Abstract

Selective photomodification of fractal aggregates of silver nanoparticles is studied experimentally by photon-scanning-tunneling microscopy. Near-field optical images of the aggregates before and after photomodification show changes in the distribution of local electromagnetic fields in the near zone at subwavelength scale. These changes are much stronger than those measured in the far field. Results from numerical modeling of photomodification are in qualitative agreement with the experimental observations.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning-tunneling-microscopy images of optical-excitation of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
    [CrossRef] [PubMed]
  2. S. I. Bozhevolnyi, B. Vohnsen, A. V. Zayats, and I. I. Smolyaninov, “Fractal surface characterization: implications for plasmon polariton scattering,” Surf. Sci. 356, 268–274 (1996).
    [CrossRef]
  3. S. I. Bozhevolnyi, “Localization phenomena in elastic surface-polariton scattering caused by surface roughness,” Phys. Rev. B 54, 8177–8185 (1996).
    [CrossRef]
  4. S. I. Bozhevolnyi, V. A. Markel, V. Coello, W. Kim, and V. M. Shalaev, “Direct observation of localized dipolar excitations on rough nanostructured surfaces,” Phys. Rev. B 58, 11441–11448 (1998).
    [CrossRef]
  5. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
    [CrossRef]
  6. K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. R. Dasari, and M. S. Feld, “Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS),” Phys. Rev. E 57, R6281–6284 (1998).
    [CrossRef]
  7. K. Kneipp, H. Kneipp, R. Manoharan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Extremely large enhancement factors in surface-enhanced Raman scattering for molecules on colloidal gold clusters,” Appl. Spectrosc. 52, 1493–1497 (1998).
    [CrossRef]
  8. V. A. Markel, V. M. Shalaev, P. Zhang, W. Huynh, L. Tay, T. L. Haslett, and M. Moskovits, “Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters,” Phys. Rev. B 59, 10903–10909 (1999).
    [CrossRef]
  9. E. Y. Poliakov, V. M. Shalaev, V. Shubin, and V. A. Markel, “Enhancement of nonlinear processes near rough nanometer-structured surfaces obtained by deposition of fractal colloidal sliver aggregates on a plain substrate,” Phys. Rev. B 60, 10739–10742 (1999).
    [CrossRef]
  10. V. M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal Dielectric Films (Springer-Verlag, Berlin, 2000).
  11. E. Y. Poliakov, V. M. Shalaev, V. A. Markel, and R. Botet, “Enhanced Raman scattering from self-affine thin films,” Opt. Lett. 21, 1628–1630 (1996).
    [CrossRef] [PubMed]
  12. E. Y. Poliakov, V. A. Markel, V. M. Shalaev, and R. Botet, “Nonlinear optical phenomena on rough surfaces of metal thin films,” Phys. Rev. B 57, 14901–14913 (1998).
    [CrossRef]
  13. L. S. Markel, V. A. Muratov, and M. I. Stockman, “Optical properties of fractals: theory and numerical simulation,” Sov. Phys. JETP 71, 455–464 (1990).
  14. A. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Shtokman, “Observation of a wavelength- and polarization-selective photomodification of silver clusters,” JETP Lett. 48, 571–575 (1988).
  15. Y. E. Danilova, A. I. Plekhanov, and V. P. Safonov, “Experimental study of polarization-selective holes, burning in absorption spectra of metal fractal clusters,” Physica A 185, 61–65 (1992).
    [CrossRef]
  16. V. P. Safonov, V. M. Shalaev, V. Markel, Y. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral dependence of selective photomodification in fractal aggregates of colloidal particles,” Phys. Rev. Lett. 80, 1102–1107 (1998).
    [CrossRef]
  17. M. I. Stockman, L. N. Pandey, and T. F. George, “Inhomogeneous localization of polar eigenmodes in fractals,” Phys. Rev. B 53, 2183–2186 (1996).
    [CrossRef]
  18. M. I. Stockman, “Inhomogeneous eigenmode localization, chaos, and correlations in large disordered clusters,” Phys. Rev. E 56, 6494–6507 (1997).
    [CrossRef]
  19. M. I. Stockman, “Chaos and spatial correlations for dipolar eigenproblems,” Phys. Rev. Lett. 79, 4562–4565 (1997).
    [CrossRef]
  20. V. M. Shalaev and M. I. Stockman, “Optical properties of fractal clusters (susceptibility, surface enhanced Raman scattering by impurities),” Sov. Phys. JETP 65, 287–294 (1987).
  21. V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical simulation of optical properties of fractal clusters,” Phys. Rev. B 43, 8183–8195 (1991).
    [CrossRef]
  22. V. M. Shalaev, E. Y. Poliakov, and V. A. Markel, “Small-particle composites. 2. Nonlinear optical properties,” Phys. Rev. B 53, 2437–2449 (1996).
    [CrossRef]
  23. V. M. Shalaev, “Electromagnetic properties of small-particle composites,” Phys. Rep. 272, 61–137 (1996).
    [CrossRef]
  24. A. I. Plekhanov, G. L. Plotnikov, and V. P. Safonov, “Production and spectroscopic study of silver fractal clusters by laser vaporation of target,” Opt. Spectrosc. (USSR) 71, 451–454 (1991).
  25. P. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391 (1982).
    [CrossRef]
  26. V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. 1. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
    [CrossRef]
  27. S. I. Bozhevolnyi, B. Vohnsen, E. A. Bozhevolnaya, and S. Berntsen, “Self-consistent model for photon scanning tunneling microscopy: implications for image formation and light scattering near a phase-conjugating mirror,” J. Opt. Soc. Am. A 13, 2381–2392 (1996).
    [CrossRef]
  28. M. Lee, E. B. McDaniel, and J. W. P. Hsu, “An impedance based non-contact feedback control system for scanning probe microscopes,” Rev. Sci. Instrum. 67, 1468–1471 (1996).
    [CrossRef]
  29. A. V. Butenko, V. M. Shalaev, and M. I. Stockman, “Giant impurity nonlinearities in optics of fractal clusters,” Sov. Phys. JETP 67, 60–69 (1988).
  30. V. M. Shalaev, R. Botet, D. P. Tsai, J. Kovacs, and M. Moskovits, “Fractals: localization of dipole excitations and giant optical polarizabilities,” Physica A 207, 197–207 (1994).
    [CrossRef]
  31. M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Giant fluctuations of local optical-fields in fractal clusters,” Phys. Rev. Lett. 72, 2486–2489 (1994).
    [CrossRef] [PubMed]
  32. J. F. Ready, Effects of High-Power Laser Radiation (Academic, New York, 1971).
  33. S. V. Karpov, A. K. Popov, and V. V. Slabko, “Observation of the two-photon photoelectric effect in low-intensity optical fields during photostimulated fractal aggregation of colloidal silver,” JETP Lett. 66, 106–110 (1997).
    [CrossRef]
  34. H. Zhu and R. S. Averback, “Sintering processes of two nanoparticles: a study by molecular dynamics,” Philos. Mag. Lett. 73, 27–33 (1996).
    [CrossRef]
  35. S. E. Rorak, A. Lo, R. T. Skodje, and K. L. Rowlen, “Changes in thin-metal-film nanostructure at near-ambient temperatures,” in Nanostructured Materials: Clusters, Composites, and Thin Films, V. M. Shalaev and M. Moskovits, eds. (American Chemical Society, Washington D.C., 1998), pp. 152–168.
  36. P. Meakin, “Formation of fractal clusters and networks by irreversible diffusion-limited aggregation,” Phys. Rev. Lett. 51, 1119–1122 (1983).
    [CrossRef]
  37. V. A. Markel, V. M. Shalaev, E. Y. Poliakov, and T. F. George, “Numerical studies of second-and fourth-order correlation functions in cluster-cluster aggregates in application to optical scattering,” Phys. Rev. E 55, 7313–7333 (1997).
    [CrossRef]
  38. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
    [CrossRef]
  39. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
    [CrossRef]
  40. B. Draine and P. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
    [CrossRef]
  41. D. Keller and C. Bustmante, “Theory of the interaction of light with large inhomogeneous molecular aggregates. II. Psi-type circular dichroism,” J. Chem. Phys. 84, 2972–2980 (1986).
    [CrossRef]
  42. J. E. Sansonetti and J. K. Furdyna, “Depolarization effects in arrays of spheres,” Phys. Rev. B 22, 2866–2874 (1980).
    [CrossRef]
  43. F. Claro, “Absorption spectrum of neighbouring dielectric grains,” Phys. Rev. B 25, 7875–7876 (1982).
    [CrossRef]
  44. Y. E. Danilova, S. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Stockman, “Experimental investigation of optical nonlinearities of silver fractal clusters,” in Proceedings of the X International Vavilov Conference on Nonlinear Optics, S. G. Rautian, ed. (Nova Science, New York, 1992), pp. 295–302.
  45. Y. E. Danilova, V. A. Markel, and V. P. Safonov, “Light absorption by random clusters of silver particles,” Atmos. Oceanic Opt. 6, 821–826 (1993).
  46. V. A. Markel and V. M. Shalaev, “Computational approaches in optics of fractal clusters,” in Computational Studies of New Materials, D. A. Jelski and T. F. George, eds. (World Scientific, Singapore, 1999), pp. 210–243.
  47. D. W. Mackowski, “Electrostatic analysis of radiative absorption by sphere clusters in the Rayleigh limit: application to soot particles,” Appl. Opt. 34, 3535–3545 (1995).
    [CrossRef] [PubMed]
  48. D. W. Mackowski and M. Mischenko, “Calculation of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13, 2266–2278 (1996).
    [CrossRef]
  49. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]

1999 (2)

V. A. Markel, V. M. Shalaev, P. Zhang, W. Huynh, L. Tay, T. L. Haslett, and M. Moskovits, “Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters,” Phys. Rev. B 59, 10903–10909 (1999).
[CrossRef]

E. Y. Poliakov, V. M. Shalaev, V. Shubin, and V. A. Markel, “Enhancement of nonlinear processes near rough nanometer-structured surfaces obtained by deposition of fractal colloidal sliver aggregates on a plain substrate,” Phys. Rev. B 60, 10739–10742 (1999).
[CrossRef]

1998 (5)

S. I. Bozhevolnyi, V. A. Markel, V. Coello, W. Kim, and V. M. Shalaev, “Direct observation of localized dipolar excitations on rough nanostructured surfaces,” Phys. Rev. B 58, 11441–11448 (1998).
[CrossRef]

K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. R. Dasari, and M. S. Feld, “Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS),” Phys. Rev. E 57, R6281–6284 (1998).
[CrossRef]

E. Y. Poliakov, V. A. Markel, V. M. Shalaev, and R. Botet, “Nonlinear optical phenomena on rough surfaces of metal thin films,” Phys. Rev. B 57, 14901–14913 (1998).
[CrossRef]

V. P. Safonov, V. M. Shalaev, V. Markel, Y. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral dependence of selective photomodification in fractal aggregates of colloidal particles,” Phys. Rev. Lett. 80, 1102–1107 (1998).
[CrossRef]

K. Kneipp, H. Kneipp, R. Manoharan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Extremely large enhancement factors in surface-enhanced Raman scattering for molecules on colloidal gold clusters,” Appl. Spectrosc. 52, 1493–1497 (1998).
[CrossRef]

1997 (5)

M. I. Stockman, “Inhomogeneous eigenmode localization, chaos, and correlations in large disordered clusters,” Phys. Rev. E 56, 6494–6507 (1997).
[CrossRef]

M. I. Stockman, “Chaos and spatial correlations for dipolar eigenproblems,” Phys. Rev. Lett. 79, 4562–4565 (1997).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

S. V. Karpov, A. K. Popov, and V. V. Slabko, “Observation of the two-photon photoelectric effect in low-intensity optical fields during photostimulated fractal aggregation of colloidal silver,” JETP Lett. 66, 106–110 (1997).
[CrossRef]

V. A. Markel, V. M. Shalaev, E. Y. Poliakov, and T. F. George, “Numerical studies of second-and fourth-order correlation functions in cluster-cluster aggregates in application to optical scattering,” Phys. Rev. E 55, 7313–7333 (1997).
[CrossRef]

1996 (11)

H. Zhu and R. S. Averback, “Sintering processes of two nanoparticles: a study by molecular dynamics,” Philos. Mag. Lett. 73, 27–33 (1996).
[CrossRef]

S. I. Bozhevolnyi, B. Vohnsen, A. V. Zayats, and I. I. Smolyaninov, “Fractal surface characterization: implications for plasmon polariton scattering,” Surf. Sci. 356, 268–274 (1996).
[CrossRef]

S. I. Bozhevolnyi, “Localization phenomena in elastic surface-polariton scattering caused by surface roughness,” Phys. Rev. B 54, 8177–8185 (1996).
[CrossRef]

M. I. Stockman, L. N. Pandey, and T. F. George, “Inhomogeneous localization of polar eigenmodes in fractals,” Phys. Rev. B 53, 2183–2186 (1996).
[CrossRef]

V. M. Shalaev, E. Y. Poliakov, and V. A. Markel, “Small-particle composites. 2. Nonlinear optical properties,” Phys. Rev. B 53, 2437–2449 (1996).
[CrossRef]

V. M. Shalaev, “Electromagnetic properties of small-particle composites,” Phys. Rep. 272, 61–137 (1996).
[CrossRef]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. 1. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[CrossRef]

M. Lee, E. B. McDaniel, and J. W. P. Hsu, “An impedance based non-contact feedback control system for scanning probe microscopes,” Rev. Sci. Instrum. 67, 1468–1471 (1996).
[CrossRef]

D. W. Mackowski and M. Mischenko, “Calculation of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13, 2266–2278 (1996).
[CrossRef]

S. I. Bozhevolnyi, B. Vohnsen, E. A. Bozhevolnaya, and S. Berntsen, “Self-consistent model for photon scanning tunneling microscopy: implications for image formation and light scattering near a phase-conjugating mirror,” J. Opt. Soc. Am. A 13, 2381–2392 (1996).
[CrossRef]

E. Y. Poliakov, V. M. Shalaev, V. A. Markel, and R. Botet, “Enhanced Raman scattering from self-affine thin films,” Opt. Lett. 21, 1628–1630 (1996).
[CrossRef] [PubMed]

1995 (1)

1994 (4)

B. Draine and P. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
[CrossRef]

V. M. Shalaev, R. Botet, D. P. Tsai, J. Kovacs, and M. Moskovits, “Fractals: localization of dipole excitations and giant optical polarizabilities,” Physica A 207, 197–207 (1994).
[CrossRef]

M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Giant fluctuations of local optical-fields in fractal clusters,” Phys. Rev. Lett. 72, 2486–2489 (1994).
[CrossRef] [PubMed]

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning-tunneling-microscopy images of optical-excitation of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
[CrossRef] [PubMed]

1993 (1)

Y. E. Danilova, V. A. Markel, and V. P. Safonov, “Light absorption by random clusters of silver particles,” Atmos. Oceanic Opt. 6, 821–826 (1993).

1992 (1)

Y. E. Danilova, A. I. Plekhanov, and V. P. Safonov, “Experimental study of polarization-selective holes, burning in absorption spectra of metal fractal clusters,” Physica A 185, 61–65 (1992).
[CrossRef]

1991 (2)

V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical simulation of optical properties of fractal clusters,” Phys. Rev. B 43, 8183–8195 (1991).
[CrossRef]

A. I. Plekhanov, G. L. Plotnikov, and V. P. Safonov, “Production and spectroscopic study of silver fractal clusters by laser vaporation of target,” Opt. Spectrosc. (USSR) 71, 451–454 (1991).

1990 (1)

L. S. Markel, V. A. Muratov, and M. I. Stockman, “Optical properties of fractals: theory and numerical simulation,” Sov. Phys. JETP 71, 455–464 (1990).

1988 (3)

A. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Shtokman, “Observation of a wavelength- and polarization-selective photomodification of silver clusters,” JETP Lett. 48, 571–575 (1988).

A. V. Butenko, V. M. Shalaev, and M. I. Stockman, “Giant impurity nonlinearities in optics of fractal clusters,” Sov. Phys. JETP 67, 60–69 (1988).

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

1987 (1)

V. M. Shalaev and M. I. Stockman, “Optical properties of fractal clusters (susceptibility, surface enhanced Raman scattering by impurities),” Sov. Phys. JETP 65, 287–294 (1987).

1986 (1)

D. Keller and C. Bustmante, “Theory of the interaction of light with large inhomogeneous molecular aggregates. II. Psi-type circular dichroism,” J. Chem. Phys. 84, 2972–2980 (1986).
[CrossRef]

1983 (1)

P. Meakin, “Formation of fractal clusters and networks by irreversible diffusion-limited aggregation,” Phys. Rev. Lett. 51, 1119–1122 (1983).
[CrossRef]

1982 (2)

F. Claro, “Absorption spectrum of neighbouring dielectric grains,” Phys. Rev. B 25, 7875–7876 (1982).
[CrossRef]

P. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391 (1982).
[CrossRef]

1980 (1)

J. E. Sansonetti and J. K. Furdyna, “Depolarization effects in arrays of spheres,” Phys. Rev. B 22, 2866–2874 (1980).
[CrossRef]

1973 (1)

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Armstrong, R. L.

V. P. Safonov, V. M. Shalaev, V. Markel, Y. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral dependence of selective photomodification in fractal aggregates of colloidal particles,” Phys. Rev. Lett. 80, 1102–1107 (1998).
[CrossRef]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. 1. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[CrossRef]

Averback, R. S.

H. Zhu and R. S. Averback, “Sintering processes of two nanoparticles: a study by molecular dynamics,” Philos. Mag. Lett. 73, 27–33 (1996).
[CrossRef]

Berntsen, S.

Botet, R.

E. Y. Poliakov, V. A. Markel, V. M. Shalaev, and R. Botet, “Nonlinear optical phenomena on rough surfaces of metal thin films,” Phys. Rev. B 57, 14901–14913 (1998).
[CrossRef]

E. Y. Poliakov, V. M. Shalaev, V. A. Markel, and R. Botet, “Enhanced Raman scattering from self-affine thin films,” Opt. Lett. 21, 1628–1630 (1996).
[CrossRef] [PubMed]

V. M. Shalaev, R. Botet, D. P. Tsai, J. Kovacs, and M. Moskovits, “Fractals: localization of dipole excitations and giant optical polarizabilities,” Physica A 207, 197–207 (1994).
[CrossRef]

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning-tunneling-microscopy images of optical-excitation of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
[CrossRef] [PubMed]

Bozhevolnaya, E. A.

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. A. Markel, V. Coello, W. Kim, and V. M. Shalaev, “Direct observation of localized dipolar excitations on rough nanostructured surfaces,” Phys. Rev. B 58, 11441–11448 (1998).
[CrossRef]

S. I. Bozhevolnyi, B. Vohnsen, A. V. Zayats, and I. I. Smolyaninov, “Fractal surface characterization: implications for plasmon polariton scattering,” Surf. Sci. 356, 268–274 (1996).
[CrossRef]

S. I. Bozhevolnyi, B. Vohnsen, E. A. Bozhevolnaya, and S. Berntsen, “Self-consistent model for photon scanning tunneling microscopy: implications for image formation and light scattering near a phase-conjugating mirror,” J. Opt. Soc. Am. A 13, 2381–2392 (1996).
[CrossRef]

S. I. Bozhevolnyi, “Localization phenomena in elastic surface-polariton scattering caused by surface roughness,” Phys. Rev. B 54, 8177–8185 (1996).
[CrossRef]

Bustmante, C.

D. Keller and C. Bustmante, “Theory of the interaction of light with large inhomogeneous molecular aggregates. II. Psi-type circular dichroism,” J. Chem. Phys. 84, 2972–2980 (1986).
[CrossRef]

Butenko, A. V.

A. V. Butenko, V. M. Shalaev, and M. I. Stockman, “Giant impurity nonlinearities in optics of fractal clusters,” Sov. Phys. JETP 67, 60–69 (1988).

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Claro, F.

F. Claro, “Absorption spectrum of neighbouring dielectric grains,” Phys. Rev. B 25, 7875–7876 (1982).
[CrossRef]

Coello, V.

S. I. Bozhevolnyi, V. A. Markel, V. Coello, W. Kim, and V. M. Shalaev, “Direct observation of localized dipolar excitations on rough nanostructured surfaces,” Phys. Rev. B 58, 11441–11448 (1998).
[CrossRef]

Danilova, Y. E.

V. P. Safonov, V. M. Shalaev, V. Markel, Y. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral dependence of selective photomodification in fractal aggregates of colloidal particles,” Phys. Rev. Lett. 80, 1102–1107 (1998).
[CrossRef]

Y. E. Danilova, V. A. Markel, and V. P. Safonov, “Light absorption by random clusters of silver particles,” Atmos. Oceanic Opt. 6, 821–826 (1993).

Y. E. Danilova, A. I. Plekhanov, and V. P. Safonov, “Experimental study of polarization-selective holes, burning in absorption spectra of metal fractal clusters,” Physica A 185, 61–65 (1992).
[CrossRef]

Dasari, R. R.

K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. R. Dasari, and M. S. Feld, “Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS),” Phys. Rev. E 57, R6281–6284 (1998).
[CrossRef]

K. Kneipp, H. Kneipp, R. Manoharan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Extremely large enhancement factors in surface-enhanced Raman scattering for molecules on colloidal gold clusters,” Appl. Spectrosc. 52, 1493–1497 (1998).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Deinum, G.

K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. R. Dasari, and M. S. Feld, “Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS),” Phys. Rev. E 57, R6281–6284 (1998).
[CrossRef]

Draine, B.

Draine, B. T.

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

Feld, M. S.

K. Kneipp, H. Kneipp, R. Manoharan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Extremely large enhancement factors in surface-enhanced Raman scattering for molecules on colloidal gold clusters,” Appl. Spectrosc. 52, 1493–1497 (1998).
[CrossRef]

K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. R. Dasari, and M. S. Feld, “Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS),” Phys. Rev. E 57, R6281–6284 (1998).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Flatau, P.

Furdyna, J. K.

J. E. Sansonetti and J. K. Furdyna, “Depolarization effects in arrays of spheres,” Phys. Rev. B 22, 2866–2874 (1980).
[CrossRef]

George, T. F.

V. A. Markel, V. M. Shalaev, E. Y. Poliakov, and T. F. George, “Numerical studies of second-and fourth-order correlation functions in cluster-cluster aggregates in application to optical scattering,” Phys. Rev. E 55, 7313–7333 (1997).
[CrossRef]

M. I. Stockman, L. N. Pandey, and T. F. George, “Inhomogeneous localization of polar eigenmodes in fractals,” Phys. Rev. B 53, 2183–2186 (1996).
[CrossRef]

M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Giant fluctuations of local optical-fields in fractal clusters,” Phys. Rev. Lett. 72, 2486–2489 (1994).
[CrossRef] [PubMed]

V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical simulation of optical properties of fractal clusters,” Phys. Rev. B 43, 8183–8195 (1991).
[CrossRef]

Haslett, T. L.

V. A. Markel, V. M. Shalaev, P. Zhang, W. Huynh, L. Tay, T. L. Haslett, and M. Moskovits, “Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters,” Phys. Rev. B 59, 10903–10909 (1999).
[CrossRef]

Hsu, J. W. P.

M. Lee, E. B. McDaniel, and J. W. P. Hsu, “An impedance based non-contact feedback control system for scanning probe microscopes,” Rev. Sci. Instrum. 67, 1468–1471 (1996).
[CrossRef]

Huynh, W.

V. A. Markel, V. M. Shalaev, P. Zhang, W. Huynh, L. Tay, T. L. Haslett, and M. Moskovits, “Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters,” Phys. Rev. B 59, 10903–10909 (1999).
[CrossRef]

Itzkan, I.

K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. R. Dasari, and M. S. Feld, “Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS),” Phys. Rev. E 57, R6281–6284 (1998).
[CrossRef]

K. Kneipp, H. Kneipp, R. Manoharan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Extremely large enhancement factors in surface-enhanced Raman scattering for molecules on colloidal gold clusters,” Appl. Spectrosc. 52, 1493–1497 (1998).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Karpov, A. V.

A. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Shtokman, “Observation of a wavelength- and polarization-selective photomodification of silver clusters,” JETP Lett. 48, 571–575 (1988).

Karpov, S. V.

S. V. Karpov, A. K. Popov, and V. V. Slabko, “Observation of the two-photon photoelectric effect in low-intensity optical fields during photostimulated fractal aggregation of colloidal silver,” JETP Lett. 66, 106–110 (1997).
[CrossRef]

Kartha, V. B.

K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. R. Dasari, and M. S. Feld, “Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS),” Phys. Rev. E 57, R6281–6284 (1998).
[CrossRef]

Keller, D.

D. Keller and C. Bustmante, “Theory of the interaction of light with large inhomogeneous molecular aggregates. II. Psi-type circular dichroism,” J. Chem. Phys. 84, 2972–2980 (1986).
[CrossRef]

Kim, W.

S. I. Bozhevolnyi, V. A. Markel, V. Coello, W. Kim, and V. M. Shalaev, “Direct observation of localized dipolar excitations on rough nanostructured surfaces,” Phys. Rev. B 58, 11441–11448 (1998).
[CrossRef]

V. P. Safonov, V. M. Shalaev, V. Markel, Y. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral dependence of selective photomodification in fractal aggregates of colloidal particles,” Phys. Rev. Lett. 80, 1102–1107 (1998).
[CrossRef]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. 1. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[CrossRef]

Kneipp, H.

K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. R. Dasari, and M. S. Feld, “Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS),” Phys. Rev. E 57, R6281–6284 (1998).
[CrossRef]

K. Kneipp, H. Kneipp, R. Manoharan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Extremely large enhancement factors in surface-enhanced Raman scattering for molecules on colloidal gold clusters,” Appl. Spectrosc. 52, 1493–1497 (1998).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. R. Dasari, and M. S. Feld, “Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS),” Phys. Rev. E 57, R6281–6284 (1998).
[CrossRef]

K. Kneipp, H. Kneipp, R. Manoharan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Extremely large enhancement factors in surface-enhanced Raman scattering for molecules on colloidal gold clusters,” Appl. Spectrosc. 52, 1493–1497 (1998).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Kovacs, J.

V. M. Shalaev, R. Botet, D. P. Tsai, J. Kovacs, and M. Moskovits, “Fractals: localization of dipole excitations and giant optical polarizabilities,” Physica A 207, 197–207 (1994).
[CrossRef]

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning-tunneling-microscopy images of optical-excitation of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
[CrossRef] [PubMed]

Lee, M.

M. Lee, E. B. McDaniel, and J. W. P. Hsu, “An impedance based non-contact feedback control system for scanning probe microscopes,” Rev. Sci. Instrum. 67, 1468–1471 (1996).
[CrossRef]

Lee, P.

P. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391 (1982).
[CrossRef]

Lepeshkin, N. N.

V. P. Safonov, V. M. Shalaev, V. Markel, Y. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral dependence of selective photomodification in fractal aggregates of colloidal particles,” Phys. Rev. Lett. 80, 1102–1107 (1998).
[CrossRef]

Mackowski, D. W.

Manoharan, R.

K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. R. Dasari, and M. S. Feld, “Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS),” Phys. Rev. E 57, R6281–6284 (1998).
[CrossRef]

K. Kneipp, H. Kneipp, R. Manoharan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Extremely large enhancement factors in surface-enhanced Raman scattering for molecules on colloidal gold clusters,” Appl. Spectrosc. 52, 1493–1497 (1998).
[CrossRef]

Markel, L. S.

L. S. Markel, V. A. Muratov, and M. I. Stockman, “Optical properties of fractals: theory and numerical simulation,” Sov. Phys. JETP 71, 455–464 (1990).

Markel, V.

V. P. Safonov, V. M. Shalaev, V. Markel, Y. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral dependence of selective photomodification in fractal aggregates of colloidal particles,” Phys. Rev. Lett. 80, 1102–1107 (1998).
[CrossRef]

Markel, V. A.

V. A. Markel, V. M. Shalaev, P. Zhang, W. Huynh, L. Tay, T. L. Haslett, and M. Moskovits, “Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters,” Phys. Rev. B 59, 10903–10909 (1999).
[CrossRef]

E. Y. Poliakov, V. M. Shalaev, V. Shubin, and V. A. Markel, “Enhancement of nonlinear processes near rough nanometer-structured surfaces obtained by deposition of fractal colloidal sliver aggregates on a plain substrate,” Phys. Rev. B 60, 10739–10742 (1999).
[CrossRef]

E. Y. Poliakov, V. A. Markel, V. M. Shalaev, and R. Botet, “Nonlinear optical phenomena on rough surfaces of metal thin films,” Phys. Rev. B 57, 14901–14913 (1998).
[CrossRef]

S. I. Bozhevolnyi, V. A. Markel, V. Coello, W. Kim, and V. M. Shalaev, “Direct observation of localized dipolar excitations on rough nanostructured surfaces,” Phys. Rev. B 58, 11441–11448 (1998).
[CrossRef]

V. A. Markel, V. M. Shalaev, E. Y. Poliakov, and T. F. George, “Numerical studies of second-and fourth-order correlation functions in cluster-cluster aggregates in application to optical scattering,” Phys. Rev. E 55, 7313–7333 (1997).
[CrossRef]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. 1. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[CrossRef]

E. Y. Poliakov, V. M. Shalaev, V. A. Markel, and R. Botet, “Enhanced Raman scattering from self-affine thin films,” Opt. Lett. 21, 1628–1630 (1996).
[CrossRef] [PubMed]

V. M. Shalaev, E. Y. Poliakov, and V. A. Markel, “Small-particle composites. 2. Nonlinear optical properties,” Phys. Rev. B 53, 2437–2449 (1996).
[CrossRef]

Y. E. Danilova, V. A. Markel, and V. P. Safonov, “Light absorption by random clusters of silver particles,” Atmos. Oceanic Opt. 6, 821–826 (1993).

V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical simulation of optical properties of fractal clusters,” Phys. Rev. B 43, 8183–8195 (1991).
[CrossRef]

McDaniel, E. B.

M. Lee, E. B. McDaniel, and J. W. P. Hsu, “An impedance based non-contact feedback control system for scanning probe microscopes,” Rev. Sci. Instrum. 67, 1468–1471 (1996).
[CrossRef]

Meakin, P.

P. Meakin, “Formation of fractal clusters and networks by irreversible diffusion-limited aggregation,” Phys. Rev. Lett. 51, 1119–1122 (1983).
[CrossRef]

Meisel, D.

P. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391 (1982).
[CrossRef]

Mischenko, M.

Moskovits, M.

V. A. Markel, V. M. Shalaev, P. Zhang, W. Huynh, L. Tay, T. L. Haslett, and M. Moskovits, “Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters,” Phys. Rev. B 59, 10903–10909 (1999).
[CrossRef]

V. M. Shalaev, R. Botet, D. P. Tsai, J. Kovacs, and M. Moskovits, “Fractals: localization of dipole excitations and giant optical polarizabilities,” Physica A 207, 197–207 (1994).
[CrossRef]

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning-tunneling-microscopy images of optical-excitation of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
[CrossRef] [PubMed]

Muratov, L. S.

M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Giant fluctuations of local optical-fields in fractal clusters,” Phys. Rev. Lett. 72, 2486–2489 (1994).
[CrossRef] [PubMed]

V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical simulation of optical properties of fractal clusters,” Phys. Rev. B 43, 8183–8195 (1991).
[CrossRef]

Muratov, V. A.

L. S. Markel, V. A. Muratov, and M. I. Stockman, “Optical properties of fractals: theory and numerical simulation,” Sov. Phys. JETP 71, 455–464 (1990).

Pandey, L. N.

M. I. Stockman, L. N. Pandey, and T. F. George, “Inhomogeneous localization of polar eigenmodes in fractals,” Phys. Rev. B 53, 2183–2186 (1996).
[CrossRef]

M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Giant fluctuations of local optical-fields in fractal clusters,” Phys. Rev. Lett. 72, 2486–2489 (1994).
[CrossRef] [PubMed]

Pennypacker, C. R.

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[CrossRef]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Plekhanov, A. I.

Y. E. Danilova, A. I. Plekhanov, and V. P. Safonov, “Experimental study of polarization-selective holes, burning in absorption spectra of metal fractal clusters,” Physica A 185, 61–65 (1992).
[CrossRef]

A. I. Plekhanov, G. L. Plotnikov, and V. P. Safonov, “Production and spectroscopic study of silver fractal clusters by laser vaporation of target,” Opt. Spectrosc. (USSR) 71, 451–454 (1991).

Plotnikov, G. L.

A. I. Plekhanov, G. L. Plotnikov, and V. P. Safonov, “Production and spectroscopic study of silver fractal clusters by laser vaporation of target,” Opt. Spectrosc. (USSR) 71, 451–454 (1991).

Poliakov, E. Y.

E. Y. Poliakov, V. M. Shalaev, V. Shubin, and V. A. Markel, “Enhancement of nonlinear processes near rough nanometer-structured surfaces obtained by deposition of fractal colloidal sliver aggregates on a plain substrate,” Phys. Rev. B 60, 10739–10742 (1999).
[CrossRef]

E. Y. Poliakov, V. A. Markel, V. M. Shalaev, and R. Botet, “Nonlinear optical phenomena on rough surfaces of metal thin films,” Phys. Rev. B 57, 14901–14913 (1998).
[CrossRef]

V. A. Markel, V. M. Shalaev, E. Y. Poliakov, and T. F. George, “Numerical studies of second-and fourth-order correlation functions in cluster-cluster aggregates in application to optical scattering,” Phys. Rev. E 55, 7313–7333 (1997).
[CrossRef]

E. Y. Poliakov, V. M. Shalaev, V. A. Markel, and R. Botet, “Enhanced Raman scattering from self-affine thin films,” Opt. Lett. 21, 1628–1630 (1996).
[CrossRef] [PubMed]

V. M. Shalaev, E. Y. Poliakov, and V. A. Markel, “Small-particle composites. 2. Nonlinear optical properties,” Phys. Rev. B 53, 2437–2449 (1996).
[CrossRef]

Popov, A. K.

S. V. Karpov, A. K. Popov, and V. V. Slabko, “Observation of the two-photon photoelectric effect in low-intensity optical fields during photostimulated fractal aggregation of colloidal silver,” JETP Lett. 66, 106–110 (1997).
[CrossRef]

A. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Shtokman, “Observation of a wavelength- and polarization-selective photomodification of silver clusters,” JETP Lett. 48, 571–575 (1988).

Purcell, E. M.

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[CrossRef]

Rautian, S. G.

V. P. Safonov, V. M. Shalaev, V. Markel, Y. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral dependence of selective photomodification in fractal aggregates of colloidal particles,” Phys. Rev. Lett. 80, 1102–1107 (1998).
[CrossRef]

A. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Shtokman, “Observation of a wavelength- and polarization-selective photomodification of silver clusters,” JETP Lett. 48, 571–575 (1988).

Safonov, V. P.

V. P. Safonov, V. M. Shalaev, V. Markel, Y. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral dependence of selective photomodification in fractal aggregates of colloidal particles,” Phys. Rev. Lett. 80, 1102–1107 (1998).
[CrossRef]

Y. E. Danilova, V. A. Markel, and V. P. Safonov, “Light absorption by random clusters of silver particles,” Atmos. Oceanic Opt. 6, 821–826 (1993).

Y. E. Danilova, A. I. Plekhanov, and V. P. Safonov, “Experimental study of polarization-selective holes, burning in absorption spectra of metal fractal clusters,” Physica A 185, 61–65 (1992).
[CrossRef]

A. I. Plekhanov, G. L. Plotnikov, and V. P. Safonov, “Production and spectroscopic study of silver fractal clusters by laser vaporation of target,” Opt. Spectrosc. (USSR) 71, 451–454 (1991).

A. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Shtokman, “Observation of a wavelength- and polarization-selective photomodification of silver clusters,” JETP Lett. 48, 571–575 (1988).

Sansonetti, J. E.

J. E. Sansonetti and J. K. Furdyna, “Depolarization effects in arrays of spheres,” Phys. Rev. B 22, 2866–2874 (1980).
[CrossRef]

Shalaev, V. M.

E. Y. Poliakov, V. M. Shalaev, V. Shubin, and V. A. Markel, “Enhancement of nonlinear processes near rough nanometer-structured surfaces obtained by deposition of fractal colloidal sliver aggregates on a plain substrate,” Phys. Rev. B 60, 10739–10742 (1999).
[CrossRef]

V. A. Markel, V. M. Shalaev, P. Zhang, W. Huynh, L. Tay, T. L. Haslett, and M. Moskovits, “Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters,” Phys. Rev. B 59, 10903–10909 (1999).
[CrossRef]

E. Y. Poliakov, V. A. Markel, V. M. Shalaev, and R. Botet, “Nonlinear optical phenomena on rough surfaces of metal thin films,” Phys. Rev. B 57, 14901–14913 (1998).
[CrossRef]

S. I. Bozhevolnyi, V. A. Markel, V. Coello, W. Kim, and V. M. Shalaev, “Direct observation of localized dipolar excitations on rough nanostructured surfaces,” Phys. Rev. B 58, 11441–11448 (1998).
[CrossRef]

V. P. Safonov, V. M. Shalaev, V. Markel, Y. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral dependence of selective photomodification in fractal aggregates of colloidal particles,” Phys. Rev. Lett. 80, 1102–1107 (1998).
[CrossRef]

V. A. Markel, V. M. Shalaev, E. Y. Poliakov, and T. F. George, “Numerical studies of second-and fourth-order correlation functions in cluster-cluster aggregates in application to optical scattering,” Phys. Rev. E 55, 7313–7333 (1997).
[CrossRef]

V. M. Shalaev, “Electromagnetic properties of small-particle composites,” Phys. Rep. 272, 61–137 (1996).
[CrossRef]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. 1. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[CrossRef]

E. Y. Poliakov, V. M. Shalaev, V. A. Markel, and R. Botet, “Enhanced Raman scattering from self-affine thin films,” Opt. Lett. 21, 1628–1630 (1996).
[CrossRef] [PubMed]

V. M. Shalaev, E. Y. Poliakov, and V. A. Markel, “Small-particle composites. 2. Nonlinear optical properties,” Phys. Rev. B 53, 2437–2449 (1996).
[CrossRef]

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning-tunneling-microscopy images of optical-excitation of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
[CrossRef] [PubMed]

V. M. Shalaev, R. Botet, D. P. Tsai, J. Kovacs, and M. Moskovits, “Fractals: localization of dipole excitations and giant optical polarizabilities,” Physica A 207, 197–207 (1994).
[CrossRef]

A. V. Butenko, V. M. Shalaev, and M. I. Stockman, “Giant impurity nonlinearities in optics of fractal clusters,” Sov. Phys. JETP 67, 60–69 (1988).

A. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Shtokman, “Observation of a wavelength- and polarization-selective photomodification of silver clusters,” JETP Lett. 48, 571–575 (1988).

V. M. Shalaev and M. I. Stockman, “Optical properties of fractal clusters (susceptibility, surface enhanced Raman scattering by impurities),” Sov. Phys. JETP 65, 287–294 (1987).

Shtokman, M. I.

A. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Shtokman, “Observation of a wavelength- and polarization-selective photomodification of silver clusters,” JETP Lett. 48, 571–575 (1988).

Shubin, V.

E. Y. Poliakov, V. M. Shalaev, V. Shubin, and V. A. Markel, “Enhancement of nonlinear processes near rough nanometer-structured surfaces obtained by deposition of fractal colloidal sliver aggregates on a plain substrate,” Phys. Rev. B 60, 10739–10742 (1999).
[CrossRef]

Slabko, V. V.

S. V. Karpov, A. K. Popov, and V. V. Slabko, “Observation of the two-photon photoelectric effect in low-intensity optical fields during photostimulated fractal aggregation of colloidal silver,” JETP Lett. 66, 106–110 (1997).
[CrossRef]

A. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Shtokman, “Observation of a wavelength- and polarization-selective photomodification of silver clusters,” JETP Lett. 48, 571–575 (1988).

Smolyaninov, I. I.

S. I. Bozhevolnyi, B. Vohnsen, A. V. Zayats, and I. I. Smolyaninov, “Fractal surface characterization: implications for plasmon polariton scattering,” Surf. Sci. 356, 268–274 (1996).
[CrossRef]

Stechel, E. B.

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. 1. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[CrossRef]

Stockman, M. I.

M. I. Stockman, “Chaos and spatial correlations for dipolar eigenproblems,” Phys. Rev. Lett. 79, 4562–4565 (1997).
[CrossRef]

M. I. Stockman, “Inhomogeneous eigenmode localization, chaos, and correlations in large disordered clusters,” Phys. Rev. E 56, 6494–6507 (1997).
[CrossRef]

M. I. Stockman, L. N. Pandey, and T. F. George, “Inhomogeneous localization of polar eigenmodes in fractals,” Phys. Rev. B 53, 2183–2186 (1996).
[CrossRef]

M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Giant fluctuations of local optical-fields in fractal clusters,” Phys. Rev. Lett. 72, 2486–2489 (1994).
[CrossRef] [PubMed]

V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical simulation of optical properties of fractal clusters,” Phys. Rev. B 43, 8183–8195 (1991).
[CrossRef]

L. S. Markel, V. A. Muratov, and M. I. Stockman, “Optical properties of fractals: theory and numerical simulation,” Sov. Phys. JETP 71, 455–464 (1990).

A. V. Butenko, V. M. Shalaev, and M. I. Stockman, “Giant impurity nonlinearities in optics of fractal clusters,” Sov. Phys. JETP 67, 60–69 (1988).

V. M. Shalaev and M. I. Stockman, “Optical properties of fractal clusters (susceptibility, surface enhanced Raman scattering by impurities),” Sov. Phys. JETP 65, 287–294 (1987).

Suh, J. S.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning-tunneling-microscopy images of optical-excitation of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
[CrossRef] [PubMed]

Tay, L.

V. A. Markel, V. M. Shalaev, P. Zhang, W. Huynh, L. Tay, T. L. Haslett, and M. Moskovits, “Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters,” Phys. Rev. B 59, 10903–10909 (1999).
[CrossRef]

Tsai, D. P.

V. M. Shalaev, R. Botet, D. P. Tsai, J. Kovacs, and M. Moskovits, “Fractals: localization of dipole excitations and giant optical polarizabilities,” Physica A 207, 197–207 (1994).
[CrossRef]

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning-tunneling-microscopy images of optical-excitation of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
[CrossRef] [PubMed]

Vohnsen, B.

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Wang, Z.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning-tunneling-microscopy images of optical-excitation of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
[CrossRef] [PubMed]

Zayats, A. V.

S. I. Bozhevolnyi, B. Vohnsen, A. V. Zayats, and I. I. Smolyaninov, “Fractal surface characterization: implications for plasmon polariton scattering,” Surf. Sci. 356, 268–274 (1996).
[CrossRef]

Zhang, P.

V. A. Markel, V. M. Shalaev, P. Zhang, W. Huynh, L. Tay, T. L. Haslett, and M. Moskovits, “Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters,” Phys. Rev. B 59, 10903–10909 (1999).
[CrossRef]

Zhu, H.

H. Zhu and R. S. Averback, “Sintering processes of two nanoparticles: a study by molecular dynamics,” Philos. Mag. Lett. 73, 27–33 (1996).
[CrossRef]

Appl. Opt. (1)

Appl. Spectrosc. (1)

Astrophys. J. (2)

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[CrossRef]

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

Atmos. Oceanic Opt. (1)

Y. E. Danilova, V. A. Markel, and V. P. Safonov, “Light absorption by random clusters of silver particles,” Atmos. Oceanic Opt. 6, 821–826 (1993).

J. Chem. Phys. (1)

D. Keller and C. Bustmante, “Theory of the interaction of light with large inhomogeneous molecular aggregates. II. Psi-type circular dichroism,” J. Chem. Phys. 84, 2972–2980 (1986).
[CrossRef]

J. Opt. Soc. Am. A (3)

J. Phys. Chem. (1)

P. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391 (1982).
[CrossRef]

JETP Lett. (2)

A. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Shtokman, “Observation of a wavelength- and polarization-selective photomodification of silver clusters,” JETP Lett. 48, 571–575 (1988).

S. V. Karpov, A. K. Popov, and V. V. Slabko, “Observation of the two-photon photoelectric effect in low-intensity optical fields during photostimulated fractal aggregation of colloidal silver,” JETP Lett. 66, 106–110 (1997).
[CrossRef]

Opt. Lett. (1)

Opt. Spectrosc. (USSR) (1)

A. I. Plekhanov, G. L. Plotnikov, and V. P. Safonov, “Production and spectroscopic study of silver fractal clusters by laser vaporation of target,” Opt. Spectrosc. (USSR) 71, 451–454 (1991).

Philos. Mag. Lett. (1)

H. Zhu and R. S. Averback, “Sintering processes of two nanoparticles: a study by molecular dynamics,” Philos. Mag. Lett. 73, 27–33 (1996).
[CrossRef]

Phys. Rep. (1)

V. M. Shalaev, “Electromagnetic properties of small-particle composites,” Phys. Rep. 272, 61–137 (1996).
[CrossRef]

Phys. Rev. B (12)

V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical simulation of optical properties of fractal clusters,” Phys. Rev. B 43, 8183–8195 (1991).
[CrossRef]

V. M. Shalaev, E. Y. Poliakov, and V. A. Markel, “Small-particle composites. 2. Nonlinear optical properties,” Phys. Rev. B 53, 2437–2449 (1996).
[CrossRef]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. 1. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
[CrossRef]

E. Y. Poliakov, V. A. Markel, V. M. Shalaev, and R. Botet, “Nonlinear optical phenomena on rough surfaces of metal thin films,” Phys. Rev. B 57, 14901–14913 (1998).
[CrossRef]

M. I. Stockman, L. N. Pandey, and T. F. George, “Inhomogeneous localization of polar eigenmodes in fractals,” Phys. Rev. B 53, 2183–2186 (1996).
[CrossRef]

J. E. Sansonetti and J. K. Furdyna, “Depolarization effects in arrays of spheres,” Phys. Rev. B 22, 2866–2874 (1980).
[CrossRef]

F. Claro, “Absorption spectrum of neighbouring dielectric grains,” Phys. Rev. B 25, 7875–7876 (1982).
[CrossRef]

S. I. Bozhevolnyi, “Localization phenomena in elastic surface-polariton scattering caused by surface roughness,” Phys. Rev. B 54, 8177–8185 (1996).
[CrossRef]

S. I. Bozhevolnyi, V. A. Markel, V. Coello, W. Kim, and V. M. Shalaev, “Direct observation of localized dipolar excitations on rough nanostructured surfaces,” Phys. Rev. B 58, 11441–11448 (1998).
[CrossRef]

V. A. Markel, V. M. Shalaev, P. Zhang, W. Huynh, L. Tay, T. L. Haslett, and M. Moskovits, “Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters,” Phys. Rev. B 59, 10903–10909 (1999).
[CrossRef]

E. Y. Poliakov, V. M. Shalaev, V. Shubin, and V. A. Markel, “Enhancement of nonlinear processes near rough nanometer-structured surfaces obtained by deposition of fractal colloidal sliver aggregates on a plain substrate,” Phys. Rev. B 60, 10739–10742 (1999).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. E (3)

V. A. Markel, V. M. Shalaev, E. Y. Poliakov, and T. F. George, “Numerical studies of second-and fourth-order correlation functions in cluster-cluster aggregates in application to optical scattering,” Phys. Rev. E 55, 7313–7333 (1997).
[CrossRef]

K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. R. Dasari, and M. S. Feld, “Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS),” Phys. Rev. E 57, R6281–6284 (1998).
[CrossRef]

M. I. Stockman, “Inhomogeneous eigenmode localization, chaos, and correlations in large disordered clusters,” Phys. Rev. E 56, 6494–6507 (1997).
[CrossRef]

Phys. Rev. Lett. (6)

M. I. Stockman, “Chaos and spatial correlations for dipolar eigenproblems,” Phys. Rev. Lett. 79, 4562–4565 (1997).
[CrossRef]

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning-tunneling-microscopy images of optical-excitation of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
[CrossRef] [PubMed]

V. P. Safonov, V. M. Shalaev, V. Markel, Y. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral dependence of selective photomodification in fractal aggregates of colloidal particles,” Phys. Rev. Lett. 80, 1102–1107 (1998).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Giant fluctuations of local optical-fields in fractal clusters,” Phys. Rev. Lett. 72, 2486–2489 (1994).
[CrossRef] [PubMed]

P. Meakin, “Formation of fractal clusters and networks by irreversible diffusion-limited aggregation,” Phys. Rev. Lett. 51, 1119–1122 (1983).
[CrossRef]

Physica A (2)

V. M. Shalaev, R. Botet, D. P. Tsai, J. Kovacs, and M. Moskovits, “Fractals: localization of dipole excitations and giant optical polarizabilities,” Physica A 207, 197–207 (1994).
[CrossRef]

Y. E. Danilova, A. I. Plekhanov, and V. P. Safonov, “Experimental study of polarization-selective holes, burning in absorption spectra of metal fractal clusters,” Physica A 185, 61–65 (1992).
[CrossRef]

Rev. Sci. Instrum. (1)

M. Lee, E. B. McDaniel, and J. W. P. Hsu, “An impedance based non-contact feedback control system for scanning probe microscopes,” Rev. Sci. Instrum. 67, 1468–1471 (1996).
[CrossRef]

Sov. Phys. JETP (3)

A. V. Butenko, V. M. Shalaev, and M. I. Stockman, “Giant impurity nonlinearities in optics of fractal clusters,” Sov. Phys. JETP 67, 60–69 (1988).

L. S. Markel, V. A. Muratov, and M. I. Stockman, “Optical properties of fractals: theory and numerical simulation,” Sov. Phys. JETP 71, 455–464 (1990).

V. M. Shalaev and M. I. Stockman, “Optical properties of fractal clusters (susceptibility, surface enhanced Raman scattering by impurities),” Sov. Phys. JETP 65, 287–294 (1987).

Surf. Sci. (1)

S. I. Bozhevolnyi, B. Vohnsen, A. V. Zayats, and I. I. Smolyaninov, “Fractal surface characterization: implications for plasmon polariton scattering,” Surf. Sci. 356, 268–274 (1996).
[CrossRef]

Other (5)

V. M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal Dielectric Films (Springer-Verlag, Berlin, 2000).

J. F. Ready, Effects of High-Power Laser Radiation (Academic, New York, 1971).

S. E. Rorak, A. Lo, R. T. Skodje, and K. L. Rowlen, “Changes in thin-metal-film nanostructure at near-ambient temperatures,” in Nanostructured Materials: Clusters, Composites, and Thin Films, V. M. Shalaev and M. Moskovits, eds. (American Chemical Society, Washington D.C., 1998), pp. 152–168.

Y. E. Danilova, S. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Stockman, “Experimental investigation of optical nonlinearities of silver fractal clusters,” in Proceedings of the X International Vavilov Conference on Nonlinear Optics, S. G. Rautian, ed. (Nova Science, New York, 1992), pp. 295–302.

V. A. Markel and V. M. Shalaev, “Computational approaches in optics of fractal clusters,” in Computational Studies of New Materials, D. A. Jelski and T. F. George, eds. (World Scientific, Singapore, 1999), pp. 210–243.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

PSTM images of a silver fractal film (a) before and (b) after photomodification of the sample with nanosecond laser pulses at 532 nm. The images were recorded with a probe (imaging) beam wavelength at 543 nm. Optical intensity profiles along the marked curves are also shown.

Fig. 2
Fig. 2

PSTM images of a silver fractal film recorded at various probe-beam wavelengths from 765 to 820 nm. Each image is 10 µm×10 µm in size.

Fig. 3
Fig. 3

Difference in optical intensity of the two images of Fig. 1. The new hot spots are highlighted in black. The diminished hot spots are indicated by open contours.

Fig. 4
Fig. 4

Same as Fig. 1, except that a different sample area is imaged with a probe-beam wavelength at 633 nm.

Fig. 5
Fig. 5

TEM images of aggregated silver nanoparticles (a) before and (b) after irradiation of nanosecond laser pulses at a wavelength of 1079 nm. The incident energy density was 11 mJ/cm2 per pulse.

Fig. 6
Fig. 6

TEM images of aggregated silver nanoparticles (a) before and (b) after irradiation of nanosecond laser pulses at a wavelength of 450 nm. The incident energy density was 20 mJ/cm2 per pulse.

Fig. 7
Fig. 7

Simulated near-field optical images at 543 and 633 nm of a computer-generated fractal silver aggregate deposited on a surface before and after photomodification. The dimensions of each image are 0.9 µm×1.15 µm. The difference in optical intensity between two adjacent gray scales is 10%.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Eev(r)=E0 expωc(-zn2 sin2 θ-1+ixn sin θ),
di=αEev(ri)+jiG(ri-ri)dj.
E(R)=i=1NGˆ(R-ri)di+Eev(R).

Metrics