Abstract

We show by computer simulation that high beam quality can be achieved in high-energy, nanosecond optical parametric oscillators by use of image-rotating resonators. Lateral walk-off between the signal and the idler beams in a nonlinear crystal creates correlations across the beams in the walk off direction, or equivalently, creates a restricted acceptance angle. These correlations can improve the beam quality in the walk-off plane. We show that image rotation or reflection can be used to improve beam quality in both planes. The lateral walk-off can be due to birefringent walk-off in type II mixing or to noncollinear mixing in type I or type II mixing.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. A. Neuman and S. P. Velsko, “Effect of cavity design on optical parametric oscillator performance,” in Advanced Solid-State Lasers, S. A. Payne and C. Pollock, eds., Vol. 1 of OSA Topics in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 179–181.
  2. M. K. Brown and M. S. Bowers, “High energy, near diffraction limited output from optical parametric oscillators using unstable resonators,” in Solid State Lasers VI, R. Scheps, ed., Proc. SPIE2986, 113–122 (1997).
    [Crossref]
  3. J. N. Farmer, M. S. Bowers, and W. S. Scharpf, “High brightness eyesafe optical parametric oscillator using confocal unstable resonators,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyen, and U. Keller, eds., Vol. 26 of OSA Topics in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 567–571.
  4. T. Debuisschért, D. Mathieu, J. Raffy, L. Becouarn, E. Lallier, and J.-P. Pocholle, “High beam quality unstable cavity infrared optical parametric oscillator,” in Laser Resonators, P. Galarneau and A. V. Kudryashov, eds., Proc. SPIE3267, 170–180 (1998).
    [Crossref]
  5. B. C. Johnson, V. J. Newell, J. B. Clark, and E. S. McPhee, “Narrow-bandwidth low-divergence optical parametric oscillator for nonlinear frequency-conversion applications,” J. Opt. Soc. Am. B 12, 2122–2127 (1995).
    [Crossref]
  6. S. Haidar and H. Ito, “Injection-seeded optical parametric oscillator for efficient difference frequency generation in mid-IR,” Opt. Commun. 171, 171–176 (1999).
    [Crossref]
  7. A. V. Smith, W. J. Alford, T. D. Raymond, and M. S. Bowers, “Comparison of a numerical model with measured performance of a seeded nanosecond KTP optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2253–2267 (1995).
    [Crossref]
  8. Y. A. Anan’evLaser Resonators and Beam Divergence Problem (Hilger, New York, 1992), pp. 321–327.
  9. W. J. Alford, R. J. Gehr, R. L. Schmitt, A. V. Smith, and G. Arisholm, “Beam tilt and angular dispersion in broad-bandwidth, nanosecond optical parametric oscillators,” J. Opt. Soc. Am. B 16, 1525–1532 (1999).
    [Crossref]
  10. A. V. Smith, D. J. Armstrong, and W. J. Alford, “Increased acceptance bandwidths in optical frequency conversion by use of multiple walk-off-compensating nonlinear crystals,” J. Opt. Soc. Am. B 15, 122–141 (1998).
    [Crossref]
  11. J. G. Haub, R. M. Hentschel, M. J. Johnson, and B. J. Orr, “Controlling the performance of a pulsed optical parametric oscillator: a survey of techniques and spectroscopic applications,” J. Opt. Soc. Am. B 12, 2128–2141 (1995).
    [Crossref]
  12. R. Urschel, U. Bader, A. Borsutzky, and R. Wallenstein, “Spectral properties and conversion efficiency of 355-nm-pumped pulsed optical parametric oscillators of β-barium borate with noncollinear phase matching,” J. Opt. Soc. Am. B 16, 565–579 (1999).
    [Crossref]
  13. C. D. Nabors and G. Frangineas, “Optical parametric oscillator with bi-noncollinear, porro prism cavity,” in Advanced Solid State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Topics in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 90–93.
  14. C. D. Nabors and G. Frangineas, “Optical parametric oscillator with porro prism cavity,” U.S. patent5,781,571 (July14, 1998).
  15. G. Anstett, G. Goritz, D. Kabs, R. Urschel, R. Wallenstein, and A. Borsutzky, “Reduction of the spectral width and beam divergence of a BBO-OPO by using collinear type-II phase matching and backreflection of the pump beam,” Appl. Phys. B (to be published).

1999 (3)

1998 (1)

1995 (3)

Alford, W. J.

Anan’ev, Y. A.

Y. A. Anan’evLaser Resonators and Beam Divergence Problem (Hilger, New York, 1992), pp. 321–327.

Anstett, G.

G. Anstett, G. Goritz, D. Kabs, R. Urschel, R. Wallenstein, and A. Borsutzky, “Reduction of the spectral width and beam divergence of a BBO-OPO by using collinear type-II phase matching and backreflection of the pump beam,” Appl. Phys. B (to be published).

Arisholm, G.

Armstrong, D. J.

Bader, U.

Becouarn, L.

T. Debuisschért, D. Mathieu, J. Raffy, L. Becouarn, E. Lallier, and J.-P. Pocholle, “High beam quality unstable cavity infrared optical parametric oscillator,” in Laser Resonators, P. Galarneau and A. V. Kudryashov, eds., Proc. SPIE3267, 170–180 (1998).
[Crossref]

Borsutzky, A.

R. Urschel, U. Bader, A. Borsutzky, and R. Wallenstein, “Spectral properties and conversion efficiency of 355-nm-pumped pulsed optical parametric oscillators of β-barium borate with noncollinear phase matching,” J. Opt. Soc. Am. B 16, 565–579 (1999).
[Crossref]

G. Anstett, G. Goritz, D. Kabs, R. Urschel, R. Wallenstein, and A. Borsutzky, “Reduction of the spectral width and beam divergence of a BBO-OPO by using collinear type-II phase matching and backreflection of the pump beam,” Appl. Phys. B (to be published).

Bowers, M. S.

A. V. Smith, W. J. Alford, T. D. Raymond, and M. S. Bowers, “Comparison of a numerical model with measured performance of a seeded nanosecond KTP optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2253–2267 (1995).
[Crossref]

M. K. Brown and M. S. Bowers, “High energy, near diffraction limited output from optical parametric oscillators using unstable resonators,” in Solid State Lasers VI, R. Scheps, ed., Proc. SPIE2986, 113–122 (1997).
[Crossref]

J. N. Farmer, M. S. Bowers, and W. S. Scharpf, “High brightness eyesafe optical parametric oscillator using confocal unstable resonators,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyen, and U. Keller, eds., Vol. 26 of OSA Topics in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 567–571.

Brown, M. K.

M. K. Brown and M. S. Bowers, “High energy, near diffraction limited output from optical parametric oscillators using unstable resonators,” in Solid State Lasers VI, R. Scheps, ed., Proc. SPIE2986, 113–122 (1997).
[Crossref]

Clark, J. B.

Debuisschért, T.

T. Debuisschért, D. Mathieu, J. Raffy, L. Becouarn, E. Lallier, and J.-P. Pocholle, “High beam quality unstable cavity infrared optical parametric oscillator,” in Laser Resonators, P. Galarneau and A. V. Kudryashov, eds., Proc. SPIE3267, 170–180 (1998).
[Crossref]

Farmer, J. N.

J. N. Farmer, M. S. Bowers, and W. S. Scharpf, “High brightness eyesafe optical parametric oscillator using confocal unstable resonators,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyen, and U. Keller, eds., Vol. 26 of OSA Topics in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 567–571.

Frangineas, G.

C. D. Nabors and G. Frangineas, “Optical parametric oscillator with porro prism cavity,” U.S. patent5,781,571 (July14, 1998).

C. D. Nabors and G. Frangineas, “Optical parametric oscillator with bi-noncollinear, porro prism cavity,” in Advanced Solid State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Topics in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 90–93.

Gehr, R. J.

Goritz, G.

G. Anstett, G. Goritz, D. Kabs, R. Urschel, R. Wallenstein, and A. Borsutzky, “Reduction of the spectral width and beam divergence of a BBO-OPO by using collinear type-II phase matching and backreflection of the pump beam,” Appl. Phys. B (to be published).

Haidar, S.

S. Haidar and H. Ito, “Injection-seeded optical parametric oscillator for efficient difference frequency generation in mid-IR,” Opt. Commun. 171, 171–176 (1999).
[Crossref]

Haub, J. G.

Hentschel, R. M.

Ito, H.

S. Haidar and H. Ito, “Injection-seeded optical parametric oscillator for efficient difference frequency generation in mid-IR,” Opt. Commun. 171, 171–176 (1999).
[Crossref]

Johnson, B. C.

Johnson, M. J.

Kabs, D.

G. Anstett, G. Goritz, D. Kabs, R. Urschel, R. Wallenstein, and A. Borsutzky, “Reduction of the spectral width and beam divergence of a BBO-OPO by using collinear type-II phase matching and backreflection of the pump beam,” Appl. Phys. B (to be published).

Lallier, E.

T. Debuisschért, D. Mathieu, J. Raffy, L. Becouarn, E. Lallier, and J.-P. Pocholle, “High beam quality unstable cavity infrared optical parametric oscillator,” in Laser Resonators, P. Galarneau and A. V. Kudryashov, eds., Proc. SPIE3267, 170–180 (1998).
[Crossref]

Mathieu, D.

T. Debuisschért, D. Mathieu, J. Raffy, L. Becouarn, E. Lallier, and J.-P. Pocholle, “High beam quality unstable cavity infrared optical parametric oscillator,” in Laser Resonators, P. Galarneau and A. V. Kudryashov, eds., Proc. SPIE3267, 170–180 (1998).
[Crossref]

McPhee, E. S.

Nabors, C. D.

C. D. Nabors and G. Frangineas, “Optical parametric oscillator with porro prism cavity,” U.S. patent5,781,571 (July14, 1998).

C. D. Nabors and G. Frangineas, “Optical parametric oscillator with bi-noncollinear, porro prism cavity,” in Advanced Solid State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Topics in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 90–93.

Neuman, W. A.

W. A. Neuman and S. P. Velsko, “Effect of cavity design on optical parametric oscillator performance,” in Advanced Solid-State Lasers, S. A. Payne and C. Pollock, eds., Vol. 1 of OSA Topics in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 179–181.

Newell, V. J.

Orr, B. J.

Pocholle, J.-P.

T. Debuisschért, D. Mathieu, J. Raffy, L. Becouarn, E. Lallier, and J.-P. Pocholle, “High beam quality unstable cavity infrared optical parametric oscillator,” in Laser Resonators, P. Galarneau and A. V. Kudryashov, eds., Proc. SPIE3267, 170–180 (1998).
[Crossref]

Raffy, J.

T. Debuisschért, D. Mathieu, J. Raffy, L. Becouarn, E. Lallier, and J.-P. Pocholle, “High beam quality unstable cavity infrared optical parametric oscillator,” in Laser Resonators, P. Galarneau and A. V. Kudryashov, eds., Proc. SPIE3267, 170–180 (1998).
[Crossref]

Raymond, T. D.

Scharpf, W. S.

J. N. Farmer, M. S. Bowers, and W. S. Scharpf, “High brightness eyesafe optical parametric oscillator using confocal unstable resonators,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyen, and U. Keller, eds., Vol. 26 of OSA Topics in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 567–571.

Schmitt, R. L.

Smith, A. V.

Urschel, R.

R. Urschel, U. Bader, A. Borsutzky, and R. Wallenstein, “Spectral properties and conversion efficiency of 355-nm-pumped pulsed optical parametric oscillators of β-barium borate with noncollinear phase matching,” J. Opt. Soc. Am. B 16, 565–579 (1999).
[Crossref]

G. Anstett, G. Goritz, D. Kabs, R. Urschel, R. Wallenstein, and A. Borsutzky, “Reduction of the spectral width and beam divergence of a BBO-OPO by using collinear type-II phase matching and backreflection of the pump beam,” Appl. Phys. B (to be published).

Velsko, S. P.

W. A. Neuman and S. P. Velsko, “Effect of cavity design on optical parametric oscillator performance,” in Advanced Solid-State Lasers, S. A. Payne and C. Pollock, eds., Vol. 1 of OSA Topics in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 179–181.

Wallenstein, R.

R. Urschel, U. Bader, A. Borsutzky, and R. Wallenstein, “Spectral properties and conversion efficiency of 355-nm-pumped pulsed optical parametric oscillators of β-barium borate with noncollinear phase matching,” J. Opt. Soc. Am. B 16, 565–579 (1999).
[Crossref]

G. Anstett, G. Goritz, D. Kabs, R. Urschel, R. Wallenstein, and A. Borsutzky, “Reduction of the spectral width and beam divergence of a BBO-OPO by using collinear type-II phase matching and backreflection of the pump beam,” Appl. Phys. B (to be published).

J. Opt. Soc. Am. B (6)

Opt. Commun. (1)

S. Haidar and H. Ito, “Injection-seeded optical parametric oscillator for efficient difference frequency generation in mid-IR,” Opt. Commun. 171, 171–176 (1999).
[Crossref]

Other (8)

Y. A. Anan’evLaser Resonators and Beam Divergence Problem (Hilger, New York, 1992), pp. 321–327.

W. A. Neuman and S. P. Velsko, “Effect of cavity design on optical parametric oscillator performance,” in Advanced Solid-State Lasers, S. A. Payne and C. Pollock, eds., Vol. 1 of OSA Topics in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 179–181.

M. K. Brown and M. S. Bowers, “High energy, near diffraction limited output from optical parametric oscillators using unstable resonators,” in Solid State Lasers VI, R. Scheps, ed., Proc. SPIE2986, 113–122 (1997).
[Crossref]

J. N. Farmer, M. S. Bowers, and W. S. Scharpf, “High brightness eyesafe optical parametric oscillator using confocal unstable resonators,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyen, and U. Keller, eds., Vol. 26 of OSA Topics in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 567–571.

T. Debuisschért, D. Mathieu, J. Raffy, L. Becouarn, E. Lallier, and J.-P. Pocholle, “High beam quality unstable cavity infrared optical parametric oscillator,” in Laser Resonators, P. Galarneau and A. V. Kudryashov, eds., Proc. SPIE3267, 170–180 (1998).
[Crossref]

C. D. Nabors and G. Frangineas, “Optical parametric oscillator with bi-noncollinear, porro prism cavity,” in Advanced Solid State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Topics in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 90–93.

C. D. Nabors and G. Frangineas, “Optical parametric oscillator with porro prism cavity,” U.S. patent5,781,571 (July14, 1998).

G. Anstett, G. Goritz, D. Kabs, R. Urschel, R. Wallenstein, and A. Borsutzky, “Reduction of the spectral width and beam divergence of a BBO-OPO by using collinear type-II phase matching and backreflection of the pump beam,” Appl. Phys. B (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Diagram of a confocal unstable resonator. The focal points of the input and output mirrors coincide. Beams are collimated on the forward pass and expand on the backward pass. The expanding zones of correlation for the signal wave after successive cavity passes are shown at the bottom of this figure, illustrating their growth about the cavity axis.

Fig. 2
Fig. 2

(a) Simple planar ring OPO design. The walk-off between the signal and the idler beams, indicated by the arrow on the crystal, is in the plane of the ring. (b) Computed far-field signal fluence with the operating parameters of Table 1.

Fig. 3
Fig. 3

(a) Signal and (b) idler beam quality as a function of time for the OPO of Fig. 2(a). Dotted curves, signal power in arbitrary units, shown for reference.

Fig. 4
Fig. 4

Image-rotating OPO cavity design based on a dove prism image rotator. Half-wave plates before and after the dove prism rotate the signal polarization by 45°. The expanding zones of correlation for the signal wave after successive crystal passes are shown at the bottom.

Fig. 5
Fig. 5

(b) Far-field signal fluence for the cavity of (a) and the operating parameters of Table 1.

Fig. 6
Fig. 6

(a) Signal and (b) idler beam quality as a function of time for the OPO of Fig. 5(a). Dotted curves, signal power in arbitrary units, shown for reference.

Fig. 7
Fig. 7

Image-rotating OPO cavity design based on rotated roof prisms. The wave plate rotates the signal polarization by 45°. The pump can be coupled by use of intracavity mirrors that pass the signal and reflect the pump. Signal output coupling could be accomplished through frustrated reflection at one of the prisms, or a prism could be replaced with partially reflecting mirrors in a rooftop configuration.

Fig. 8
Fig. 8

Cavity design for a crystal oriented for walk-off in a plane rotated 45° relative to the plane of the cavity. The expanding zones of correlation for the signal wave after successive crystal passes are shown at the bottom, demonstrating their asymmetric growth with respect to the origin.

Fig. 9
Fig. 9

Cavity design for two walk-off-compensating crystals oriented with walk-off in a plane rotated 45° relative to the plane of the cavity. The expanding zones of correlation for the signal wave after successive crystal passes are shown at the bottom, demonstrating their symmetric growth.

Fig. 10
Fig. 10

(b) Far-field signal fluence for the cavity of (a) and the operating parameters of Table 1.

Fig. 11
Fig. 11

(a) Signal and (b) idler beam quality as a function of time for the OPO of Fig. 10(a). Dotted curves, signal power in arbitrary units, shown for reference.

Fig. 12
Fig. 12

Standing-wave equivalent of the ring OPO diagrammed in Fig. 10(a).

Fig. 13
Fig. 13

(b) Far-field signal fluence for the cavity of (a) and operating parameters of Table 1.

Fig. 14
Fig. 14

(a) Signal and (b) idler beam quality as a function of time for the OPO of Fig. 13(a). Dotted curves, signal power in arbitrary units, shown for reference.

Fig. 15
Fig. 15

(b) Far-field signal fluence for the cavity of (a) and operating parameters of Table 1.

Fig. 16
Fig. 16

(a) Signal and (b) idler beam quality as a function of time for the OPO of Fig. 15(a). Dotted curves, signal power in arbitrary units, shown for reference.

Tables (1)

Tables Icon

Table 1 Ring OPO Parameters

Metrics