Abstract

We have developed a transfer standard for the spectral density of relative intensity noise (RIN) of optical fiber sources near 1550 nm. Amplified spontaneous emission (ASE) from an erbium-doped fiber amplifier (EDFA), when it is optically filtered over a narrow band (<5 nm), yields a stable RIN spectrum that is practically constant to several tens of gigahertz. The RIN is calculated from the power spectral density as measured with a calibrated optical spectrum analyzer. For a typical device it is -110 dB/Hz, with uncertainty ⩽0.12 dB/Hz. The invariance of the RIN under attenuation yields a considerable dynamic range with respect to rf noise levels. Results are compared with those from a second method that uses a distributed-feedback laser (DFB) that has a Poisson-limited RIN. Application of each method to the same RIN measurement system yields frequency-dependent calibration functions that, when they are averaged, differ by ⩽0.2 dB.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Jacobs, “Dependence of optical amplifier noise figure on relative-intensity-noise,” J. Lightwave Technol. 13, 1461–1465 (1995).
    [CrossRef]
  2. F. W. Willems and J. C. Van der Plaats, “Optical amplifier noise figure determination by signal RIN subtraction,” in Technical Digest–Symposium on Optical Fiber Measurements, G. W. Day, D. L. Franzen, and R. K. Hickernall, eds., Natl. Inst. Stand. Technol. Spec. Publ. 864, 7–9 (1994).
  3. F. W. Willems and J. C. Van der Plaats, “Experimental demonstration of noise figure reduction caused by nonlinear photon statistics of saturated EDNAS,” IEEE Photon. Technol. Lett. 7, 488–490 (1995).
    [CrossRef]
  4. M. Movassaghi, M. K. Jackson, V. M. Smith, and W. J. Hallum, “Noise figure of erbium-doped fiber amplifiers in saturated operation,” J. Lightwave Technol. 16, 812–817 (1998).
    [CrossRef]
  5. M. Movassaghi, M. K. Jackson, V. M. Smith, J. F. Young, and W. J. Hallum, “Accurate frequency resolved measurement of EDFA noise figure,” in Optical Amplifiers and Their Applications, A. Willner, M. Zervas, and S. Sasaki, eds., Vol. 16 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington D.C., 1997), pp. 130–133.
  6. G. L. Koay, A. J. Lowery, R. S. Tucker, T. Higashi, S. Ogita, and H. Soda, “Data-rate dependence of suppression of reflection-induced intensity noise in Fabry–Perot semiconductor lasers,” IEEE J. Quantum Electron. 31, 1835–1839 (1995).
    [CrossRef]
  7. K. Y. Lau, C. M. Gee, T. R. Chen, N. Bar-Chaim, and I. Ury, “Signal-induced noise in fiber-optic links using directly modulated Fabry–Perot and distributed-feedback laser diodes,” J. Lightwave Technol. 11, 1216–1225 (1993).
    [CrossRef]
  8. I. Joindot, C. Boisrobert, and G. Kuhn, “Laser RIN calibration by extra noise injection,” Electron. Lett. 25, 1052–1053 (1989).
    [CrossRef]
  9. G. P. Agrawal, Fiber-Optic Communications Systems (Wiley, New York, 1992).
  10. A. A. Saavedra, P.-J. Rigole, E. Goobar, R. Schatz, and S. Nilsson, “Relative intensity noise and linewidth measurements of a widely tunable GCSR laser,” IEEE Photon. Technol. Lett. 10, 481–483 (1998).
    [CrossRef]
  11. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, New York, 1995).
  12. I. Joindot, “Measurement of relative intensity noise (RIN) in semiconductor lasers,” J. Phys. III (Paris) 2, 1591–1603 (1992).
  13. I. Joindot, “Bruit relatif d’intensite des lasers a semiconducteur,” Ph.D. dissertation (Universite des Sciences et Techniques du Languedoc, Languedoc, France 1990).
  14. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).
  15. G. E. Obarski and P. D. Hale, “How to measure relative intensity noise in lasers,” Laser Focus World, May 1999, pp. 273–277.
  16. D. M. Baney, W. V. Sorin, and S. A. Newton, “High-frequency photodiode characterization using a filtered intensity noise technique,” IEEE Photon. Technol. Lett. 6, 1258–1260 (1994).
    [CrossRef]
  17. D. Baney and W. Sorin, “Broadband frequency characterization of optical receivers using intensity noise,” Hewlett-Packard J., February 1995, pp. 6–12.
  18. L. Mandel, “Fluctuations of light beams,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1963), Vol. 2, pp. 181–248.
  19. L. Mandel, Dept. of Physics and Astronomy, University of Rochester, Rochester, N.Y. 14627 (personal communications, June, 1999). Professor Mandel acknowledges an error of a factor of 2 in Eq. (9.8.26) of their text; see Ref. 11. The factor of 1/2 in front of the middle integral should be removed.
  20. A. Girard, EXFO Fiber Optic Test Equipment Corporation, 465 Godin Avenue, Vanier, Quebec G1M 3G7 Canada (personal communications, January 1999).
  21. “Analysis of variance,” in Guide to the Expression of Uncertainty in Measurement (International Organization for Standardization, Geneva, Switzerland, 1993), Sec. H-5, pp. 85–87.
  22. B. N. Taylor and C. E. Kuyatt, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, Natl. Inst. Stand. Technol. Tech. Note 1297 (1994).
  23. S. Machida and Y. Yamamoto, “Quantum-limited operation of balanced mixer homodyne and heterodyne receivers,” IEEE J. Quantum Electron. QE-22, 617–624 (1986).
    [CrossRef]
  24. M. C. Cox, N. J. Copener, and B. Williams, “High sensitivity precision relative intensity noise calibration standard using low noise reference laser source,” IEE Proc. Sci. Meas. Technol. 145, 163–165 (1998).
    [CrossRef]
  25. G. E. Obarski and J. D. Splett, “Measurement assurance program for the spectral density of relative intensity noise of optical fiber sources near 1550 nm,” NIST Spec. Publ. 250–57 (2000).

1998 (3)

A. A. Saavedra, P.-J. Rigole, E. Goobar, R. Schatz, and S. Nilsson, “Relative intensity noise and linewidth measurements of a widely tunable GCSR laser,” IEEE Photon. Technol. Lett. 10, 481–483 (1998).
[CrossRef]

M. C. Cox, N. J. Copener, and B. Williams, “High sensitivity precision relative intensity noise calibration standard using low noise reference laser source,” IEE Proc. Sci. Meas. Technol. 145, 163–165 (1998).
[CrossRef]

M. Movassaghi, M. K. Jackson, V. M. Smith, and W. J. Hallum, “Noise figure of erbium-doped fiber amplifiers in saturated operation,” J. Lightwave Technol. 16, 812–817 (1998).
[CrossRef]

1995 (3)

F. W. Willems and J. C. Van der Plaats, “Experimental demonstration of noise figure reduction caused by nonlinear photon statistics of saturated EDNAS,” IEEE Photon. Technol. Lett. 7, 488–490 (1995).
[CrossRef]

I. Jacobs, “Dependence of optical amplifier noise figure on relative-intensity-noise,” J. Lightwave Technol. 13, 1461–1465 (1995).
[CrossRef]

G. L. Koay, A. J. Lowery, R. S. Tucker, T. Higashi, S. Ogita, and H. Soda, “Data-rate dependence of suppression of reflection-induced intensity noise in Fabry–Perot semiconductor lasers,” IEEE J. Quantum Electron. 31, 1835–1839 (1995).
[CrossRef]

1994 (2)

F. W. Willems and J. C. Van der Plaats, “Optical amplifier noise figure determination by signal RIN subtraction,” in Technical Digest–Symposium on Optical Fiber Measurements, G. W. Day, D. L. Franzen, and R. K. Hickernall, eds., Natl. Inst. Stand. Technol. Spec. Publ. 864, 7–9 (1994).

D. M. Baney, W. V. Sorin, and S. A. Newton, “High-frequency photodiode characterization using a filtered intensity noise technique,” IEEE Photon. Technol. Lett. 6, 1258–1260 (1994).
[CrossRef]

1993 (1)

K. Y. Lau, C. M. Gee, T. R. Chen, N. Bar-Chaim, and I. Ury, “Signal-induced noise in fiber-optic links using directly modulated Fabry–Perot and distributed-feedback laser diodes,” J. Lightwave Technol. 11, 1216–1225 (1993).
[CrossRef]

1992 (1)

I. Joindot, “Measurement of relative intensity noise (RIN) in semiconductor lasers,” J. Phys. III (Paris) 2, 1591–1603 (1992).

1989 (1)

I. Joindot, C. Boisrobert, and G. Kuhn, “Laser RIN calibration by extra noise injection,” Electron. Lett. 25, 1052–1053 (1989).
[CrossRef]

1986 (1)

S. Machida and Y. Yamamoto, “Quantum-limited operation of balanced mixer homodyne and heterodyne receivers,” IEEE J. Quantum Electron. QE-22, 617–624 (1986).
[CrossRef]

Baney, D. M.

D. M. Baney, W. V. Sorin, and S. A. Newton, “High-frequency photodiode characterization using a filtered intensity noise technique,” IEEE Photon. Technol. Lett. 6, 1258–1260 (1994).
[CrossRef]

Bar-Chaim, N.

K. Y. Lau, C. M. Gee, T. R. Chen, N. Bar-Chaim, and I. Ury, “Signal-induced noise in fiber-optic links using directly modulated Fabry–Perot and distributed-feedback laser diodes,” J. Lightwave Technol. 11, 1216–1225 (1993).
[CrossRef]

Boisrobert, C.

I. Joindot, C. Boisrobert, and G. Kuhn, “Laser RIN calibration by extra noise injection,” Electron. Lett. 25, 1052–1053 (1989).
[CrossRef]

Chen, T. R.

K. Y. Lau, C. M. Gee, T. R. Chen, N. Bar-Chaim, and I. Ury, “Signal-induced noise in fiber-optic links using directly modulated Fabry–Perot and distributed-feedback laser diodes,” J. Lightwave Technol. 11, 1216–1225 (1993).
[CrossRef]

Copener, N. J.

M. C. Cox, N. J. Copener, and B. Williams, “High sensitivity precision relative intensity noise calibration standard using low noise reference laser source,” IEE Proc. Sci. Meas. Technol. 145, 163–165 (1998).
[CrossRef]

Cox, M. C.

M. C. Cox, N. J. Copener, and B. Williams, “High sensitivity precision relative intensity noise calibration standard using low noise reference laser source,” IEE Proc. Sci. Meas. Technol. 145, 163–165 (1998).
[CrossRef]

Gee, C. M.

K. Y. Lau, C. M. Gee, T. R. Chen, N. Bar-Chaim, and I. Ury, “Signal-induced noise in fiber-optic links using directly modulated Fabry–Perot and distributed-feedback laser diodes,” J. Lightwave Technol. 11, 1216–1225 (1993).
[CrossRef]

Goobar, E.

A. A. Saavedra, P.-J. Rigole, E. Goobar, R. Schatz, and S. Nilsson, “Relative intensity noise and linewidth measurements of a widely tunable GCSR laser,” IEEE Photon. Technol. Lett. 10, 481–483 (1998).
[CrossRef]

Hallum, W. J.

Higashi, T.

G. L. Koay, A. J. Lowery, R. S. Tucker, T. Higashi, S. Ogita, and H. Soda, “Data-rate dependence of suppression of reflection-induced intensity noise in Fabry–Perot semiconductor lasers,” IEEE J. Quantum Electron. 31, 1835–1839 (1995).
[CrossRef]

Jackson, M. K.

Jacobs, I.

I. Jacobs, “Dependence of optical amplifier noise figure on relative-intensity-noise,” J. Lightwave Technol. 13, 1461–1465 (1995).
[CrossRef]

Joindot, I.

I. Joindot, “Measurement of relative intensity noise (RIN) in semiconductor lasers,” J. Phys. III (Paris) 2, 1591–1603 (1992).

I. Joindot, C. Boisrobert, and G. Kuhn, “Laser RIN calibration by extra noise injection,” Electron. Lett. 25, 1052–1053 (1989).
[CrossRef]

Koay, G. L.

G. L. Koay, A. J. Lowery, R. S. Tucker, T. Higashi, S. Ogita, and H. Soda, “Data-rate dependence of suppression of reflection-induced intensity noise in Fabry–Perot semiconductor lasers,” IEEE J. Quantum Electron. 31, 1835–1839 (1995).
[CrossRef]

Kuhn, G.

I. Joindot, C. Boisrobert, and G. Kuhn, “Laser RIN calibration by extra noise injection,” Electron. Lett. 25, 1052–1053 (1989).
[CrossRef]

Lau, K. Y.

K. Y. Lau, C. M. Gee, T. R. Chen, N. Bar-Chaim, and I. Ury, “Signal-induced noise in fiber-optic links using directly modulated Fabry–Perot and distributed-feedback laser diodes,” J. Lightwave Technol. 11, 1216–1225 (1993).
[CrossRef]

Lowery, A. J.

G. L. Koay, A. J. Lowery, R. S. Tucker, T. Higashi, S. Ogita, and H. Soda, “Data-rate dependence of suppression of reflection-induced intensity noise in Fabry–Perot semiconductor lasers,” IEEE J. Quantum Electron. 31, 1835–1839 (1995).
[CrossRef]

Machida, S.

S. Machida and Y. Yamamoto, “Quantum-limited operation of balanced mixer homodyne and heterodyne receivers,” IEEE J. Quantum Electron. QE-22, 617–624 (1986).
[CrossRef]

Movassaghi, M.

Newton, S. A.

D. M. Baney, W. V. Sorin, and S. A. Newton, “High-frequency photodiode characterization using a filtered intensity noise technique,” IEEE Photon. Technol. Lett. 6, 1258–1260 (1994).
[CrossRef]

Nilsson, S.

A. A. Saavedra, P.-J. Rigole, E. Goobar, R. Schatz, and S. Nilsson, “Relative intensity noise and linewidth measurements of a widely tunable GCSR laser,” IEEE Photon. Technol. Lett. 10, 481–483 (1998).
[CrossRef]

Ogita, S.

G. L. Koay, A. J. Lowery, R. S. Tucker, T. Higashi, S. Ogita, and H. Soda, “Data-rate dependence of suppression of reflection-induced intensity noise in Fabry–Perot semiconductor lasers,” IEEE J. Quantum Electron. 31, 1835–1839 (1995).
[CrossRef]

Rigole, P.-J.

A. A. Saavedra, P.-J. Rigole, E. Goobar, R. Schatz, and S. Nilsson, “Relative intensity noise and linewidth measurements of a widely tunable GCSR laser,” IEEE Photon. Technol. Lett. 10, 481–483 (1998).
[CrossRef]

Saavedra, A. A.

A. A. Saavedra, P.-J. Rigole, E. Goobar, R. Schatz, and S. Nilsson, “Relative intensity noise and linewidth measurements of a widely tunable GCSR laser,” IEEE Photon. Technol. Lett. 10, 481–483 (1998).
[CrossRef]

Schatz, R.

A. A. Saavedra, P.-J. Rigole, E. Goobar, R. Schatz, and S. Nilsson, “Relative intensity noise and linewidth measurements of a widely tunable GCSR laser,” IEEE Photon. Technol. Lett. 10, 481–483 (1998).
[CrossRef]

Smith, V. M.

Soda, H.

G. L. Koay, A. J. Lowery, R. S. Tucker, T. Higashi, S. Ogita, and H. Soda, “Data-rate dependence of suppression of reflection-induced intensity noise in Fabry–Perot semiconductor lasers,” IEEE J. Quantum Electron. 31, 1835–1839 (1995).
[CrossRef]

Sorin, W. V.

D. M. Baney, W. V. Sorin, and S. A. Newton, “High-frequency photodiode characterization using a filtered intensity noise technique,” IEEE Photon. Technol. Lett. 6, 1258–1260 (1994).
[CrossRef]

Tucker, R. S.

G. L. Koay, A. J. Lowery, R. S. Tucker, T. Higashi, S. Ogita, and H. Soda, “Data-rate dependence of suppression of reflection-induced intensity noise in Fabry–Perot semiconductor lasers,” IEEE J. Quantum Electron. 31, 1835–1839 (1995).
[CrossRef]

Ury, I.

K. Y. Lau, C. M. Gee, T. R. Chen, N. Bar-Chaim, and I. Ury, “Signal-induced noise in fiber-optic links using directly modulated Fabry–Perot and distributed-feedback laser diodes,” J. Lightwave Technol. 11, 1216–1225 (1993).
[CrossRef]

Van der Plaats, J. C.

F. W. Willems and J. C. Van der Plaats, “Experimental demonstration of noise figure reduction caused by nonlinear photon statistics of saturated EDNAS,” IEEE Photon. Technol. Lett. 7, 488–490 (1995).
[CrossRef]

F. W. Willems and J. C. Van der Plaats, “Optical amplifier noise figure determination by signal RIN subtraction,” in Technical Digest–Symposium on Optical Fiber Measurements, G. W. Day, D. L. Franzen, and R. K. Hickernall, eds., Natl. Inst. Stand. Technol. Spec. Publ. 864, 7–9 (1994).

Willems, F. W.

F. W. Willems and J. C. Van der Plaats, “Experimental demonstration of noise figure reduction caused by nonlinear photon statistics of saturated EDNAS,” IEEE Photon. Technol. Lett. 7, 488–490 (1995).
[CrossRef]

F. W. Willems and J. C. Van der Plaats, “Optical amplifier noise figure determination by signal RIN subtraction,” in Technical Digest–Symposium on Optical Fiber Measurements, G. W. Day, D. L. Franzen, and R. K. Hickernall, eds., Natl. Inst. Stand. Technol. Spec. Publ. 864, 7–9 (1994).

Williams, B.

M. C. Cox, N. J. Copener, and B. Williams, “High sensitivity precision relative intensity noise calibration standard using low noise reference laser source,” IEE Proc. Sci. Meas. Technol. 145, 163–165 (1998).
[CrossRef]

Yamamoto, Y.

S. Machida and Y. Yamamoto, “Quantum-limited operation of balanced mixer homodyne and heterodyne receivers,” IEEE J. Quantum Electron. QE-22, 617–624 (1986).
[CrossRef]

Electron. Lett. (1)

I. Joindot, C. Boisrobert, and G. Kuhn, “Laser RIN calibration by extra noise injection,” Electron. Lett. 25, 1052–1053 (1989).
[CrossRef]

IEE Proc. Sci. Meas. Technol. (1)

M. C. Cox, N. J. Copener, and B. Williams, “High sensitivity precision relative intensity noise calibration standard using low noise reference laser source,” IEE Proc. Sci. Meas. Technol. 145, 163–165 (1998).
[CrossRef]

IEEE J. Quantum Electron. (2)

G. L. Koay, A. J. Lowery, R. S. Tucker, T. Higashi, S. Ogita, and H. Soda, “Data-rate dependence of suppression of reflection-induced intensity noise in Fabry–Perot semiconductor lasers,” IEEE J. Quantum Electron. 31, 1835–1839 (1995).
[CrossRef]

S. Machida and Y. Yamamoto, “Quantum-limited operation of balanced mixer homodyne and heterodyne receivers,” IEEE J. Quantum Electron. QE-22, 617–624 (1986).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

A. A. Saavedra, P.-J. Rigole, E. Goobar, R. Schatz, and S. Nilsson, “Relative intensity noise and linewidth measurements of a widely tunable GCSR laser,” IEEE Photon. Technol. Lett. 10, 481–483 (1998).
[CrossRef]

D. M. Baney, W. V. Sorin, and S. A. Newton, “High-frequency photodiode characterization using a filtered intensity noise technique,” IEEE Photon. Technol. Lett. 6, 1258–1260 (1994).
[CrossRef]

F. W. Willems and J. C. Van der Plaats, “Experimental demonstration of noise figure reduction caused by nonlinear photon statistics of saturated EDNAS,” IEEE Photon. Technol. Lett. 7, 488–490 (1995).
[CrossRef]

J. Lightwave Technol. (3)

M. Movassaghi, M. K. Jackson, V. M. Smith, and W. J. Hallum, “Noise figure of erbium-doped fiber amplifiers in saturated operation,” J. Lightwave Technol. 16, 812–817 (1998).
[CrossRef]

I. Jacobs, “Dependence of optical amplifier noise figure on relative-intensity-noise,” J. Lightwave Technol. 13, 1461–1465 (1995).
[CrossRef]

K. Y. Lau, C. M. Gee, T. R. Chen, N. Bar-Chaim, and I. Ury, “Signal-induced noise in fiber-optic links using directly modulated Fabry–Perot and distributed-feedback laser diodes,” J. Lightwave Technol. 11, 1216–1225 (1993).
[CrossRef]

J. Phys. III (Paris) (1)

I. Joindot, “Measurement of relative intensity noise (RIN) in semiconductor lasers,” J. Phys. III (Paris) 2, 1591–1603 (1992).

Natl. Inst. Stand. Technol. Spec. Publ. (1)

F. W. Willems and J. C. Van der Plaats, “Optical amplifier noise figure determination by signal RIN subtraction,” in Technical Digest–Symposium on Optical Fiber Measurements, G. W. Day, D. L. Franzen, and R. K. Hickernall, eds., Natl. Inst. Stand. Technol. Spec. Publ. 864, 7–9 (1994).

Other (13)

G. E. Obarski and J. D. Splett, “Measurement assurance program for the spectral density of relative intensity noise of optical fiber sources near 1550 nm,” NIST Spec. Publ. 250–57 (2000).

I. Joindot, “Bruit relatif d’intensite des lasers a semiconducteur,” Ph.D. dissertation (Universite des Sciences et Techniques du Languedoc, Languedoc, France 1990).

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).

G. E. Obarski and P. D. Hale, “How to measure relative intensity noise in lasers,” Laser Focus World, May 1999, pp. 273–277.

G. P. Agrawal, Fiber-Optic Communications Systems (Wiley, New York, 1992).

D. Baney and W. Sorin, “Broadband frequency characterization of optical receivers using intensity noise,” Hewlett-Packard J., February 1995, pp. 6–12.

L. Mandel, “Fluctuations of light beams,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1963), Vol. 2, pp. 181–248.

L. Mandel, Dept. of Physics and Astronomy, University of Rochester, Rochester, N.Y. 14627 (personal communications, June, 1999). Professor Mandel acknowledges an error of a factor of 2 in Eq. (9.8.26) of their text; see Ref. 11. The factor of 1/2 in front of the middle integral should be removed.

A. Girard, EXFO Fiber Optic Test Equipment Corporation, 465 Godin Avenue, Vanier, Quebec G1M 3G7 Canada (personal communications, January 1999).

“Analysis of variance,” in Guide to the Expression of Uncertainty in Measurement (International Organization for Standardization, Geneva, Switzerland, 1993), Sec. H-5, pp. 85–87.

B. N. Taylor and C. E. Kuyatt, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, Natl. Inst. Stand. Technol. Tech. Note 1297 (1994).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, New York, 1995).

M. Movassaghi, M. K. Jackson, V. M. Smith, J. F. Young, and W. J. Hallum, “Accurate frequency resolved measurement of EDFA noise figure,” in Optical Amplifiers and Their Applications, A. Willner, M. Zervas, and S. Sasaki, eds., Vol. 16 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington D.C., 1997), pp. 130–133.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Basic RIN measurement system.

Fig. 2
Fig. 2

Form of the RIN transfer standard; measurement of its OPSD with a calibrated OSA.

Fig. 3
Fig. 3

Absence of ripple on the rf noise from the RIN standard over frequency bands (a) 0.5–0.6 GHz and (b) 0.7–0.85 GHz.

Fig. 4
Fig. 4

OPSD of the three filters, F1 (1.37 nm), F2 (3.42 nm), and F3 (1.32 nm) used in this study.

Fig. 5
Fig. 5

RIN of F1–F3 from near zero to 1000 GHz with EDFA2.

Fig. 6
Fig. 6

Comparison of the RIN from F1 with EDFA1 and EFDA2.

Fig. 7
Fig. 7

Shape of the slit function of the OSA for a narrow-linewidth, tunable laser.

Fig. 8
Fig. 8

Measurement of OSA resolution bandwidth versus wavelength as determined from the 3-dB bandwidth and the noise equivalent bandwidth for a narrow-linewidth, tunable laser.

Fig. 9
Fig. 9

Comparison of wavelengths measured by the OSA with the true wavelength in (a) the 1548-nm region and (b) the 1560-nm region.

Fig. 10
Fig. 10

RIN of EDFA1+F1 versus (a) attenuation and (b) pump current.

Fig. 11
Fig. 11

Electrical noise power of a laser at 400 MHz versus dc voltage.

Fig. 12
Fig. 12

Comparison of Kappas with EDFA2 and filters F1–F3.

Fig. 13
Fig. 13

Comparison of Kappas from the laser, EDFA1+F2, and EDFA2+F2.

Fig. 14
Fig. 14

Difference between Kappas from the laser and from EDFA1+F2. The data range from -1 to +1 dB. The average difference is 0.058 dB.

Fig. 15
Fig. 15

Comparison of Kappa from EDFA2+F1 and the laser. Data were averaged over four data sets obtained on different days.

Fig. 16
Fig. 16

Comparison of the frequency dependence of the normalized standard deviation of the four data sets for Kappa from EDFA2+F1 and the corresponding four data sets from the laser.

Tables (4)

Tables Icon

Table 1 RIN for Various Values of Pump Current, Attenuation, and Intensitya

Tables Icon

Table 2 Combined Standard Uncertainty in the RIN of the Standard (EDFA2 with Filters F1 and F2)

Tables Icon

Table 3 Comparison of Calibration Results Obtained with Various Combinations of EDFAs and Filters with One Another and with the Laser

Tables Icon

Table 4 Minimum and Maximum Values of Z Obtained by Comparison of Different Sources

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

RINT=δP(t)2P(t)2,
RINT=0 R(ν)dν,
R(ν)=2 - λ(τ)exp(i2πντ)dτ.
RA(ν)=RC(ν)-(2q/i)(1-ηT).
Rex(ν)=RC(ν)-2q/i.
Rex(ν)=RA(ν)-2hν/P0,
R(f)=κ(f)δPe(f)Pe,
ΔP(t)ΔP(t+τ)=(P2/2)|γ(τ)|2,
ΔP(t)Δ(t+τ)=P2|γ(τ)|2.
λ(τ)ΔP(t)ΔP(t+τ)P2=|γ(τ)|22.
ϕ(ν)=- γ(τ)exp(-2πiντ)dτ.
γ(τ)=0 ϕ(ν)exp(2πiντ)dν.
R(ν)=- |γ(τ)|2 exp(2πiντ)dτ=0 ϕ(μ)ϕ(μ+ν)dμ.
R(f)=0 S(ν)S(ν+f)dνP2.
R(f)=2 0 S(ν)S(ν+f)dνP2.
Sj(λj)=δPj(λj)Bj(λj).
RIN(Λ)(2/P2)0Z S(λ)S(λ+Λ)dλ,
RIN(Λi)=2 j δPj(λj)Bj(λj) δPi+j(λi+j)Bi+j(λi+j)Δλjj δPj(λj)Bj(λj)Δλj2,
RIN=2 j δPj(λj)2Δλj δPj(λj)2.
β=1T(λ0)  T(λ)dλ,
RP(ω)=Rp=2hcλP0const.,
Ra(ω)=Ra=κa(ω) δPa(ω)Paconst.
κa(ω)=RaPaδPa(ω).
Rp=κp(ω) δPp(ω)Pp=2hcλP0const.,
κp(ω)=2hcλP0 PpδPp(ω).
Rpη=κp(ω) δPp(ω)Pp,
κp(ω)=RpPpηδPp(ω).
κp(ω)=2qVδPp(ω).
κ(ω)=RaPaδPa(ω)=2qVδPp(ω),
Z= Di601=(κa,i-κp,i)601.

Metrics