Abstract

The performance of a flash-lamp-pumped self-frequency-doubled Nd3+:GdCa4O(BO3)3 (Nd:GdCOB) laser that is passively Q switched with Cr4+:YAG saturable absorbers is demonstrated. The maximum 0.53-µm pulse energy obtained is 2.6 mJ, and the maximum peak intensity is 15 MW/cm2. The dependence of the pulse characteristics on the orientation of the saturable absorber and on the cavity length is measured. Meanwhile, the transversal distribution of the intracavity photon density is taken into account in the rate equations for an intracavity frequency-doubled passively Q-switched laser, and the solutions are used to account for the behavior of the passively Q-switched Nd:GdCOB laser.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Mougel, G. Aka, A. Kahn-Harari, H. Hurbert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
    [CrossRef]
  2. D. Vivien, F. Mougel, G. Aka, A. Kahn-Harari, and D. Pelenc, “Neodymium-activated Ca4GdB3O10 (Nd:GdCOB): a multifunctional material exhibiting both laser and nonlinear optical properties,” Laser Phys. 8, 759–753 (1998).
  3. F. Mougel, F. Auge, G. Aka, A. Kahn-Harari, D. Vivien, F. Balembois, P. Georges, and A. Brun, “New green self-frequency-doubling diode-pumped Nd3+:Ca4GdO(BO3)3 laser,” Appl. Phys. B 67, 533–535 (1998).
    [CrossRef]
  4. S. Zhang, Z. Cheng, J. Han, G. Zhou, Z. Shao, C. Wang, Y. T. Chow, and H. Chen, “Growth and investigation of efficient self-frequency-doubling NdxGd1−xCa4O(BO3)3 crystal,” J. Cryst. Growth 206, 197–202 (1999).
    [CrossRef]
  5. C. Wang, Y. T. Chow, W. A. Gambling, S. Zhang, Z. Cheng, Z. Shao, and H. Chen, “Efficient self-frequency doubling of Nd:GdCOB crystal by type-I phase matching out of its principal planes,” Opt. Commun. 174, 471–474 (2000).
    [CrossRef]
  6. F. Auge, F. Mougel, F. Balembois, P. Georges, A. Brun, G. Aka, A. Kahn-Harari, and D. Vivien, “Efficient cw and Q-switch operation of a self-frequency-doubling diode-pumped Nd3+:Ca4Gd1−xNdxB3O10 (Nd:GdCOB) crystal,” in Conference on Lasers and Electro-Optics (CLEO/U.S.) (Optical Society of America, Washington, D.C., 1999), p. 530, paper CFF3.
  7. W. G. Wagner and B. A. Lengyel, “Evolution of the giant pulse in a laser,” J. Appl. Phys. 34, 2040–2046 (1963).
    [CrossRef]
  8. A. Szabo and R. A. Stein, “Theory of laser giant pulsing by a saturable absorber,” J. Appl. Phys. 36, 1562–1566 (1965).
    [CrossRef]
  9. J. E. Murray and S. E. Harris, “Pulse lengthening via overcoupled internal second-harmonic generation,” J. Appl. Phys. 41, 609–613 (1970).
    [CrossRef]
  10. E. C. Honea, C. A. Ebbers, R. J. Beach, J. A. Speth, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “Analysis of an intracavity-doubled diode-pumped Q-switched Nd:YAG laser producing more than 100 W of power at 0.532 μm,” Opt. Lett. 23, 1203–1205 (1998).
    [CrossRef]
  11. T. T. Kajava and A. L. Gaeta, “Intra-cavity frequency-doubling of a Nd:YAG laser passively Q-switched with GaAs,” Opt. Commun. 137, 93–97 (1997).
    [CrossRef]
  12. J. Liu and D. Kim, “Optimization of intracavity doubled passively Q-switched solid-state lasers,” IEEE J. Quantum Electron. 35, 1724–1730 (1999).
    [CrossRef]
  13. X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of diode-pumped actively Q-switched lasers,” IEEE J. Quantum Electron. 35, 1912–1918 (1999).
    [CrossRef]
  14. X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of passively Q-switched lasers,” J. Opt. Soc. Am. B 17, 1166–1175 (2000).
    [CrossRef]
  15. X. Zhang, S. Zhao, Q. Wang, L. Sun, S. Zhang, G. Yao, and Z. Zhang, “Laser diode pumped Cr4+:YAG passively Q-switched Nd3+:SFAP laser,” Opt. Commun. 155, 55–60 (1998).
    [CrossRef]
  16. W. Koechner, Solid State Laser Engineering, 4th ed. (Springer-Verlag, Berlin, 1996), Chap. 10.
  17. J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1995).
    [CrossRef]
  18. H. Eilers, K. R. Hoffman, W. M. Denis, S. M. Jacobson, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr, Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958–2960 (1992).
    [CrossRef]
  19. P. Yankov, “Cr4+:YAG Q-switching of Nd:host laser oscillators,” J. Phys. D 27, 1118–1120 (1994).
    [CrossRef]
  20. S. Camacho-Lopez, R. P. M. Green, G. J. Crofts, and M. J. Damzen, “Intensity-induced birefringence in Cr4+:YAG,” J. Mod. Opt. 44, 209–219 (1997).
    [CrossRef]
  21. A. V. Kir’yanov, V. Aboites, and I. V. Mel’nikov, “Second-harmonic generation by Nd3+:YAG/Cr4+:YAG-laser pulses with changing state of polarization,” J. Opt. Soc. Am. B 17, 1657–1664 (2000).
    [CrossRef]
  22. J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
    [CrossRef]
  23. X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997).
    [CrossRef]
  24. X. Zhang, S. Zhao, Q. Wang, S. Wang, L. Sun, S. Zhang, G. Yao, and Z. Zhang, “Measurement of absorption cross section and ground state recovery time of Cr4+-doped saturable absorber,” J. Optoelectron. Laser 9, 453–457 (1998) (in Chinese).
  25. A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, and K. Midorikawa, “Absorption and oscillation characteristics of apulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
    [CrossRef]
  26. G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
    [CrossRef]
  27. Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kokta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34, 292–299 (1998).
    [CrossRef]
  28. H. Eilers, W. M. Dennis, W. M. Yen, S. Küch, K. Peterman, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508–2512 (1993).
    [CrossRef]
  29. H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B 49, 15, 505–15, 513 (1994).
    [CrossRef]
  30. W. G. Ostroumov, F. Heine, S. Kück, G. Huber, V. A. Mikhailov, and I. A. Shcherbakov, “Intracavity frequency-doubled diode-pumped Nd:LaSc3(BO3)4 lasers,” Appl. Phys. B 64, 301–305 (1997).
    [CrossRef]
  31. Y. F. Chen, “Passive Q-switching of an intracavity frequency-doubled diode-pumped Nd:YVO4/KTP green laser with Cr4+:YAG,” IEEE Photon. Technol. Lett. 9, 1481–1483 (1997).
    [CrossRef]
  32. J. Bartschke, K.-J. Boller, R. Wallenstein, I. V. Klimov, V. B. Tsvetkov, and I. A. Shcherbakov, “Diode-pumped passively Q-switched self-frequency-doubling Nd:YAB laser,” J. Opt. Soc. Am. B 14, 3452–3456 (1997).
    [CrossRef]

2000 (3)

1999 (5)

A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, and K. Midorikawa, “Absorption and oscillation characteristics of apulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
[CrossRef]

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

S. Zhang, Z. Cheng, J. Han, G. Zhou, Z. Shao, C. Wang, Y. T. Chow, and H. Chen, “Growth and investigation of efficient self-frequency-doubling NdxGd1−xCa4O(BO3)3 crystal,” J. Cryst. Growth 206, 197–202 (1999).
[CrossRef]

J. Liu and D. Kim, “Optimization of intracavity doubled passively Q-switched solid-state lasers,” IEEE J. Quantum Electron. 35, 1724–1730 (1999).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of diode-pumped actively Q-switched lasers,” IEEE J. Quantum Electron. 35, 1912–1918 (1999).
[CrossRef]

1998 (6)

X. Zhang, S. Zhao, Q. Wang, L. Sun, S. Zhang, G. Yao, and Z. Zhang, “Laser diode pumped Cr4+:YAG passively Q-switched Nd3+:SFAP laser,” Opt. Commun. 155, 55–60 (1998).
[CrossRef]

D. Vivien, F. Mougel, G. Aka, A. Kahn-Harari, and D. Pelenc, “Neodymium-activated Ca4GdB3O10 (Nd:GdCOB): a multifunctional material exhibiting both laser and nonlinear optical properties,” Laser Phys. 8, 759–753 (1998).

F. Mougel, F. Auge, G. Aka, A. Kahn-Harari, D. Vivien, F. Balembois, P. Georges, and A. Brun, “New green self-frequency-doubling diode-pumped Nd3+:Ca4GdO(BO3)3 laser,” Appl. Phys. B 67, 533–535 (1998).
[CrossRef]

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kokta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34, 292–299 (1998).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, S. Wang, L. Sun, S. Zhang, G. Yao, and Z. Zhang, “Measurement of absorption cross section and ground state recovery time of Cr4+-doped saturable absorber,” J. Optoelectron. Laser 9, 453–457 (1998) (in Chinese).

E. C. Honea, C. A. Ebbers, R. J. Beach, J. A. Speth, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “Analysis of an intracavity-doubled diode-pumped Q-switched Nd:YAG laser producing more than 100 W of power at 0.532 μm,” Opt. Lett. 23, 1203–1205 (1998).
[CrossRef]

1997 (7)

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997).
[CrossRef]

W. G. Ostroumov, F. Heine, S. Kück, G. Huber, V. A. Mikhailov, and I. A. Shcherbakov, “Intracavity frequency-doubled diode-pumped Nd:LaSc3(BO3)4 lasers,” Appl. Phys. B 64, 301–305 (1997).
[CrossRef]

Y. F. Chen, “Passive Q-switching of an intracavity frequency-doubled diode-pumped Nd:YVO4/KTP green laser with Cr4+:YAG,” IEEE Photon. Technol. Lett. 9, 1481–1483 (1997).
[CrossRef]

J. Bartschke, K.-J. Boller, R. Wallenstein, I. V. Klimov, V. B. Tsvetkov, and I. A. Shcherbakov, “Diode-pumped passively Q-switched self-frequency-doubling Nd:YAB laser,” J. Opt. Soc. Am. B 14, 3452–3456 (1997).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, H. Hurbert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

T. T. Kajava and A. L. Gaeta, “Intra-cavity frequency-doubling of a Nd:YAG laser passively Q-switched with GaAs,” Opt. Commun. 137, 93–97 (1997).
[CrossRef]

S. Camacho-Lopez, R. P. M. Green, G. J. Crofts, and M. J. Damzen, “Intensity-induced birefringence in Cr4+:YAG,” J. Mod. Opt. 44, 209–219 (1997).
[CrossRef]

1995 (2)

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
[CrossRef]

J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1995).
[CrossRef]

1994 (2)

P. Yankov, “Cr4+:YAG Q-switching of Nd:host laser oscillators,” J. Phys. D 27, 1118–1120 (1994).
[CrossRef]

H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B 49, 15, 505–15, 513 (1994).
[CrossRef]

1993 (1)

H. Eilers, W. M. Dennis, W. M. Yen, S. Küch, K. Peterman, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508–2512 (1993).
[CrossRef]

1992 (1)

H. Eilers, K. R. Hoffman, W. M. Denis, S. M. Jacobson, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr, Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958–2960 (1992).
[CrossRef]

1970 (1)

J. E. Murray and S. E. Harris, “Pulse lengthening via overcoupled internal second-harmonic generation,” J. Appl. Phys. 41, 609–613 (1970).
[CrossRef]

1965 (1)

A. Szabo and R. A. Stein, “Theory of laser giant pulsing by a saturable absorber,” J. Appl. Phys. 36, 1562–1566 (1965).
[CrossRef]

1963 (1)

W. G. Wagner and B. A. Lengyel, “Evolution of the giant pulse in a laser,” J. Appl. Phys. 34, 2040–2046 (1963).
[CrossRef]

Aboites, V.

Aka, G.

F. Mougel, F. Auge, G. Aka, A. Kahn-Harari, D. Vivien, F. Balembois, P. Georges, and A. Brun, “New green self-frequency-doubling diode-pumped Nd3+:Ca4GdO(BO3)3 laser,” Appl. Phys. B 67, 533–535 (1998).
[CrossRef]

D. Vivien, F. Mougel, G. Aka, A. Kahn-Harari, and D. Pelenc, “Neodymium-activated Ca4GdB3O10 (Nd:GdCOB): a multifunctional material exhibiting both laser and nonlinear optical properties,” Laser Phys. 8, 759–753 (1998).

F. Mougel, G. Aka, A. Kahn-Harari, H. Hurbert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

Auge, F.

F. Mougel, F. Auge, G. Aka, A. Kahn-Harari, D. Vivien, F. Balembois, P. Georges, and A. Brun, “New green self-frequency-doubling diode-pumped Nd3+:Ca4GdO(BO3)3 laser,” Appl. Phys. B 67, 533–535 (1998).
[CrossRef]

Balembois, F.

F. Mougel, F. Auge, G. Aka, A. Kahn-Harari, D. Vivien, F. Balembois, P. Georges, and A. Brun, “New green self-frequency-doubling diode-pumped Nd3+:Ca4GdO(BO3)3 laser,” Appl. Phys. B 67, 533–535 (1998).
[CrossRef]

Bartschke, J.

Bass, M.

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

Beach, R. J.

Benitez, J. M.

F. Mougel, G. Aka, A. Kahn-Harari, H. Hurbert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

Blau, P.

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kokta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34, 292–299 (1998).
[CrossRef]

Boller, K.-J.

Brun, A.

F. Mougel, F. Auge, G. Aka, A. Kahn-Harari, D. Vivien, F. Balembois, P. Georges, and A. Brun, “New green self-frequency-doubling diode-pumped Nd3+:Ca4GdO(BO3)3 laser,” Appl. Phys. B 67, 533–535 (1998).
[CrossRef]

Burshtein, Z.

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kokta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34, 292–299 (1998).
[CrossRef]

Camacho-Lopez, S.

S. Camacho-Lopez, R. P. M. Green, G. J. Crofts, and M. J. Damzen, “Intensity-induced birefringence in Cr4+:YAG,” J. Mod. Opt. 44, 209–219 (1997).
[CrossRef]

Chen, H.

C. Wang, Y. T. Chow, W. A. Gambling, S. Zhang, Z. Cheng, Z. Shao, and H. Chen, “Efficient self-frequency doubling of Nd:GdCOB crystal by type-I phase matching out of its principal planes,” Opt. Commun. 174, 471–474 (2000).
[CrossRef]

S. Zhang, Z. Cheng, J. Han, G. Zhou, Z. Shao, C. Wang, Y. T. Chow, and H. Chen, “Growth and investigation of efficient self-frequency-doubling NdxGd1−xCa4O(BO3)3 crystal,” J. Cryst. Growth 206, 197–202 (1999).
[CrossRef]

Chen, Y. F.

Y. F. Chen, “Passive Q-switching of an intracavity frequency-doubled diode-pumped Nd:YVO4/KTP green laser with Cr4+:YAG,” IEEE Photon. Technol. Lett. 9, 1481–1483 (1997).
[CrossRef]

Cheng, Z.

C. Wang, Y. T. Chow, W. A. Gambling, S. Zhang, Z. Cheng, Z. Shao, and H. Chen, “Efficient self-frequency doubling of Nd:GdCOB crystal by type-I phase matching out of its principal planes,” Opt. Commun. 174, 471–474 (2000).
[CrossRef]

S. Zhang, Z. Cheng, J. Han, G. Zhou, Z. Shao, C. Wang, Y. T. Chow, and H. Chen, “Growth and investigation of efficient self-frequency-doubling NdxGd1−xCa4O(BO3)3 crystal,” J. Cryst. Growth 206, 197–202 (1999).
[CrossRef]

Chow, Y. T.

C. Wang, Y. T. Chow, W. A. Gambling, S. Zhang, Z. Cheng, Z. Shao, and H. Chen, “Efficient self-frequency doubling of Nd:GdCOB crystal by type-I phase matching out of its principal planes,” Opt. Commun. 174, 471–474 (2000).
[CrossRef]

S. Zhang, Z. Cheng, J. Han, G. Zhou, Z. Shao, C. Wang, Y. T. Chow, and H. Chen, “Growth and investigation of efficient self-frequency-doubling NdxGd1−xCa4O(BO3)3 crystal,” J. Cryst. Growth 206, 197–202 (1999).
[CrossRef]

Crofts, G. J.

S. Camacho-Lopez, R. P. M. Green, G. J. Crofts, and M. J. Damzen, “Intensity-induced birefringence in Cr4+:YAG,” J. Mod. Opt. 44, 209–219 (1997).
[CrossRef]

Damzen, M. J.

S. Camacho-Lopez, R. P. M. Green, G. J. Crofts, and M. J. Damzen, “Intensity-induced birefringence in Cr4+:YAG,” J. Mod. Opt. 44, 209–219 (1997).
[CrossRef]

Degnan, J. J.

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
[CrossRef]

J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1995).
[CrossRef]

Denis, W. M.

H. Eilers, K. R. Hoffman, W. M. Denis, S. M. Jacobson, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr, Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958–2960 (1992).
[CrossRef]

Dennis, W. M.

H. Eilers, W. M. Dennis, W. M. Yen, S. Küch, K. Peterman, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508–2512 (1993).
[CrossRef]

Ebbers, C. A.

Eilers, H.

H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B 49, 15, 505–15, 513 (1994).
[CrossRef]

H. Eilers, W. M. Dennis, W. M. Yen, S. Küch, K. Peterman, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508–2512 (1993).
[CrossRef]

H. Eilers, K. R. Hoffman, W. M. Denis, S. M. Jacobson, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr, Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958–2960 (1992).
[CrossRef]

Emanuel, M. A.

Gaeta, A. L.

T. T. Kajava and A. L. Gaeta, “Intra-cavity frequency-doubling of a Nd:YAG laser passively Q-switched with GaAs,” Opt. Commun. 137, 93–97 (1997).
[CrossRef]

Gambling, W. A.

C. Wang, Y. T. Chow, W. A. Gambling, S. Zhang, Z. Cheng, Z. Shao, and H. Chen, “Efficient self-frequency doubling of Nd:GdCOB crystal by type-I phase matching out of its principal planes,” Opt. Commun. 174, 471–474 (2000).
[CrossRef]

Georges, P.

F. Mougel, F. Auge, G. Aka, A. Kahn-Harari, D. Vivien, F. Balembois, P. Georges, and A. Brun, “New green self-frequency-doubling diode-pumped Nd3+:Ca4GdO(BO3)3 laser,” Appl. Phys. B 67, 533–535 (1998).
[CrossRef]

Green, R. P. M.

S. Camacho-Lopez, R. P. M. Green, G. J. Crofts, and M. J. Damzen, “Intensity-induced birefringence in Cr4+:YAG,” J. Mod. Opt. 44, 209–219 (1997).
[CrossRef]

Han, J.

S. Zhang, Z. Cheng, J. Han, G. Zhou, Z. Shao, C. Wang, Y. T. Chow, and H. Chen, “Growth and investigation of efficient self-frequency-doubling NdxGd1−xCa4O(BO3)3 crystal,” J. Cryst. Growth 206, 197–202 (1999).
[CrossRef]

Harris, S. E.

J. E. Murray and S. E. Harris, “Pulse lengthening via overcoupled internal second-harmonic generation,” J. Appl. Phys. 41, 609–613 (1970).
[CrossRef]

Heine, F.

W. G. Ostroumov, F. Heine, S. Kück, G. Huber, V. A. Mikhailov, and I. A. Shcherbakov, “Intracavity frequency-doubled diode-pumped Nd:LaSc3(BO3)4 lasers,” Appl. Phys. B 64, 301–305 (1997).
[CrossRef]

Hoffman, K. R.

H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B 49, 15, 505–15, 513 (1994).
[CrossRef]

H. Eilers, K. R. Hoffman, W. M. Denis, S. M. Jacobson, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr, Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958–2960 (1992).
[CrossRef]

Hömmerich, U.

H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B 49, 15, 505–15, 513 (1994).
[CrossRef]

Honea, E. C.

Huber, G.

W. G. Ostroumov, F. Heine, S. Kück, G. Huber, V. A. Mikhailov, and I. A. Shcherbakov, “Intracavity frequency-doubled diode-pumped Nd:LaSc3(BO3)4 lasers,” Appl. Phys. B 64, 301–305 (1997).
[CrossRef]

H. Eilers, W. M. Dennis, W. M. Yen, S. Küch, K. Peterman, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508–2512 (1993).
[CrossRef]

Hurbert, H.

F. Mougel, G. Aka, A. Kahn-Harari, H. Hurbert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

Jacobsen, S. M.

H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B 49, 15, 505–15, 513 (1994).
[CrossRef]

Jacobson, S. M.

H. Eilers, K. R. Hoffman, W. M. Denis, S. M. Jacobson, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr, Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958–2960 (1992).
[CrossRef]

Jia, W.

H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B 49, 15, 505–15, 513 (1994).
[CrossRef]

H. Eilers, W. M. Dennis, W. M. Yen, S. Küch, K. Peterman, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508–2512 (1993).
[CrossRef]

Kadoi, A.

A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, and K. Midorikawa, “Absorption and oscillation characteristics of apulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
[CrossRef]

Kahn-Harari, A.

D. Vivien, F. Mougel, G. Aka, A. Kahn-Harari, and D. Pelenc, “Neodymium-activated Ca4GdB3O10 (Nd:GdCOB): a multifunctional material exhibiting both laser and nonlinear optical properties,” Laser Phys. 8, 759–753 (1998).

F. Mougel, F. Auge, G. Aka, A. Kahn-Harari, D. Vivien, F. Balembois, P. Georges, and A. Brun, “New green self-frequency-doubling diode-pumped Nd3+:Ca4GdO(BO3)3 laser,” Appl. Phys. B 67, 533–535 (1998).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, H. Hurbert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

Kajava, T. T.

T. T. Kajava and A. L. Gaeta, “Intra-cavity frequency-doubling of a Nd:YAG laser passively Q-switched with GaAs,” Opt. Commun. 137, 93–97 (1997).
[CrossRef]

Kalisky, Y.

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kokta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34, 292–299 (1998).
[CrossRef]

Kim, D.

J. Liu and D. Kim, “Optimization of intracavity doubled passively Q-switched solid-state lasers,” IEEE J. Quantum Electron. 35, 1724–1730 (1999).
[CrossRef]

Kir’yanov, A. V.

Klimov, I. V.

Kokta, M. R.

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kokta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34, 292–299 (1998).
[CrossRef]

Küch, S.

H. Eilers, W. M. Dennis, W. M. Yen, S. Küch, K. Peterman, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508–2512 (1993).
[CrossRef]

Kück, S.

W. G. Ostroumov, F. Heine, S. Kück, G. Huber, V. A. Mikhailov, and I. A. Shcherbakov, “Intracavity frequency-doubled diode-pumped Nd:LaSc3(BO3)4 lasers,” Appl. Phys. B 64, 301–305 (1997).
[CrossRef]

Lengyel, B. A.

W. G. Wagner and B. A. Lengyel, “Evolution of the giant pulse in a laser,” J. Appl. Phys. 34, 2040–2046 (1963).
[CrossRef]

Lim, J. H.

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

Liu, J.

J. Liu and D. Kim, “Optimization of intracavity doubled passively Q-switched solid-state lasers,” IEEE J. Quantum Electron. 35, 1724–1730 (1999).
[CrossRef]

Mel’nikov, I. V.

Midorikawa, K.

A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, and K. Midorikawa, “Absorption and oscillation characteristics of apulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
[CrossRef]

Mikhailov, V. A.

W. G. Ostroumov, F. Heine, S. Kück, G. Huber, V. A. Mikhailov, and I. A. Shcherbakov, “Intracavity frequency-doubled diode-pumped Nd:LaSc3(BO3)4 lasers,” Appl. Phys. B 64, 301–305 (1997).
[CrossRef]

Mougel, F.

D. Vivien, F. Mougel, G. Aka, A. Kahn-Harari, and D. Pelenc, “Neodymium-activated Ca4GdB3O10 (Nd:GdCOB): a multifunctional material exhibiting both laser and nonlinear optical properties,” Laser Phys. 8, 759–753 (1998).

F. Mougel, F. Auge, G. Aka, A. Kahn-Harari, D. Vivien, F. Balembois, P. Georges, and A. Brun, “New green self-frequency-doubling diode-pumped Nd3+:Ca4GdO(BO3)3 laser,” Appl. Phys. B 67, 533–535 (1998).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, H. Hurbert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

Murray, J. E.

J. E. Murray and S. E. Harris, “Pulse lengthening via overcoupled internal second-harmonic generation,” J. Appl. Phys. 41, 609–613 (1970).
[CrossRef]

Nagasaka, K.

A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, and K. Midorikawa, “Absorption and oscillation characteristics of apulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
[CrossRef]

Ostroumov, W. G.

W. G. Ostroumov, F. Heine, S. Kück, G. Huber, V. A. Mikhailov, and I. A. Shcherbakov, “Intracavity frequency-doubled diode-pumped Nd:LaSc3(BO3)4 lasers,” Appl. Phys. B 64, 301–305 (1997).
[CrossRef]

Ozygus, B.

X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of passively Q-switched lasers,” J. Opt. Soc. Am. B 17, 1166–1175 (2000).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of diode-pumped actively Q-switched lasers,” IEEE J. Quantum Electron. 35, 1912–1918 (1999).
[CrossRef]

Payne, S. A.

Pelenc, D.

D. Vivien, F. Mougel, G. Aka, A. Kahn-Harari, and D. Pelenc, “Neodymium-activated Ca4GdB3O10 (Nd:GdCOB): a multifunctional material exhibiting both laser and nonlinear optical properties,” Laser Phys. 8, 759–753 (1998).

Peterman, K.

H. Eilers, W. M. Dennis, W. M. Yen, S. Küch, K. Peterman, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508–2512 (1993).
[CrossRef]

Shao, Z.

C. Wang, Y. T. Chow, W. A. Gambling, S. Zhang, Z. Cheng, Z. Shao, and H. Chen, “Efficient self-frequency doubling of Nd:GdCOB crystal by type-I phase matching out of its principal planes,” Opt. Commun. 174, 471–474 (2000).
[CrossRef]

S. Zhang, Z. Cheng, J. Han, G. Zhou, Z. Shao, C. Wang, Y. T. Chow, and H. Chen, “Growth and investigation of efficient self-frequency-doubling NdxGd1−xCa4O(BO3)3 crystal,” J. Cryst. Growth 206, 197–202 (1999).
[CrossRef]

Shcherbakov, I. A.

W. G. Ostroumov, F. Heine, S. Kück, G. Huber, V. A. Mikhailov, and I. A. Shcherbakov, “Intracavity frequency-doubled diode-pumped Nd:LaSc3(BO3)4 lasers,” Appl. Phys. B 64, 301–305 (1997).
[CrossRef]

J. Bartschke, K.-J. Boller, R. Wallenstein, I. V. Klimov, V. B. Tsvetkov, and I. A. Shcherbakov, “Diode-pumped passively Q-switched self-frequency-doubling Nd:YAB laser,” J. Opt. Soc. Am. B 14, 3452–3456 (1997).
[CrossRef]

Shimony, Y.

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kokta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34, 292–299 (1998).
[CrossRef]

Skidmore, J. A.

Speth, J. A.

Stein, R. A.

A. Szabo and R. A. Stein, “Theory of laser giant pulsing by a saturable absorber,” J. Appl. Phys. 36, 1562–1566 (1965).
[CrossRef]

Suda, A.

A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, and K. Midorikawa, “Absorption and oscillation characteristics of apulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
[CrossRef]

Sun, L.

X. Zhang, S. Zhao, Q. Wang, L. Sun, S. Zhang, G. Yao, and Z. Zhang, “Laser diode pumped Cr4+:YAG passively Q-switched Nd3+:SFAP laser,” Opt. Commun. 155, 55–60 (1998).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, S. Wang, L. Sun, S. Zhang, G. Yao, and Z. Zhang, “Measurement of absorption cross section and ground state recovery time of Cr4+-doped saturable absorber,” J. Optoelectron. Laser 9, 453–457 (1998) (in Chinese).

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997).
[CrossRef]

Szabo, A.

A. Szabo and R. A. Stein, “Theory of laser giant pulsing by a saturable absorber,” J. Appl. Phys. 36, 1562–1566 (1965).
[CrossRef]

Tashiro, H.

A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, and K. Midorikawa, “Absorption and oscillation characteristics of apulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
[CrossRef]

Tsvetkov, V. B.

Van Stryland, E.

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

Vivien, D.

D. Vivien, F. Mougel, G. Aka, A. Kahn-Harari, and D. Pelenc, “Neodymium-activated Ca4GdB3O10 (Nd:GdCOB): a multifunctional material exhibiting both laser and nonlinear optical properties,” Laser Phys. 8, 759–753 (1998).

F. Mougel, F. Auge, G. Aka, A. Kahn-Harari, D. Vivien, F. Balembois, P. Georges, and A. Brun, “New green self-frequency-doubling diode-pumped Nd3+:Ca4GdO(BO3)3 laser,” Appl. Phys. B 67, 533–535 (1998).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, H. Hurbert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

Wagner, W. G.

W. G. Wagner and B. A. Lengyel, “Evolution of the giant pulse in a laser,” J. Appl. Phys. 34, 2040–2046 (1963).
[CrossRef]

Wallenstein, R.

Wang, C.

C. Wang, Y. T. Chow, W. A. Gambling, S. Zhang, Z. Cheng, Z. Shao, and H. Chen, “Efficient self-frequency doubling of Nd:GdCOB crystal by type-I phase matching out of its principal planes,” Opt. Commun. 174, 471–474 (2000).
[CrossRef]

S. Zhang, Z. Cheng, J. Han, G. Zhou, Z. Shao, C. Wang, Y. T. Chow, and H. Chen, “Growth and investigation of efficient self-frequency-doubling NdxGd1−xCa4O(BO3)3 crystal,” J. Cryst. Growth 206, 197–202 (1999).
[CrossRef]

Wang, Q.

X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of passively Q-switched lasers,” J. Opt. Soc. Am. B 17, 1166–1175 (2000).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of diode-pumped actively Q-switched lasers,” IEEE J. Quantum Electron. 35, 1912–1918 (1999).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, S. Wang, L. Sun, S. Zhang, G. Yao, and Z. Zhang, “Measurement of absorption cross section and ground state recovery time of Cr4+-doped saturable absorber,” J. Optoelectron. Laser 9, 453–457 (1998) (in Chinese).

X. Zhang, S. Zhao, Q. Wang, L. Sun, S. Zhang, G. Yao, and Z. Zhang, “Laser diode pumped Cr4+:YAG passively Q-switched Nd3+:SFAP laser,” Opt. Commun. 155, 55–60 (1998).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997).
[CrossRef]

Wang, S.

X. Zhang, S. Zhao, Q. Wang, S. Wang, L. Sun, S. Zhang, G. Yao, and Z. Zhang, “Measurement of absorption cross section and ground state recovery time of Cr4+-doped saturable absorber,” J. Optoelectron. Laser 9, 453–457 (1998) (in Chinese).

Weber, H.

X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of passively Q-switched lasers,” J. Opt. Soc. Am. B 17, 1166–1175 (2000).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of diode-pumped actively Q-switched lasers,” IEEE J. Quantum Electron. 35, 1912–1918 (1999).
[CrossRef]

Weichman, L.

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

Xiao, G.

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

Yang, S.

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

Yankov, P.

P. Yankov, “Cr4+:YAG Q-switching of Nd:host laser oscillators,” J. Phys. D 27, 1118–1120 (1994).
[CrossRef]

Yao, G.

X. Zhang, S. Zhao, Q. Wang, L. Sun, S. Zhang, G. Yao, and Z. Zhang, “Laser diode pumped Cr4+:YAG passively Q-switched Nd3+:SFAP laser,” Opt. Commun. 155, 55–60 (1998).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, S. Wang, L. Sun, S. Zhang, G. Yao, and Z. Zhang, “Measurement of absorption cross section and ground state recovery time of Cr4+-doped saturable absorber,” J. Optoelectron. Laser 9, 453–457 (1998) (in Chinese).

Yen, W. M.

H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B 49, 15, 505–15, 513 (1994).
[CrossRef]

H. Eilers, W. M. Dennis, W. M. Yen, S. Küch, K. Peterman, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508–2512 (1993).
[CrossRef]

H. Eilers, K. R. Hoffman, W. M. Denis, S. M. Jacobson, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr, Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958–2960 (1992).
[CrossRef]

Zhang, Q.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997).
[CrossRef]

Zhang, S.

C. Wang, Y. T. Chow, W. A. Gambling, S. Zhang, Z. Cheng, Z. Shao, and H. Chen, “Efficient self-frequency doubling of Nd:GdCOB crystal by type-I phase matching out of its principal planes,” Opt. Commun. 174, 471–474 (2000).
[CrossRef]

S. Zhang, Z. Cheng, J. Han, G. Zhou, Z. Shao, C. Wang, Y. T. Chow, and H. Chen, “Growth and investigation of efficient self-frequency-doubling NdxGd1−xCa4O(BO3)3 crystal,” J. Cryst. Growth 206, 197–202 (1999).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, L. Sun, S. Zhang, G. Yao, and Z. Zhang, “Laser diode pumped Cr4+:YAG passively Q-switched Nd3+:SFAP laser,” Opt. Commun. 155, 55–60 (1998).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, S. Wang, L. Sun, S. Zhang, G. Yao, and Z. Zhang, “Measurement of absorption cross section and ground state recovery time of Cr4+-doped saturable absorber,” J. Optoelectron. Laser 9, 453–457 (1998) (in Chinese).

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997).
[CrossRef]

Zhang, X.

X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of passively Q-switched lasers,” J. Opt. Soc. Am. B 17, 1166–1175 (2000).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of diode-pumped actively Q-switched lasers,” IEEE J. Quantum Electron. 35, 1912–1918 (1999).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, S. Wang, L. Sun, S. Zhang, G. Yao, and Z. Zhang, “Measurement of absorption cross section and ground state recovery time of Cr4+-doped saturable absorber,” J. Optoelectron. Laser 9, 453–457 (1998) (in Chinese).

X. Zhang, S. Zhao, Q. Wang, L. Sun, S. Zhang, G. Yao, and Z. Zhang, “Laser diode pumped Cr4+:YAG passively Q-switched Nd3+:SFAP laser,” Opt. Commun. 155, 55–60 (1998).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997).
[CrossRef]

Zhang, Z.

X. Zhang, S. Zhao, Q. Wang, L. Sun, S. Zhang, G. Yao, and Z. Zhang, “Laser diode pumped Cr4+:YAG passively Q-switched Nd3+:SFAP laser,” Opt. Commun. 155, 55–60 (1998).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, S. Wang, L. Sun, S. Zhang, G. Yao, and Z. Zhang, “Measurement of absorption cross section and ground state recovery time of Cr4+-doped saturable absorber,” J. Optoelectron. Laser 9, 453–457 (1998) (in Chinese).

Zhao, S.

X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of passively Q-switched lasers,” J. Opt. Soc. Am. B 17, 1166–1175 (2000).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of diode-pumped actively Q-switched lasers,” IEEE J. Quantum Electron. 35, 1912–1918 (1999).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, S. Wang, L. Sun, S. Zhang, G. Yao, and Z. Zhang, “Measurement of absorption cross section and ground state recovery time of Cr4+-doped saturable absorber,” J. Optoelectron. Laser 9, 453–457 (1998) (in Chinese).

X. Zhang, S. Zhao, Q. Wang, L. Sun, S. Zhang, G. Yao, and Z. Zhang, “Laser diode pumped Cr4+:YAG passively Q-switched Nd3+:SFAP laser,” Opt. Commun. 155, 55–60 (1998).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997).
[CrossRef]

Zhou, G.

S. Zhang, Z. Cheng, J. Han, G. Zhou, Z. Shao, C. Wang, Y. T. Chow, and H. Chen, “Growth and investigation of efficient self-frequency-doubling NdxGd1−xCa4O(BO3)3 crystal,” J. Cryst. Growth 206, 197–202 (1999).
[CrossRef]

Appl. Phys. B (2)

F. Mougel, F. Auge, G. Aka, A. Kahn-Harari, D. Vivien, F. Balembois, P. Georges, and A. Brun, “New green self-frequency-doubling diode-pumped Nd3+:Ca4GdO(BO3)3 laser,” Appl. Phys. B 67, 533–535 (1998).
[CrossRef]

W. G. Ostroumov, F. Heine, S. Kück, G. Huber, V. A. Mikhailov, and I. A. Shcherbakov, “Intracavity frequency-doubled diode-pumped Nd:LaSc3(BO3)4 lasers,” Appl. Phys. B 64, 301–305 (1997).
[CrossRef]

Appl. Phys. Lett. (1)

H. Eilers, K. R. Hoffman, W. M. Denis, S. M. Jacobson, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr, Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958–2960 (1992).
[CrossRef]

IEEE J. Quantum Electron. (9)

J. Liu and D. Kim, “Optimization of intracavity doubled passively Q-switched solid-state lasers,” IEEE J. Quantum Electron. 35, 1724–1730 (1999).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of diode-pumped actively Q-switched lasers,” IEEE J. Quantum Electron. 35, 1912–1918 (1999).
[CrossRef]

J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1995).
[CrossRef]

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997).
[CrossRef]

A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, and K. Midorikawa, “Absorption and oscillation characteristics of apulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
[CrossRef]

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kokta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34, 292–299 (1998).
[CrossRef]

H. Eilers, W. M. Dennis, W. M. Yen, S. Küch, K. Peterman, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron. 29, 2508–2512 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. F. Chen, “Passive Q-switching of an intracavity frequency-doubled diode-pumped Nd:YVO4/KTP green laser with Cr4+:YAG,” IEEE Photon. Technol. Lett. 9, 1481–1483 (1997).
[CrossRef]

J. Appl. Phys. (3)

W. G. Wagner and B. A. Lengyel, “Evolution of the giant pulse in a laser,” J. Appl. Phys. 34, 2040–2046 (1963).
[CrossRef]

A. Szabo and R. A. Stein, “Theory of laser giant pulsing by a saturable absorber,” J. Appl. Phys. 36, 1562–1566 (1965).
[CrossRef]

J. E. Murray and S. E. Harris, “Pulse lengthening via overcoupled internal second-harmonic generation,” J. Appl. Phys. 41, 609–613 (1970).
[CrossRef]

J. Cryst. Growth (1)

S. Zhang, Z. Cheng, J. Han, G. Zhou, Z. Shao, C. Wang, Y. T. Chow, and H. Chen, “Growth and investigation of efficient self-frequency-doubling NdxGd1−xCa4O(BO3)3 crystal,” J. Cryst. Growth 206, 197–202 (1999).
[CrossRef]

J. Mod. Opt. (1)

S. Camacho-Lopez, R. P. M. Green, G. J. Crofts, and M. J. Damzen, “Intensity-induced birefringence in Cr4+:YAG,” J. Mod. Opt. 44, 209–219 (1997).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Optoelectron. Laser (1)

X. Zhang, S. Zhao, Q. Wang, S. Wang, L. Sun, S. Zhang, G. Yao, and Z. Zhang, “Measurement of absorption cross section and ground state recovery time of Cr4+-doped saturable absorber,” J. Optoelectron. Laser 9, 453–457 (1998) (in Chinese).

J. Phys. D (1)

P. Yankov, “Cr4+:YAG Q-switching of Nd:host laser oscillators,” J. Phys. D 27, 1118–1120 (1994).
[CrossRef]

Laser Phys. (1)

D. Vivien, F. Mougel, G. Aka, A. Kahn-Harari, and D. Pelenc, “Neodymium-activated Ca4GdB3O10 (Nd:GdCOB): a multifunctional material exhibiting both laser and nonlinear optical properties,” Laser Phys. 8, 759–753 (1998).

Opt. Commun. (3)

X. Zhang, S. Zhao, Q. Wang, L. Sun, S. Zhang, G. Yao, and Z. Zhang, “Laser diode pumped Cr4+:YAG passively Q-switched Nd3+:SFAP laser,” Opt. Commun. 155, 55–60 (1998).
[CrossRef]

C. Wang, Y. T. Chow, W. A. Gambling, S. Zhang, Z. Cheng, Z. Shao, and H. Chen, “Efficient self-frequency doubling of Nd:GdCOB crystal by type-I phase matching out of its principal planes,” Opt. Commun. 174, 471–474 (2000).
[CrossRef]

T. T. Kajava and A. L. Gaeta, “Intra-cavity frequency-doubling of a Nd:YAG laser passively Q-switched with GaAs,” Opt. Commun. 137, 93–97 (1997).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. (1)

F. Mougel, G. Aka, A. Kahn-Harari, H. Hurbert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

Phys. Rev. B (1)

H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B 49, 15, 505–15, 513 (1994).
[CrossRef]

Other (2)

W. Koechner, Solid State Laser Engineering, 4th ed. (Springer-Verlag, Berlin, 1996), Chap. 10.

F. Auge, F. Mougel, F. Balembois, P. Georges, A. Brun, G. Aka, A. Kahn-Harari, and D. Vivien, “Efficient cw and Q-switch operation of a self-frequency-doubling diode-pumped Nd3+:Ca4Gd1−xNdxB3O10 (Nd:GdCOB) crystal,” in Conference on Lasers and Electro-Optics (CLEO/U.S.) (Optical Society of America, Washington, D.C., 1999), p. 530, paper CFF3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of the experimental setup: M1, M2, cavity mirrors; Cr, Cr4+:YAG saturable absorber; Nd, Nd:GdCOB crystal; Xe, xenon flash lamp; F1, F2, filters; BS, beam splitter; EM1, EM2, energy meters; D, detector; O, oscilloscope.

Fig. 2
Fig. 2

Relation between the pulse energy and the rotation angle δ of the saturable absorber for cavity length Le=36 cm; δ is measured with respect to the orientation for generating the maximum pulse energy. Filled circles, experimental results; curves, theoretical results: (a) the initial transmission of the saturable absorber, T0=88%, and (b) T0=91%.

Fig. 3
Fig. 3

Relation between the pulse width and the rotation angle δ of the saturable absorber for Le=36 cm. Filled circles, experimental results; curves, theoretical results: (a) T0=88%, (b) T0=91%.

Fig. 4
Fig. 4

Relation between pulse energy and cavity length Le. Filled circles, experimental results; curves, theoretical results: (a) T0=88%, (b) T0=91%.

Fig. 5
Fig. 5

Relation between pulse width and cavity length Le. Filled circles, experimental results; curves, theoretical results: (a) T0=88%, (b) T0=91%.

Fig. 6
Fig. 6

Typical pulse obtained for T0=88% and Le=36 cm.

Fig. 7
Fig. 7

Relation between eSH and N for several values of ηSHG: (a) ηSHG=10, (b) ηSHG=5, (c) ηSGH=2, (d) ηSHG=1, (e) ηSHG=0.5, (f) ηSHG=0.2, (g) ηSHG=0.1, (h) ηSHG=0.05, (i) ηSHG=0.02, (j) ηSHG=0.01. (a)–(c) nearly overlap.

Fig. 8
Fig. 8

Relation between ΔτSH and N for several values of ηSHG: (a) ηSHG=10, (b) ηSHG=5, (c) ηSHG=2, (d) ηSHG=1, (e) ηSHG=0.5, (f) ηSHG=0.2, (g) ηSHG=0.1, (h) ηSHG=0.05, (i) ηSHG=0.02, (j) ηSHG=0.01.

Fig. 9
Fig. 9

Relation between eSH and ηSHG for four values of N: (a) N=5, (b) N=4, (c) N=3, (d) N=2.

Fig. 10
Fig. 10

Relation between ΔτSH and ηSHG for several values of N: (a) N=5, (b) N=4, (c) N=3, (d) N=2.

Equations (42)

Equations on this page are rendered with MathJax. Learn more.

ISH(r, t)=IF(r, t)tanh2[η1/2IF1/2(r, t)],
η=2ln2ω2deff2μ0r03/2 sin2(lnΔk/2)(lnΔk/2)2,
ϕ(r, t)=ϕ(0, t)exp-2r2ωL2,
IF(r, t)=chvϕ(r, t)/2,
PSH(t)=20 ISH(r, t)2πrdr=chv 0 ϕ(r, t)×tanh2[η1/2(chv/2)1/2ϕ1/2(r, t)]2πrdr.
PSH(t)=hvl 0 dϕ(r, t)dtSHG2πrdr,
0 dϕ(r, t)dtSHG2πrdr
=0 2ϕ(r, t)tr tanh2[η1/2(chv/2)1/2ϕ1/2(r, t)]2πrdr,
tr=2(rgl+rsls+Le-l-ls)c,
0 dϕ(r, t)dt2πrdr
=0 ϕ(r, t)tr[2σn(r, t)l-ln(1/R)-L]2πrdr-cos2 ζ 0 ϕ(r, t)tr{2σgsansg(1)(r, t)ls+2σesa[ns0-nsg(1)(r, t)]ls}2πrdr-sin2 ζ 0 ϕ(r, t)tr{2σgsansg(2)(r, t)ls+2σesa×[ns0-nsg(2)(r, t)]ls}2πrdr
-0 2ϕ(r, t)tr tanh2[η1/2(chv/2)1/2ϕ1/2(r, t)]2πrdr,
dn(r, t)dt=-γσcϕ(r, t)n(r, t),
dnsg(1)(r, t)dt=-SgSsσgsacϕ(r, t)nsg(1)(r, t)cos2 ζ,
dnsg(2)(r, t)dt=-SgSsσgsacϕ(r, t)nsg(2)(r, t)sin2 ζ,
nsg(1)(r, 0)=nsg(2)(r, 0)=ns0,
ϕ(r, 0)10-4 ϕm(r, t),
n(r, 0)=n(0, 0)exp-2r2ωp2,
n(0, 0)=ln(1/R)+2σgsans0ls+L2σl 1+ωL2ωp2.
ISH(r, t)ηIF2(r, t),
0 2ϕ(r, t)tr tanh2[η1/2(chv/2)1/2ϕ1/2(r, t)]2πrdr
0 chvηtrϕ2(r, t)2πrdr,
0 dϕ(r, t)dt2πrdr
=0 ϕ(r, t)tr[2σn(r, t)l-ln(1/R)-L]2πrdr
-0 ϕ(r, t)tr{2σgsansg(1)(r, t)ls+2σesa×[ns0-nsg(1)(r, t)]ls}2πrdr-0 chvηtrϕ2(r, t)2πrdr,
dnsg(1)(r, t)dt=-SgSsσgsacϕ(r, t)nsg(1)(r, t).
dΦ(0, τ)dτ=Φ(0, τ)01 exp[-A(τ)yβ]dy-1-1NΦ(0, τ) 1-exp[-αA(τ)]αA(τ)-Φ(0, τ)N-ηSHGΦ2(0, τ),
τ=ttr ln1R+ln1T02+L,
Φ(0, τ)=ϕ(0, τ) 2γσlln1R+ln1T02+L,
A(τ)=0τ Φ(0, τ)dτ,
β=11+(ωL/ωp)2,
α=σgsaSgγσSs,
N=ln1R+ln1T02+Lln1R+σesaσgsaln1T02+L,
ηSHG=hvη2σγtr,
T0=exp(-σgsans0ls).
dΦ(0, τ)dτ=Φ(0, τ) 1-exp[-A(τ)]A(τ)-Φ(0, τ)N-ηSHGΦ2(0, τ).
eSH=ηSHG 0 Φ2(0, τ)dτ.
PSHout(τ)=ηouthvl 0 dϕ(r, t)dtSHG2πrdr=πωL28ηoutη(chv)2ϕ2(0, t)=πωL2hv4σγtr ln1R+ln1T02+L2×ηoutηSHGΦ2(0, τ),
ESHout=0 PSHout(t)dt=πωL28ηoutη(chv)2 0 ϕ2(0, t)dt=πωL2hv4σγ ln1R+ln1T02+L×ηouteSH,
WSH=trΔτSHln1R+ln1T02+L.
ηSHG=hvη2σγtr=13.1tr,
ωL4=λπ2 (l/2)(2 f )2(Re-l/2)(2 f-l/2)(Re+2 f-l/2),

Metrics