detection of terahertz beams,” Appl. Phys. Lett. 74, 3435–3437 (1999).
    [CrossRef]
  16. R. W. Boyd, Nonlinear Optics (Academic, New York, 1992), Chap. 1.
  17. S. Namba, “Electro-optical effect of zincblende,” J. Opt. Soc. Am. B 51, 76–79 (1961).
    [CrossRef]
  18. A. Yariv, Optical Electronics (Oxford University, London, 1991), Chap. 9.
  19. A. Rice, Y. Jin, X.-F. Ma, X.-C. Zhang, D. Bliss, J. Perkin, and M. Alexander, “Terahertz optical rectification from [110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1993).
    [CrossRef]
  20. A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15-fs light pulses at 100-MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
    [CrossRef]
  21. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716–1718 (1995).
    [CrossRef] [PubMed]

2000 (3)

1999 (5)

Zhiping Jiang, F. G. Sun, Q. Chen, and X.-C. Zhang, “Electro-optic sampling near zero optical transmission point,” Appl. Phys. Lett. 74, 1191–1193 (1999).
[CrossRef]

Q. Chen and X.-C. Zhang, “Polarization modulation in optoelectronic generation and detection of terahertz beams,” Appl. Phys. Lett. 74, 3435–3437 (1999).
[CrossRef]

M. Li, G. C. Cho, T.-M. Lu, X.-C. Zhang, S.-Q. Wang, and J. T. Kennedy, “Time-domain dielectric constant measurement of thin film in GHz–THz frequency range near the Brewster angle,” Appl. Phys. Lett. 74, 2113–2115 (1999).
[CrossRef]

Q. Chen, Zhiping Jiang, and X.-C. Zhang, “All-optical THz image,” Proc. SPIE 3617, 98–105 (1999).
[CrossRef]

K. Wynne and D. Jaroszynski, “Superluminal terahertz pulses,” Opt. Lett. 24, 25–27 (1999).
[CrossRef]

1997 (1)

C. Winnewisser, P. Uhd Jepsen, M. Schall, V. Schyja, and H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
[CrossRef]

1996 (4)

A. Nahata, D. H. Auston, and T. F. Heinz, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68, 150–152 (1996).
[CrossRef]

A. Nahata, A. Weling, and T. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2322 (1996).
[CrossRef]

Q. Wu and X.-C. Zhang, “Ultrafast electro-optic field sensor,” Appl. Phys. Lett. 68, 1604–1606 (1996).
[CrossRef]

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schya, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, 3052–3054 (1996).
[CrossRef]

1995 (3)

Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beam,” Appl. Phys. Lett. 67, 3523–3525 (1995).
[CrossRef]

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15-fs light pulses at 100-MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
[CrossRef]

B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716–1718 (1995).
[CrossRef] [PubMed]

1993 (1)

A. Rice, Y. Jin, X.-F. Ma, X.-C. Zhang, D. Bliss, J. Perkin, and M. Alexander, “Terahertz optical rectification from [110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1993).
[CrossRef]

1961 (1)

S. Namba, “Electro-optical effect of zincblende,” J. Opt. Soc. Am. B 51, 76–79 (1961).
[CrossRef]

Alexander, M.

A. Rice, Y. Jin, X.-F. Ma, X.-C. Zhang, D. Bliss, J. Perkin, and M. Alexander, “Terahertz optical rectification from [110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1993).
[CrossRef]

Auston, D. H.

A. Nahata, D. H. Auston, and T. F. Heinz, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68, 150–152 (1996).
[CrossRef]

Bartels, L.

Bliss, D.

A. Rice, Y. Jin, X.-F. Ma, X.-C. Zhang, D. Bliss, J. Perkin, and M. Alexander, “Terahertz optical rectification from [110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1993).
[CrossRef]

Bonvalet, A.

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15-fs light pulses at 100-MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
[CrossRef]

Chen, Q.

Q. Chen, Zhiping Jiang, and X.-C. Zhang, “All-optical THz image,” Proc. SPIE 3617, 98–105 (1999).
[CrossRef]

Zhiping Jiang, F. G. Sun, Q. Chen, and X.-C. Zhang, “Electro-optic sampling near zero optical transmission point,” Appl. Phys. Lett. 74, 1191–1193 (1999).
[CrossRef]

Q. Chen and X.-C. Zhang, “Polarization modulation in optoelectronic generation and detection of terahertz beams,” Appl. Phys. Lett. 74, 3435–3437 (1999).
[CrossRef]

Cho, G. C.

P. Y. Han, G. C. Cho, and X.-C. Zhang, “Time-domain transillumination of biological tissues using THz pulses,” Opt. Lett. 25, 242–244 (2000).
[CrossRef]

M. Li, G. C. Cho, T.-M. Lu, X.-C. Zhang, S.-Q. Wang, and J. T. Kennedy, “Time-domain dielectric constant measurement of thin film in GHz–THz frequency range near the Brewster angle,” Appl. Phys. Lett. 74, 2113–2115 (1999).
[CrossRef]

Han, P. Y.

Heinz, T.

J. Shen, A. Weling, E. Knoesel, L. Bartels, and T. Heinz, “Single-shot measurement of terahertz electromagnetic pulses by use of electro-optic sampling,” Opt. Lett. 25, 426–428 (2000).
[CrossRef]

A. Nahata, A. Weling, and T. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2322 (1996).
[CrossRef]

Heinz, T. F.

A. Nahata, D. H. Auston, and T. F. Heinz, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68, 150–152 (1996).
[CrossRef]

Helm, H.

C. Winnewisser, P. Uhd Jepsen, M. Schall, V. Schyja, and H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
[CrossRef]

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schya, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, 3052–3054 (1996).
[CrossRef]

Hu, B. B.

Jaroszynski, D.

Jepsen, P. Uhd

M. Schall and P. Uhd Jepsen, “Photo-excited GaAs surfaces studied by transient THz time-domain spectroscopy,” Opt. Lett. 25, 13–15 (2000).
[CrossRef]

C. Winnewisser, P. Uhd Jepsen, M. Schall, V. Schyja, and H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
[CrossRef]

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schya, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, 3052–3054 (1996).
[CrossRef]

Jiang, Zhiping

Zhiping Jiang, F. G. Sun, Q. Chen, and X.-C. Zhang, “Electro-optic sampling near zero optical transmission point,” Appl. Phys. Lett. 74, 1191–1193 (1999).
[CrossRef]

Q. Chen, Zhiping Jiang, and X.-C. Zhang, “All-optical THz image,” Proc. SPIE 3617, 98–105 (1999).
[CrossRef]

Jin, Y.

A. Rice, Y. Jin, X.-F. Ma, X.-C. Zhang, D. Bliss, J. Perkin, and M. Alexander, “Terahertz optical rectification from [110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1993).
[CrossRef]

Joffre, M.

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15-fs light pulses at 100-MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
[CrossRef]

Keiding, S. R.

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schya, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, 3052–3054 (1996).
[CrossRef]

Kennedy, J. T.

M. Li, G. C. Cho, T.-M. Lu, X.-C. Zhang, S.-Q. Wang, and J. T. Kennedy, “Time-domain dielectric constant measurement of thin film in GHz–THz frequency range near the Brewster angle,” Appl. Phys. Lett. 74, 2113–2115 (1999).
[CrossRef]

Knoesel, E.

Li, M.

M. Li, G. C. Cho, T.-M. Lu, X.-C. Zhang, S.-Q. Wang, and J. T. Kennedy, “Time-domain dielectric constant measurement of thin film in GHz–THz frequency range near the Brewster angle,” Appl. Phys. Lett. 74, 2113–2115 (1999).
[CrossRef]

Lu, T.-M.

M. Li, G. C. Cho, T.-M. Lu, X.-C. Zhang, S.-Q. Wang, and J. T. Kennedy, “Time-domain dielectric constant measurement of thin film in GHz–THz frequency range near the Brewster angle,” Appl. Phys. Lett. 74, 2113–2115 (1999).
[CrossRef]

Ma, X.-F.

A. Rice, Y. Jin, X.-F. Ma, X.-C. Zhang, D. Bliss, J. Perkin, and M. Alexander, “Terahertz optical rectification from [110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1993).
[CrossRef]

Martin, J. L.

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15-fs light pulses at 100-MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
[CrossRef]

Migus, A.

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15-fs light pulses at 100-MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
[CrossRef]

Nahata, A.

A. Nahata, D. H. Auston, and T. F. Heinz, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68, 150–152 (1996).
[CrossRef]

A. Nahata, A. Weling, and T. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2322 (1996).
[CrossRef]

Namba, S.

S. Namba, “Electro-optical effect of zincblende,” J. Opt. Soc. Am. B 51, 76–79 (1961).
[CrossRef]

Nuss, M. C.

Perkin, J.

A. Rice, Y. Jin, X.-F. Ma, X.-C. Zhang, D. Bliss, J. Perkin, and M. Alexander, “Terahertz optical rectification from [110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1993).
[CrossRef]

Rice, A.

A. Rice, Y. Jin, X.-F. Ma, X.-C. Zhang, D. Bliss, J. Perkin, and M. Alexander, “Terahertz optical rectification from [110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1993).
[CrossRef]

Schall, M.

M. Schall and P. Uhd Jepsen, “Photo-excited GaAs surfaces studied by transient THz time-domain spectroscopy,” Opt. Lett. 25, 13–15 (2000).
[CrossRef]

C. Winnewisser, P. Uhd Jepsen, M. Schall, V. Schyja, and H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
[CrossRef]

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schya, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, 3052–3054 (1996).
[CrossRef]

Schya, V.

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schya, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, 3052–3054 (1996).
[CrossRef]

Schyja, V.

C. Winnewisser, P. Uhd Jepsen, M. Schall, V. Schyja, and H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
[CrossRef]

Shen, J.

Sun, F. G.

Zhiping Jiang, F. G. Sun, Q. Chen, and X.-C. Zhang, “Electro-optic sampling near zero optical transmission point,” Appl. Phys. Lett. 74, 1191–1193 (1999).
[CrossRef]

Wang, S.-Q.

M. Li, G. C. Cho, T.-M. Lu, X.-C. Zhang, S.-Q. Wang, and J. T. Kennedy, “Time-domain dielectric constant measurement of thin film in GHz–THz frequency range near the Brewster angle,” Appl. Phys. Lett. 74, 2113–2115 (1999).
[CrossRef]

Weling, A.

J. Shen, A. Weling, E. Knoesel, L. Bartels, and T. Heinz, “Single-shot measurement of terahertz electromagnetic pulses by use of electro-optic sampling,” Opt. Lett. 25, 426–428 (2000).
[CrossRef]

A. Nahata, A. Weling, and T. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2322 (1996).
[CrossRef]

Winnewisser, C.

C. Winnewisser, P. Uhd Jepsen, M. Schall, V. Schyja, and H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
[CrossRef]

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schya, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, 3052–3054 (1996).
[CrossRef]

Wu, Q.

Q. Wu and X.-C. Zhang, “Ultrafast electro-optic field sensor,” Appl. Phys. Lett. 68, 1604–1606 (1996).
[CrossRef]

Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beam,” Appl. Phys. Lett. 67, 3523–3525 (1995).
[CrossRef]

Wynne, K.

Zhang, X.-C.

P. Y. Han, G. C. Cho, and X.-C. Zhang, “Time-domain transillumination of biological tissues using THz pulses,” Opt. Lett. 25, 242–244 (2000).
[CrossRef]

Q. Chen, Zhiping Jiang, and X.-C. Zhang, “All-optical THz image,” Proc. SPIE 3617, 98–105 (1999).
[CrossRef]

M. Li, G. C. Cho, T.-M. Lu, X.-C. Zhang, S.-Q. Wang, and J. T. Kennedy, “Time-domain dielectric constant measurement of thin film in GHz–THz frequency range near the Brewster angle,” Appl. Phys. Lett. 74, 2113–2115 (1999).
[CrossRef]

Zhiping Jiang, F. G. Sun, Q. Chen, and X.-C. Zhang, “Electro-optic sampling near zero optical transmission point,” Appl. Phys. Lett. 74, 1191–1193 (1999).
[CrossRef]

Q. Chen and X.-C. Zhang, “Polarization modulation in optoelectronic generation and detection of terahertz beams,” Appl. Phys. Lett. 74, 3435–3437 (1999).
[CrossRef]

Q. Wu and X.-C. Zhang, “Ultrafast electro-optic field sensor,” Appl. Phys. Lett. 68, 1604–1606 (1996).
[CrossRef]

Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beam,” Appl. Phys. Lett. 67, 3523–3525 (1995).
[CrossRef]

A. Rice, Y. Jin, X.-F. Ma, X.-C. Zhang, D. Bliss, J. Perkin, and M. Alexander, “Terahertz optical rectification from [110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1993).
[CrossRef]

Appl. Phys. Lett. (10)

C. Winnewisser, P. Uhd Jepsen, M. Schall, V. Schyja, and H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
[CrossRef]

A. Nahata, D. H. Auston, and T. F. Heinz, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68, 150–152 (1996).
[CrossRef]

A. Nahata, A. Weling, and T. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2322 (1996).
[CrossRef]

M. Li, G. C. Cho, T.-M. Lu, X.-C. Zhang, S.-Q. Wang, and J. T. Kennedy, “Time-domain dielectric constant measurement of thin film in GHz–THz frequency range near the Brewster angle,” Appl. Phys. Lett. 74, 2113–2115 (1999).
[CrossRef]

Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beam,” Appl. Phys. Lett. 67, 3523–3525 (1995).
[CrossRef]

Q. Wu and X.-C. Zhang, “Ultrafast electro-optic field sensor,” Appl. Phys. Lett. 68, 1604–1606 (1996).
[CrossRef]

Zhiping Jiang, F. G. Sun, Q. Chen, and X.-C. Zhang, “Electro-optic sampling near zero optical transmission point,” Appl. Phys. Lett. 74, 1191–1193 (1999).
[CrossRef]

Q. Chen and X.-C. Zhang, “Polarization modulation in optoelectronic generation and detection of terahertz beams,” Appl. Phys. Lett. 74, 3435–3437 (1999).
[CrossRef]

A. Rice, Y. Jin, X.-F. Ma, X.-C. Zhang, D. Bliss, J. Perkin, and M. Alexander, “Terahertz optical rectification from [110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1993).
[CrossRef]

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15-fs light pulses at 100-MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
[CrossRef]

J. Opt. Soc. Am. B (1)

S. Namba, “Electro-optical effect of zincblende,” J. Opt. Soc. Am. B 51, 76–79 (1961).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. E (1)

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schya, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, 3052–3054 (1996).
[CrossRef]

Proc. SPIE (1)

Q. Chen, Zhiping Jiang, and X.-C. Zhang, “All-optical THz image,” Proc. SPIE 3617, 98–105 (1999).
[CrossRef]

Other (3)

Q. Chen, Zhiping Jiang, M. Tani, and X.-C. Zhang, “Electro-optic terahertz transceiver,” Electron. Lett. 1298–1299 (2000).

A. Yariv, Optical Electronics (Oxford University, London, 1991), Chap. 9.

R. W. Boyd, Nonlinear Optics (Academic, New York, 1992), Chap. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Geometry of the (110) zinc-blende crystal as a THz transmitter. The plane of the page is the (110) plane of the crystal, and the angles θ and ϕ are measured on the (110) plane.

Fig. 2
Fig. 2

Geometry of the (110) zinc-blende crystal as a THz receiver. The plane of the page is the (110) plane of the crystal, and the angles ϕ and φ are measured on the (110) plane.

Fig. 3
Fig. 3

Geometry of the lab coordinate system xyz and the crystallographic coordinate system for (111) zinc-blende crystals.

Fig. 4
Fig. 4

Geometry of the (111) zinc-blende crystal as a THz transmitter. The plane of the page is the (111) plane of the crystal, and the angles θ and ϕ are measured on the (111) plane.

Fig. 5
Fig. 5

Geometry of the (111) zinc-blende crystal as a THz receiver. The plane of the page is the (111) plane of the crystal, and the angles ϕ and φ are measured on the (111) plane.

Fig. 6
Fig. 6

Schematic experimental setup of the electro-optic THz transceiver. The THz signal is generated and detected on the same ZnTe crystal.

Fig. 7
Fig. 7

Signal intensity as a function of angle θ for an electro-optic THz transceiver constructed by (110) and (111) zinc-blende crystals. The solid and dashed curves show the results of theoretical calculation; the dots show experiment results from a (110) ZnTe crystal.

Fig. 8
Fig. 8

P and S components of the THz electric field as a function of angle θ for (110) zinc-blende crystals. The solid curve shows the results of theoretical calculation; the dots and open circles show experiment results based on a (110) ZnTe crystal.

Fig. 9
Fig. 9

Schematic experimental setup of a THz time-of-flight imaging system. The pump and the probe beams are both S polarized. P1, P2, pellicle; A, attenuator.

Fig. 10
Fig. 10

THz time-of-flight images of (a) a common key and (b) a quarter coin.

Tables (1)

Tables Icon

Table 1 Optimum Orientation of the Zinc-Blende Electro-Optical Crystal as THz Transmittera,c and THz Receiverb,c

Equations (55)

Equations on this page are rendered with MathJax. Learn more.

dijk=dil=000d14000000d14000000d14.
PxPyPz=000d14000000d14000000d14Ex2Ey2Ez22EyEz2ExEz2ExEy.
E=E0(sin θ/2, -sin θ/2, cos θ).
PxPyPz=2d14EyEzEzExExEy=d14E02-2 sin θ cos θ2 sin θ cos θ-sin2 θ.
xyz=1/21/20-1/21/20001xyz.
PxPyPz=Px+PyPx-PyPz=d14E020sin 2θ-sin2 θ.
|ETHz||P|=d14E02[sin2 θ(1+3 cos2 θ)]1/2=d14E02-3sin2 θ-232+431/2,
-PyPztan ϕ=2 cot θ,
ETHz max43 d14E02.
x2+y2+z2n02+2r41Exyz+2r41Eyzx+2r41Ezxy=1.
ETHz=ETHz(sin ϕ/2,-sin ϕ/2, cos ϕ).
x2+y2+z2n02+2r41ETHz sin ϕ2yz-2r41ETHz sin ϕ2zx
+2r41ETHz cos ϕ xy=1.
x2+y2+z2n02+2r41ETHz sin ϕ yz
+r41ETHz cos ϕ(x2-y2)=1.
1n02-r41ETHz cos ϕy2+z2n02+2r41ETHz sin ϕ yz
=1.
det1/n02-γ41ETHz cos ϕ-sγ41ETHz sin ϕγ41ETHz sin ϕ1/n02-s=0.
s1,2=1n02+12γ41ETHz(-cos ϕ±1+3 sin2 ϕ).
1n02+12γ41ETHz(-cos ϕ+1+3 sin2 ϕ)y2
+1n02+12γ41ETHz(-cos ϕ-1+3 sin2 ϕ)z2
=1,
1ny2=1n02+r41ETHz2(-cos ϕ+1+3 sin2 ϕ)  nyn0+n03r41ETHz4(cos ϕ-1+3 sin2 ϕ),
1nz2=1n02+r41ETHz2(-cos ϕ-1+3 sin2 ϕ)  nzn0+n03r41ETHz4(cos ϕ+1+3 sin2 ϕ),
Δn(nz-ny)=n03r41ETHz1+3 sin2 ϕ2.
IsignalETHz1+3 sin2 ϕ2.
1, 2 sin ϕ1+3 sin2 ϕ-cos ϕ
1, -2 sin ϕ1+3 sin2 ϕ+cos ϕ.
tan φ2 sin ϕ1+3 sin2 ϕ-cos ϕ 2 tan ϕ=-tan 2φ,
xyz=13-12-161312-1613026xyz.
E=E0(0, -sin θ, cos θ).
E=E012 sin θ-16 cos θ,-12 sin θ-16 cos θ, 26 cos θ.
PxPyPz=2d14EyEzEzExExEy=d14E02-46 cos θ12 sin θ+16 cos θ46 cos θ12 sin θ-16 cos θ13 cos2 θ-sin2 θ.
PxPyPz=131313-12120-16-1626×-46d14E02 cos θ12 sin θ+16 cos θ46d14E02 cos θ12 sin θ-16 cos θd14E0213 cos2 θ-sin2 θ=d14E02-1326 sin(2θ)26 cos(2θ).
-PyPztan ϕ=-tan(2θ)  ϕ=-2θ,
ETHz=ETHz(0, -sin ϕ,cos ϕ).
ETHz=ETHz12 sin ϕ-16 cos ϕ,-12 sin ϕ-16 cos ϕ, 26 cos ϕ.
x2+y2+z2n02+2r41ETHz12 sin ϕ-16 cos ϕyz
-2r41ETHz12 sin ϕ+16 cos ϕzx
+26r41ETHz cos ϕxy=1.
1n02-16r41ETHz cos ϕy2
+1n02+536r41ETHz cos ϕz2+46r41ETHz sin ϕyz=1.
det1n02-16γ41ETHz cos ϕ-s 26γ41ETHz sin ϕ26γ41ETHz sin ϕ 1n02+536γ41ETHz cos ϕ-s
=0.
s1,2=1n02+136γ41ETHz cos ϕ±12γ41ETHz3227+4027 sin2 ϕ.
1n02+γ41ETHzcos ϕ36+12 3227+4027 sin2 ϕy2
+1n02+γ41ETHzcos ϕ36-12 3227+4027 sin2 ϕz2=1,
1ny2=1n02+γ41ETHzcos ϕ36+12 3227+4027 sin2 ϕ  nyn0-n03r41ETHz2 cos ϕ36+3227+4027 sin2 ϕ2,
1nz2=1n02+γ41ETHzcos ϕ36-12 3227+4027 sin2 ϕ  nzn0-n03r41ETHz2 cos ϕ36-3227+4027 sin2 ϕ2,
Δn(nz-ny)=n03r41ETHz3227+4027 sin2 ϕ2.
IsignalΓ=2πdλΔnETHz3227+4027 sin2 ϕ2,
1, 436 cos ϕ+12 3227+4027 sin2 ϕ26 sin ϕ.
tan φ=436 cos ϕ+12 3227+4027 sin2 ϕ26 sin ϕ 32 tan ϕ=-tan(2φ).
Isignalsin[2(θ-φ)]×Γsin[2(θ-φ)]×sin2 θ(1+3 cos2 θ)×1+3 sin2 ϕ
Isignalsin[2(θ-φ)]×Γsin[2(θ-φ)]×3227+4027 sin2 ϕ

Metrics