Abstract

A broadband dispersion-compensating dual-mode optical fiber with a double-layer profile core is proposed to compensate for positive dispersion in conventional single-mode optical fibers operating near 1.55 µm. This wavelength band is suitable for erbium-doped-fiber-amplified systems. It is known that the first higher-order mode of dual-mode fibers exhibits large negative waveguide dispersion, and double-layer profile core fibers are dispersion-shifted fibers whose transmission and bending losses are lower than those of simple core-cladding dispersion-shifted fibers. Such advantages are attractive for commercial devices or modules. Here, a dispersion-compensating dual-mode fiber with a double-layer profile core that satisfies both low bending loss and broadband dispersion compensation is proposed.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Antos and D. K. Smith, “Design and characterization of dispersion compensating fiber based on the LP01 mode,” J. Lightwave Technol. 12, 1739–1745 (1994).
    [CrossRef]
  2. A. Bjarklev, T. Rasmussen, O. Lumholt, K. Rottwitt, and M. Helmer, “Optimal design of single-cladded dispersioncompensating optical fibers,” Opt. Lett. 19, 457–459 (1994).
    [CrossRef] [PubMed]
  3. C. D. Poole, J. M. Wiesenfeld, and A. R. McCormick, “Broadband dispersion compensation by using the higher-order spatial mode in a two-mode fiber,” Opt. Lett. 17, 985–987 (1992).
    [CrossRef] [PubMed]
  4. C. D. Poole, J. M. Wiesenfeld, and D. J. DiGiovanni, “Elliptical-core dual-mode fiber dispersion compensator,” IEEE Photonics Technol. Lett. 5, 194–197 (1993).
    [CrossRef]
  5. C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
    [CrossRef]
  6. M. Eguchi, M. Koshiba, and Y. Tsuji, “Dispersion compensation based on dual-mode optical fiber with inhomogeneous profile core,” J. Lightwave Technol. 14, 2387–2394 (1996).
    [CrossRef]
  7. F. Ouellette, J. F. Cliche, and S. Gagnon, “All-fiber devices for chromatic dispersion compensation based on chirped distributed resonant coupling,” J. Lightwave Technol. 12, 1728–1738 (1994).
    [CrossRef]
  8. U. Eriksson, P. Blixt, and J. A. Tellefsen, Jr., “Design of fiber gratings for total dispersion compensation,” Opt. Lett. 19, 1028–1030 (1994).
    [CrossRef] [PubMed]
  9. A. Yariv, D. Fekete, and D. M. Pepper, “Compensation for channel dispersion by nonlinear optical phase conjugation,” Opt. Lett. 4, 52–54 (1979).
    [CrossRef] [PubMed]
  10. N. Kuwaki, M. Ohashi, C. Tanaka, and N. Uesugi, “Dispersion-shifted convex-index single-mode fibres,” Electron. Lett. 21, 1186–1187 (1985).
    [CrossRef]
  11. N. Kuwaki, M. Ohashi, C. Tanaka, N. Uesugi, S. Seikai, and Y. Negishi, “Characteristics of dispersion-shifted dual shape core single-mode fibers,” J. Lightwave Technol. LT-5, 792–797 (1987).
    [CrossRef]
  12. T. Tanaka and Y. Suematsu, “An exact analysis of cylindrical fiber with index distribution by matrix method and itsapplication to focusing fiber,” Trans. Inst. Electron. Commun. Eng. Jpn., Sect. E 59, 1–8 (1976).
  13. W. A. Gambling and H. Matsumura, “Propagation in radially-inhomogeneous single-mode fibre,” Opt. Quantum Electron. 10, 31–40 (1978).
    [CrossRef]
  14. D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10, 2252–2258 (1971).
    [CrossRef] [PubMed]
  15. M. Eguchi and M. Koshiba, “Behavior of the first higher-order modes of a circular core optical fiber whose core cross-section changes into an ellipse,” J. Lightwave Technol. 13, 127–136 (1995).
    [CrossRef]
  16. J. N. Blake, B. Y. Kim, and H. J. Shaw, “Fiber-optic modal coupler using periodic microbending,” Opt. Lett. 11, 177–179 (1986).
    [CrossRef] [PubMed]
  17. C. D. Poole, C. D. Townsend, and K. T. Nelson, “Helical-grating two-mode fiber spatial-mode coupler,” J. Lightwave Technol. 9, 598–609 (1991).
    [CrossRef]
  18. W. P. Risk, R. C. Youngquist, G. S. Kino, and H. J. Shaw, “Acousto-optic frequency shifting in birefringent fiber,” Opt. Lett. 9, 309–311 (1984).
    [CrossRef] [PubMed]
  19. B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, “All-fiber acousto-optic frequency shifter,” Opt. Lett. 11, 389–391 (1986).
    [CrossRef] [PubMed]
  20. E. Bianciardi and V. Rizzoli, “Propagation in graded-core fibres: a unified numerical description,” Opt. Quantum Electron. 9, 121–133 (1977).
    [CrossRef]
  21. K. Morishita, “Numerical analysis of pulse broadening in graded index optical fibers,” IEEE Trans. Microwave Theory Tech. MTT-29, 348–352 (1981).
    [CrossRef]
  22. K. Morishita, Y. Obata, and N. Kumagai, “An exact analysis of group velocity for propagation modes in optical fibers,” IEEE Trans. Microwave Theory Tech. 30, 1821–1826 (1982).
    [CrossRef]
  23. R. W. Davies, D. Davidson, and M. P. Singh, “Single-mode optical fiber with arbitrary refractive-index profile: propagation solution by the Numerov method,” J. Lightwave Technol. LT-3, 619–627 (1985).
    [CrossRef]
  24. D. Marcuse, “Bend loss of slab and fiber modes computed with diffraction theory,” IEEE J. Quantum Electron. 29, 2957–2961 (1993).
    [CrossRef]
  25. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965).
    [CrossRef]
  26. A. Kumar and R. K. Varshney, “Propagation characteristics of dual-mode elliptical-core optical fibers,” Opt. Lett. 14, 817–819 (1989).
    [CrossRef] [PubMed]
  27. M. Eguchi and M. Koshiba, “Accurate finite-element analysis of dual-mode highly elliptical-core fibers,” J. Lightwave Technol. 12, 607–613 (1994).
    [CrossRef]
  28. R. B. Dyott, “Composition of LP11 modes in elliptically cored fibre,” Electron. Lett. 30, 728–730 (1994).
    [CrossRef]
  29. R. B. Dyott, Elliptical Fiber Waveguides (Artech House, Norwood, Mass., 1995).

1996 (1)

M. Eguchi, M. Koshiba, and Y. Tsuji, “Dispersion compensation based on dual-mode optical fiber with inhomogeneous profile core,” J. Lightwave Technol. 14, 2387–2394 (1996).
[CrossRef]

1995 (1)

M. Eguchi and M. Koshiba, “Behavior of the first higher-order modes of a circular core optical fiber whose core cross-section changes into an ellipse,” J. Lightwave Technol. 13, 127–136 (1995).
[CrossRef]

1994 (7)

M. Eguchi and M. Koshiba, “Accurate finite-element analysis of dual-mode highly elliptical-core fibers,” J. Lightwave Technol. 12, 607–613 (1994).
[CrossRef]

R. B. Dyott, “Composition of LP11 modes in elliptically cored fibre,” Electron. Lett. 30, 728–730 (1994).
[CrossRef]

F. Ouellette, J. F. Cliche, and S. Gagnon, “All-fiber devices for chromatic dispersion compensation based on chirped distributed resonant coupling,” J. Lightwave Technol. 12, 1728–1738 (1994).
[CrossRef]

A. J. Antos and D. K. Smith, “Design and characterization of dispersion compensating fiber based on the LP01 mode,” J. Lightwave Technol. 12, 1739–1745 (1994).
[CrossRef]

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[CrossRef]

A. Bjarklev, T. Rasmussen, O. Lumholt, K. Rottwitt, and M. Helmer, “Optimal design of single-cladded dispersioncompensating optical fibers,” Opt. Lett. 19, 457–459 (1994).
[CrossRef] [PubMed]

U. Eriksson, P. Blixt, and J. A. Tellefsen, Jr., “Design of fiber gratings for total dispersion compensation,” Opt. Lett. 19, 1028–1030 (1994).
[CrossRef] [PubMed]

1993 (2)

D. Marcuse, “Bend loss of slab and fiber modes computed with diffraction theory,” IEEE J. Quantum Electron. 29, 2957–2961 (1993).
[CrossRef]

C. D. Poole, J. M. Wiesenfeld, and D. J. DiGiovanni, “Elliptical-core dual-mode fiber dispersion compensator,” IEEE Photonics Technol. Lett. 5, 194–197 (1993).
[CrossRef]

1992 (1)

1991 (1)

C. D. Poole, C. D. Townsend, and K. T. Nelson, “Helical-grating two-mode fiber spatial-mode coupler,” J. Lightwave Technol. 9, 598–609 (1991).
[CrossRef]

1989 (1)

1987 (1)

N. Kuwaki, M. Ohashi, C. Tanaka, N. Uesugi, S. Seikai, and Y. Negishi, “Characteristics of dispersion-shifted dual shape core single-mode fibers,” J. Lightwave Technol. LT-5, 792–797 (1987).
[CrossRef]

1986 (2)

1985 (2)

N. Kuwaki, M. Ohashi, C. Tanaka, and N. Uesugi, “Dispersion-shifted convex-index single-mode fibres,” Electron. Lett. 21, 1186–1187 (1985).
[CrossRef]

R. W. Davies, D. Davidson, and M. P. Singh, “Single-mode optical fiber with arbitrary refractive-index profile: propagation solution by the Numerov method,” J. Lightwave Technol. LT-3, 619–627 (1985).
[CrossRef]

1984 (1)

1982 (1)

K. Morishita, Y. Obata, and N. Kumagai, “An exact analysis of group velocity for propagation modes in optical fibers,” IEEE Trans. Microwave Theory Tech. 30, 1821–1826 (1982).
[CrossRef]

1981 (1)

K. Morishita, “Numerical analysis of pulse broadening in graded index optical fibers,” IEEE Trans. Microwave Theory Tech. MTT-29, 348–352 (1981).
[CrossRef]

1979 (1)

1978 (1)

W. A. Gambling and H. Matsumura, “Propagation in radially-inhomogeneous single-mode fibre,” Opt. Quantum Electron. 10, 31–40 (1978).
[CrossRef]

1977 (1)

E. Bianciardi and V. Rizzoli, “Propagation in graded-core fibres: a unified numerical description,” Opt. Quantum Electron. 9, 121–133 (1977).
[CrossRef]

1976 (1)

T. Tanaka and Y. Suematsu, “An exact analysis of cylindrical fiber with index distribution by matrix method and itsapplication to focusing fiber,” Trans. Inst. Electron. Commun. Eng. Jpn., Sect. E 59, 1–8 (1976).

1971 (1)

1965 (1)

Antos, A. J.

A. J. Antos and D. K. Smith, “Design and characterization of dispersion compensating fiber based on the LP01 mode,” J. Lightwave Technol. 12, 1739–1745 (1994).
[CrossRef]

Bianciardi, E.

E. Bianciardi and V. Rizzoli, “Propagation in graded-core fibres: a unified numerical description,” Opt. Quantum Electron. 9, 121–133 (1977).
[CrossRef]

Bjarklev, A.

Blake, J. N.

Blixt, P.

Cliche, J. F.

F. Ouellette, J. F. Cliche, and S. Gagnon, “All-fiber devices for chromatic dispersion compensation based on chirped distributed resonant coupling,” J. Lightwave Technol. 12, 1728–1738 (1994).
[CrossRef]

Davidson, D.

R. W. Davies, D. Davidson, and M. P. Singh, “Single-mode optical fiber with arbitrary refractive-index profile: propagation solution by the Numerov method,” J. Lightwave Technol. LT-3, 619–627 (1985).
[CrossRef]

Davies, R. W.

R. W. Davies, D. Davidson, and M. P. Singh, “Single-mode optical fiber with arbitrary refractive-index profile: propagation solution by the Numerov method,” J. Lightwave Technol. LT-3, 619–627 (1985).
[CrossRef]

DiGiovanni, D. J.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[CrossRef]

C. D. Poole, J. M. Wiesenfeld, and D. J. DiGiovanni, “Elliptical-core dual-mode fiber dispersion compensator,” IEEE Photonics Technol. Lett. 5, 194–197 (1993).
[CrossRef]

Dyott, R. B.

R. B. Dyott, “Composition of LP11 modes in elliptically cored fibre,” Electron. Lett. 30, 728–730 (1994).
[CrossRef]

Eguchi, M.

M. Eguchi, M. Koshiba, and Y. Tsuji, “Dispersion compensation based on dual-mode optical fiber with inhomogeneous profile core,” J. Lightwave Technol. 14, 2387–2394 (1996).
[CrossRef]

M. Eguchi and M. Koshiba, “Behavior of the first higher-order modes of a circular core optical fiber whose core cross-section changes into an ellipse,” J. Lightwave Technol. 13, 127–136 (1995).
[CrossRef]

M. Eguchi and M. Koshiba, “Accurate finite-element analysis of dual-mode highly elliptical-core fibers,” J. Lightwave Technol. 12, 607–613 (1994).
[CrossRef]

Engan, H. E.

Eriksson, U.

Fekete, D.

Gagnon, S.

F. Ouellette, J. F. Cliche, and S. Gagnon, “All-fiber devices for chromatic dispersion compensation based on chirped distributed resonant coupling,” J. Lightwave Technol. 12, 1728–1738 (1994).
[CrossRef]

Gambling, W. A.

W. A. Gambling and H. Matsumura, “Propagation in radially-inhomogeneous single-mode fibre,” Opt. Quantum Electron. 10, 31–40 (1978).
[CrossRef]

Gloge, D.

Helmer, M.

Kim, B. Y.

Kino, G. S.

Koshiba, M.

M. Eguchi, M. Koshiba, and Y. Tsuji, “Dispersion compensation based on dual-mode optical fiber with inhomogeneous profile core,” J. Lightwave Technol. 14, 2387–2394 (1996).
[CrossRef]

M. Eguchi and M. Koshiba, “Behavior of the first higher-order modes of a circular core optical fiber whose core cross-section changes into an ellipse,” J. Lightwave Technol. 13, 127–136 (1995).
[CrossRef]

M. Eguchi and M. Koshiba, “Accurate finite-element analysis of dual-mode highly elliptical-core fibers,” J. Lightwave Technol. 12, 607–613 (1994).
[CrossRef]

Kumagai, N.

K. Morishita, Y. Obata, and N. Kumagai, “An exact analysis of group velocity for propagation modes in optical fibers,” IEEE Trans. Microwave Theory Tech. 30, 1821–1826 (1982).
[CrossRef]

Kumar, A.

Kuwaki, N.

N. Kuwaki, M. Ohashi, C. Tanaka, N. Uesugi, S. Seikai, and Y. Negishi, “Characteristics of dispersion-shifted dual shape core single-mode fibers,” J. Lightwave Technol. LT-5, 792–797 (1987).
[CrossRef]

N. Kuwaki, M. Ohashi, C. Tanaka, and N. Uesugi, “Dispersion-shifted convex-index single-mode fibres,” Electron. Lett. 21, 1186–1187 (1985).
[CrossRef]

Lumholt, O.

Malitson, I. H.

Marcuse, D.

D. Marcuse, “Bend loss of slab and fiber modes computed with diffraction theory,” IEEE J. Quantum Electron. 29, 2957–2961 (1993).
[CrossRef]

Matsumura, H.

W. A. Gambling and H. Matsumura, “Propagation in radially-inhomogeneous single-mode fibre,” Opt. Quantum Electron. 10, 31–40 (1978).
[CrossRef]

McCormick, A. R.

Morishita, K.

K. Morishita, Y. Obata, and N. Kumagai, “An exact analysis of group velocity for propagation modes in optical fibers,” IEEE Trans. Microwave Theory Tech. 30, 1821–1826 (1982).
[CrossRef]

K. Morishita, “Numerical analysis of pulse broadening in graded index optical fibers,” IEEE Trans. Microwave Theory Tech. MTT-29, 348–352 (1981).
[CrossRef]

Negishi, Y.

N. Kuwaki, M. Ohashi, C. Tanaka, N. Uesugi, S. Seikai, and Y. Negishi, “Characteristics of dispersion-shifted dual shape core single-mode fibers,” J. Lightwave Technol. LT-5, 792–797 (1987).
[CrossRef]

Nelson, K. T.

C. D. Poole, C. D. Townsend, and K. T. Nelson, “Helical-grating two-mode fiber spatial-mode coupler,” J. Lightwave Technol. 9, 598–609 (1991).
[CrossRef]

Obata, Y.

K. Morishita, Y. Obata, and N. Kumagai, “An exact analysis of group velocity for propagation modes in optical fibers,” IEEE Trans. Microwave Theory Tech. 30, 1821–1826 (1982).
[CrossRef]

Ohashi, M.

N. Kuwaki, M. Ohashi, C. Tanaka, N. Uesugi, S. Seikai, and Y. Negishi, “Characteristics of dispersion-shifted dual shape core single-mode fibers,” J. Lightwave Technol. LT-5, 792–797 (1987).
[CrossRef]

N. Kuwaki, M. Ohashi, C. Tanaka, and N. Uesugi, “Dispersion-shifted convex-index single-mode fibres,” Electron. Lett. 21, 1186–1187 (1985).
[CrossRef]

Ouellette, F.

F. Ouellette, J. F. Cliche, and S. Gagnon, “All-fiber devices for chromatic dispersion compensation based on chirped distributed resonant coupling,” J. Lightwave Technol. 12, 1728–1738 (1994).
[CrossRef]

Pepper, D. M.

Poole, C. D.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[CrossRef]

C. D. Poole, J. M. Wiesenfeld, and D. J. DiGiovanni, “Elliptical-core dual-mode fiber dispersion compensator,” IEEE Photonics Technol. Lett. 5, 194–197 (1993).
[CrossRef]

C. D. Poole, J. M. Wiesenfeld, and A. R. McCormick, “Broadband dispersion compensation by using the higher-order spatial mode in a two-mode fiber,” Opt. Lett. 17, 985–987 (1992).
[CrossRef] [PubMed]

C. D. Poole, C. D. Townsend, and K. T. Nelson, “Helical-grating two-mode fiber spatial-mode coupler,” J. Lightwave Technol. 9, 598–609 (1991).
[CrossRef]

Rasmussen, T.

Risk, W. P.

Rizzoli, V.

E. Bianciardi and V. Rizzoli, “Propagation in graded-core fibres: a unified numerical description,” Opt. Quantum Electron. 9, 121–133 (1977).
[CrossRef]

Rottwitt, K.

Seikai, S.

N. Kuwaki, M. Ohashi, C. Tanaka, N. Uesugi, S. Seikai, and Y. Negishi, “Characteristics of dispersion-shifted dual shape core single-mode fibers,” J. Lightwave Technol. LT-5, 792–797 (1987).
[CrossRef]

Shaw, H. J.

Singh, M. P.

R. W. Davies, D. Davidson, and M. P. Singh, “Single-mode optical fiber with arbitrary refractive-index profile: propagation solution by the Numerov method,” J. Lightwave Technol. LT-3, 619–627 (1985).
[CrossRef]

Smith, D. K.

A. J. Antos and D. K. Smith, “Design and characterization of dispersion compensating fiber based on the LP01 mode,” J. Lightwave Technol. 12, 1739–1745 (1994).
[CrossRef]

Suematsu, Y.

T. Tanaka and Y. Suematsu, “An exact analysis of cylindrical fiber with index distribution by matrix method and itsapplication to focusing fiber,” Trans. Inst. Electron. Commun. Eng. Jpn., Sect. E 59, 1–8 (1976).

Tanaka, C.

N. Kuwaki, M. Ohashi, C. Tanaka, N. Uesugi, S. Seikai, and Y. Negishi, “Characteristics of dispersion-shifted dual shape core single-mode fibers,” J. Lightwave Technol. LT-5, 792–797 (1987).
[CrossRef]

N. Kuwaki, M. Ohashi, C. Tanaka, and N. Uesugi, “Dispersion-shifted convex-index single-mode fibres,” Electron. Lett. 21, 1186–1187 (1985).
[CrossRef]

Tanaka, T.

T. Tanaka and Y. Suematsu, “An exact analysis of cylindrical fiber with index distribution by matrix method and itsapplication to focusing fiber,” Trans. Inst. Electron. Commun. Eng. Jpn., Sect. E 59, 1–8 (1976).

Tellefsen Jr., J. A.

Townsend, C. D.

C. D. Poole, C. D. Townsend, and K. T. Nelson, “Helical-grating two-mode fiber spatial-mode coupler,” J. Lightwave Technol. 9, 598–609 (1991).
[CrossRef]

Tsuji, Y.

M. Eguchi, M. Koshiba, and Y. Tsuji, “Dispersion compensation based on dual-mode optical fiber with inhomogeneous profile core,” J. Lightwave Technol. 14, 2387–2394 (1996).
[CrossRef]

Uesugi, N.

N. Kuwaki, M. Ohashi, C. Tanaka, N. Uesugi, S. Seikai, and Y. Negishi, “Characteristics of dispersion-shifted dual shape core single-mode fibers,” J. Lightwave Technol. LT-5, 792–797 (1987).
[CrossRef]

N. Kuwaki, M. Ohashi, C. Tanaka, and N. Uesugi, “Dispersion-shifted convex-index single-mode fibres,” Electron. Lett. 21, 1186–1187 (1985).
[CrossRef]

Varshney, R. K.

Vengsarkar, A. M.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[CrossRef]

Wiesenfeld, J. M.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[CrossRef]

C. D. Poole, J. M. Wiesenfeld, and D. J. DiGiovanni, “Elliptical-core dual-mode fiber dispersion compensator,” IEEE Photonics Technol. Lett. 5, 194–197 (1993).
[CrossRef]

C. D. Poole, J. M. Wiesenfeld, and A. R. McCormick, “Broadband dispersion compensation by using the higher-order spatial mode in a two-mode fiber,” Opt. Lett. 17, 985–987 (1992).
[CrossRef] [PubMed]

Yariv, A.

Youngquist, R. C.

Appl. Opt. (1)

Electron. Lett. (2)

R. B. Dyott, “Composition of LP11 modes in elliptically cored fibre,” Electron. Lett. 30, 728–730 (1994).
[CrossRef]

N. Kuwaki, M. Ohashi, C. Tanaka, and N. Uesugi, “Dispersion-shifted convex-index single-mode fibres,” Electron. Lett. 21, 1186–1187 (1985).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Marcuse, “Bend loss of slab and fiber modes computed with diffraction theory,” IEEE J. Quantum Electron. 29, 2957–2961 (1993).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

C. D. Poole, J. M. Wiesenfeld, and D. J. DiGiovanni, “Elliptical-core dual-mode fiber dispersion compensator,” IEEE Photonics Technol. Lett. 5, 194–197 (1993).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

K. Morishita, “Numerical analysis of pulse broadening in graded index optical fibers,” IEEE Trans. Microwave Theory Tech. MTT-29, 348–352 (1981).
[CrossRef]

K. Morishita, Y. Obata, and N. Kumagai, “An exact analysis of group velocity for propagation modes in optical fibers,” IEEE Trans. Microwave Theory Tech. 30, 1821–1826 (1982).
[CrossRef]

J. Lightwave Technol. (9)

R. W. Davies, D. Davidson, and M. P. Singh, “Single-mode optical fiber with arbitrary refractive-index profile: propagation solution by the Numerov method,” J. Lightwave Technol. LT-3, 619–627 (1985).
[CrossRef]

M. Eguchi and M. Koshiba, “Accurate finite-element analysis of dual-mode highly elliptical-core fibers,” J. Lightwave Technol. 12, 607–613 (1994).
[CrossRef]

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[CrossRef]

M. Eguchi, M. Koshiba, and Y. Tsuji, “Dispersion compensation based on dual-mode optical fiber with inhomogeneous profile core,” J. Lightwave Technol. 14, 2387–2394 (1996).
[CrossRef]

F. Ouellette, J. F. Cliche, and S. Gagnon, “All-fiber devices for chromatic dispersion compensation based on chirped distributed resonant coupling,” J. Lightwave Technol. 12, 1728–1738 (1994).
[CrossRef]

A. J. Antos and D. K. Smith, “Design and characterization of dispersion compensating fiber based on the LP01 mode,” J. Lightwave Technol. 12, 1739–1745 (1994).
[CrossRef]

N. Kuwaki, M. Ohashi, C. Tanaka, N. Uesugi, S. Seikai, and Y. Negishi, “Characteristics of dispersion-shifted dual shape core single-mode fibers,” J. Lightwave Technol. LT-5, 792–797 (1987).
[CrossRef]

M. Eguchi and M. Koshiba, “Behavior of the first higher-order modes of a circular core optical fiber whose core cross-section changes into an ellipse,” J. Lightwave Technol. 13, 127–136 (1995).
[CrossRef]

C. D. Poole, C. D. Townsend, and K. T. Nelson, “Helical-grating two-mode fiber spatial-mode coupler,” J. Lightwave Technol. 9, 598–609 (1991).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Lett. (8)

Opt. Quantum Electron. (2)

E. Bianciardi and V. Rizzoli, “Propagation in graded-core fibres: a unified numerical description,” Opt. Quantum Electron. 9, 121–133 (1977).
[CrossRef]

W. A. Gambling and H. Matsumura, “Propagation in radially-inhomogeneous single-mode fibre,” Opt. Quantum Electron. 10, 31–40 (1978).
[CrossRef]

Trans. Inst. Electron. Commun. Eng. Jpn., Sect. E (1)

T. Tanaka and Y. Suematsu, “An exact analysis of cylindrical fiber with index distribution by matrix method and itsapplication to focusing fiber,” Trans. Inst. Electron. Commun. Eng. Jpn., Sect. E 59, 1–8 (1976).

Other (1)

R. B. Dyott, Elliptical Fiber Waveguides (Artech House, Norwood, Mass., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the refractive-index profile of double-layer profile core (DLC) fiber and the modal field of the first higher-order mode.

Fig. 2
Fig. 2

Stratified multilayer approximation of a circularly symmetric optical fiber.

Fig. 3
Fig. 3

Coordinate system.

Fig. 4
Fig. 4

Total chromatic dispersion of the first higher-order mode of DLC-DM fiber versus the ratio N=a/a0 at 1.55 µm. The filled circles on the vertical axis indicate the results for simple parabolic-index profile DM fibers without an outer core.

Fig. 5
Fig. 5

Bending loss of the first higher-order mode of DLC-DM fiber versus the ratio N=a/a0 at 1.55 µm. The filled circles on the vertical axis indicate the results for simple parabolic-index profile DM fibers without an outer core. The bending radius is 2 cm. (a) Horizontally oriented first higher-order mode; (b) vertically oriented first higher-order mode.

Fig. 6
Fig. 6

Total system chromatic dispersion obtained by concatenating conventional SM fiber of 40-km length with a compensating simple core-cladding fiber. The dashed line and the solid curves correspond to the results for a dispersion-compensating SM fiber with a step-index profile core and dispersion-compensating DM fibers with a parabolic-index profile core, respectively. The thin, the medium, and the thick curves have Δ equals 1, 2, and 3%, respectively.

Fig. 7
Fig. 7

Total system chromatic dispersion obtained by concatenating conventional SM fiber of 40-km length with compensating DLC-DM fiber with Δ=3%: (a) N=1.3, (b) N=1.6, and (c) N=2.0.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

2r2+1r r+2z2-1r2 1-2θ2ErEθ2r2 θ EθEr
=-ω2μεErEθ,
2r2+1r r+2z2+1r2 2θ2Ez=-ω2μεEz,
E-(r)=Er(r)-jEθ(r),
E+(r)=Er(r)+jEθ(r),
d2dr2+1r ddr+k02n2-β2-(m1)2r2E=0.
g=ϕ(r)cos(lδ)sin(lδ)exp(-jβRθ),
ϕ(r)=12[E+(r)+E-(r)].
αB=n2k08π2elβPT -π/2π/2 exp-2R3β2(β2-n22k02 cos2 χ)3/2β2-n22k02 cos2 χ×F2(χ)cos(χ)dχ,
PT=0|ϕ|2ρdρ,
F(χ)=-γϕ(a)Kl(w) Kl-1(w)+Kl+1(w)2I1-(n2k0 sin χI2+β2-n22k02 cos2 χI3)ϕ(a),
σW=ddλ 1vg=-1cλn1Δv d2(vb)dv2,

Metrics