Abstract

We report the results of pump–probe optical Kerr effect (OKE) experiments performed on neat solutions of carbon tetrachloride, nitrobenzene, methyl methacrylate monomer, binary solutions of the squaraine dye indole squarylium, and the phthalocyanine dye silicon phthalocyanine-monomethacrylate, respectively, in carbon tetrachloride, and solid solutions of indole squarylium and phthalocyanine-monomethacrylate in poly(methyl methacrylate). Dispersion measurements of the dye solutions were performed in the visible one-photon resonant region of the dyes defined by their linear-absorption spectra. The dyes’ third-order molecular susceptibility response γxxxx(-ω2;ω1,-ω1, ω2) in this spectral region is markedly different, with R{γISQ}>0 and R{γSiPc}<0. Analysis of the dyes’ OKE response requires the inclusion of high-lying two-photon states and suggests that a purely electronic mechanism dominates their OKE response. The results are used to calculate the dyes’ off-resonant third-order molecular susceptibilities, which are well within the limits predicted by the Thomas–Reiche–Kuhn sum rule [M. G. Kuzyk, Opt. Lett. 25, 1183–1185 (2000)].

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. L. Sklar, “Theory of color of organic compounds,” J. Chem. Phys. 5, 669–681 (1937).
    [CrossRef]
  2. C. Poga, M. Kuzyk, and C. Dirk, “Quadratic electroabsorption studies of third-order susceptibility mechanisms in dye-doped polymers,” J. Opt. Soc. Am. B 11, 80–91 (1994).
    [CrossRef]
  3. C. Poga, T. Brown, M. Kuzyk, and C. W. Dirk, “Characterization of the excited states of a squaraine molecule with quadratic electroabsorption spectroscopy,” J. Opt. Soc. Am. B 12, 531–543 (1995).
    [CrossRef]
  4. K. S. Mathis, M. G. Kuzyk, C. W. Dirk, A. Tan, S. Martinez, and G. Gampos, “Mechanisms of the nonlinear optical properties of squaraine dyes in poly(methyl methacrylate) polymers,” J. Opt. Soc. Am. B 15, 871–883 (1998).
    [CrossRef]
  5. G. Mayer and F. Gires, “Action d’une onde lumineuse intense sur l’indice de refraction des liquides,” C. R. Acad. Sci. 258, 2039–2042 (1964).
  6. M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).
    [CrossRef]
  7. S. R. Vigil, “Nonlinear optical studies of organic liquids and polymer optical fibers,” Ph.D. dissertation (Washington State University, Pullman, Wash., 2000).
  8. M. G. Kuzyk, R. A. Norwood, J. W. Wu, and A. F. Garito, “Frequency dependence of the optical Kerr effect and third-order electronic nonlinear-optical processes of organic liquids,” J. Opt. Soc. Am. B 6, 154–164 (1989).
    [CrossRef]
  9. K. Sala and M. C. Richardson, “Optical Kerr effect induced by ultrashort laser pulses,” Phys. Rev. A 12, 1036–1047 (1975).
    [CrossRef]
  10. G. K. L. Wong and Y. R. Shen, “Study of pretransitional behavior of laser-field-induced molecular alignment in isotropic nematic substances,” Phys. Rev. A 10, 1277–1284 (1974).
    [CrossRef]
  11. B. I. Greene and R. C. Farrow, “Direct measurement of a subpicosecond birefringent response in CS2,” J. Chem. Phys. 77, 4779–4780 (1982).
    [CrossRef]
  12. M. G. Kuzyk and C. W. Dirk, “Effects of centrosymmetry on the nonresonant electronic third-order nonlinear optical susceptibility,” Phys. Rev. A 41, 5098–5109 (1990).
    [CrossRef] [PubMed]
  13. B. J. Orr and J. F. Ward, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys. 20, 513–526 (1971).
    [CrossRef]
  14. N. N. Bogoliubov and J. A. Mitropolsky, Asymptotic Methods in the Theory of Nonlinear Oscillations (Nauka, Moscow, 1948).
  15. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics, Vol. 9 of Cambridge Studies in Modern Optics (Cambridge University Press, Cambridge, UK, 1990).
  16. J. Y. Zhang, J. Y. Huang, Y. R. Shen, and C. Chen, “Optical parametric generation and amplification in barium borate and lithium triborate crystals,” J. Opt. Soc. Am. B 10, 1758–1764 (1993).
    [CrossRef]
  17. B. Schroder, “Optical parametric amplification from quantum noise,” Opt. Quantum Electron. 15, 57–63 (1983).
    [CrossRef]
  18. J. Y. Huang, J. Y. Zhang, Y. R. Shen, C. Chen, and B. Wu, “High-power, widely tunable, picosecond coherent source from optical parametric amplification in barium borate,” Appl. Phys. Lett. 57, 1961–1963 (1990).
    [CrossRef]
  19. J. Y. Zhang, J. Y. Huang, Y. R. Shen, C. Chen, and B. Wu, “Picosecond optical parametric amplification in lithium triborate,” Appl. Phys. Lett. 58, 213–215 (1991).
    [CrossRef]
  20. P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2187 (1979).
    [CrossRef]
  21. K. Kamada, M. Ueda, T. Sakaguchi, K. Ohta, and T. Fukumi, “Femtosecond optical Kerr dynamics of thiophene in carbon tetrachloride solution,” Chem. Phys. Lett. 249, 329–334 (1996).
    [CrossRef]
  22. S. Guha, C. C. Frazier, P. L. Porter, K. Kang, and S. E. Finberg, “Measurement of the third-order hyperpolarizability of platinum poly-ynes,” Opt. Lett. 14, 952–954 (1989).
    [CrossRef] [PubMed]
  23. J. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1982).
  24. Q. L. Zhou, R. F. Shi, O. Zamani-Khamari, and A. F. Garito, “Negative third-order optical responses in squaraines,” Nonlinear Opt. 6, 145–154 (1993).
  25. C. W. Dirk, L.-T. Cheng, and M. G. Kuzyk, “A simplified three-level model describing the molecular third-order nonlinear optical susceptibility,” Int. J. Quantum Chem. 43, 27–36 (1992).
    [CrossRef]
  26. C. W. Dirk and M. G. Kuzyk, “Squarylium dye-doped polymer systems as quadratic electrooptic materials,” Chem. Phys. 2, 4–6 (1990).
  27. C. W. Dirk, W. C. Herndon, F. Cervantes-Lee, H. Selnau, S. Martinez, P. Kalamegham, A. Tan, G. Campos, M. Velez, J. Zyss, I. Ledoux, and L. Cheng, “Squarylium dyes: structural factors pertaining to the negative third-order nonlinear optical response,” J. Am. Chem. Soc. 117, 2214–2225 (1995).
    [CrossRef]
  28. S. R. Marder, J. W. Perry, G. Bourhill, C. B. Gorman, B. G. Tiemann, and K. Mansour, “Relation between bond-length alternation and second electronic hyperpolarizability of conjugated organic molecules,” Science 261, 186–189 (1993).
    [CrossRef] [PubMed]
  29. S. Das, T. L. Thanulingam, K. G. Thomas, P. V. Kamat, and M. George, “Photochemistry of squaraine dyes. 5. Aggregation of bis(2, 4-diydroxyphenl) squaraine and bis(2, 4, 6-trihydroxyphenyl) squaraine and their photodissociation in acetonitrile solutions,” J. Phys. Chem. 97, 13620–13624 (1993).
    [CrossRef]
  30. C. W. Dirk, J. Bao, M. Kuzyk, and C. Poga, “Soluble phthalocyanine silicone plastics and elastomers for nonlinear optics,” in Nonlinear Optical Properties of Organic Materials VII, G. R. Möhlmann, ed., Proc. SPIE 2285, 32–40 (1994).
    [CrossRef]
  31. P. P. Ho, N. L. Yang, T. Jimbo, Q. Z. Wang, and R. R. Alfano, “Ultrafast resonant optical Kerr effect in 4-butoxycarbonylmethylurethane polydiacetylene,” J. Opt. Soc. Am. B 4, 1025–1029 (1987).
    [CrossRef]
  32. M. K. Casstevens, M. Samoc, J. Pfleger, and P. N. Prasad, “Dynamics of third-order nonlinear optical processes in Langmuir–Blodgett and evaporated films of phthalocyanines,” J. Chem. Phys. 92, 2019–2024 (1990).
    [CrossRef]
  33. T. Sauer, W. Caseri, and G. Wegner, “Novel phthalocyanine polymers for applications in optical devices,” Mol. Cryst. Liq. Cryst. 183, 387–402 (1990).
  34. J. H. Andrews, J. D. V. Khaydarov, K. D. Singer, D. L. Hull, and K. C. Chuang, “Spectral dispersion of third harmonic generation in squaraines,” Nonlinear Opt. 10, 227–238 (1995).
  35. R. J. Kruhlak, “Characterization of molecular excited states for nonlinear optics,” Ph.D. dissertation (Washington State University, Pullman, Wash., 2000).
  36. R. W. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” Prog. Quantum Electron. 5, 1–68 (1977).
    [CrossRef]
  37. M. G. Kuzyk and C. W. Dirk, eds., Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials, Vol. 60 of Optical Engineering (Marcel Dekker, New York, 1998).
  38. M. G. Kuzyk, “Physical limits on electronic nonlinear molecular susceptibilities,” Phys. Rev. Lett. 85, 1218–1221 (2000).
    [CrossRef] [PubMed]
  39. M. G. Kuzyk, “Fundamental limits on third-order molecular susceptibilities,” Opt. Lett. 25, 1183–1185 (2000).
    [CrossRef]
  40. H. Kuhn, “A quantum-mechanical theory of light absorption of organic dyes and similar compounds,” J. Chem. Phys. 17, 1198–1212 (1949).
    [CrossRef]

2000

M. G. Kuzyk, “Physical limits on electronic nonlinear molecular susceptibilities,” Phys. Rev. Lett. 85, 1218–1221 (2000).
[CrossRef] [PubMed]

M. G. Kuzyk, “Fundamental limits on third-order molecular susceptibilities,” Opt. Lett. 25, 1183–1185 (2000).
[CrossRef]

1998

1996

K. Kamada, M. Ueda, T. Sakaguchi, K. Ohta, and T. Fukumi, “Femtosecond optical Kerr dynamics of thiophene in carbon tetrachloride solution,” Chem. Phys. Lett. 249, 329–334 (1996).
[CrossRef]

1995

C. W. Dirk, W. C. Herndon, F. Cervantes-Lee, H. Selnau, S. Martinez, P. Kalamegham, A. Tan, G. Campos, M. Velez, J. Zyss, I. Ledoux, and L. Cheng, “Squarylium dyes: structural factors pertaining to the negative third-order nonlinear optical response,” J. Am. Chem. Soc. 117, 2214–2225 (1995).
[CrossRef]

C. Poga, T. Brown, M. Kuzyk, and C. W. Dirk, “Characterization of the excited states of a squaraine molecule with quadratic electroabsorption spectroscopy,” J. Opt. Soc. Am. B 12, 531–543 (1995).
[CrossRef]

J. H. Andrews, J. D. V. Khaydarov, K. D. Singer, D. L. Hull, and K. C. Chuang, “Spectral dispersion of third harmonic generation in squaraines,” Nonlinear Opt. 10, 227–238 (1995).

1994

C. Poga, M. Kuzyk, and C. Dirk, “Quadratic electroabsorption studies of third-order susceptibility mechanisms in dye-doped polymers,” J. Opt. Soc. Am. B 11, 80–91 (1994).
[CrossRef]

C. W. Dirk, J. Bao, M. Kuzyk, and C. Poga, “Soluble phthalocyanine silicone plastics and elastomers for nonlinear optics,” in Nonlinear Optical Properties of Organic Materials VII, G. R. Möhlmann, ed., Proc. SPIE 2285, 32–40 (1994).
[CrossRef]

1993

S. R. Marder, J. W. Perry, G. Bourhill, C. B. Gorman, B. G. Tiemann, and K. Mansour, “Relation between bond-length alternation and second electronic hyperpolarizability of conjugated organic molecules,” Science 261, 186–189 (1993).
[CrossRef] [PubMed]

S. Das, T. L. Thanulingam, K. G. Thomas, P. V. Kamat, and M. George, “Photochemistry of squaraine dyes. 5. Aggregation of bis(2, 4-diydroxyphenl) squaraine and bis(2, 4, 6-trihydroxyphenyl) squaraine and their photodissociation in acetonitrile solutions,” J. Phys. Chem. 97, 13620–13624 (1993).
[CrossRef]

Q. L. Zhou, R. F. Shi, O. Zamani-Khamari, and A. F. Garito, “Negative third-order optical responses in squaraines,” Nonlinear Opt. 6, 145–154 (1993).

J. Y. Zhang, J. Y. Huang, Y. R. Shen, and C. Chen, “Optical parametric generation and amplification in barium borate and lithium triborate crystals,” J. Opt. Soc. Am. B 10, 1758–1764 (1993).
[CrossRef]

1992

C. W. Dirk, L.-T. Cheng, and M. G. Kuzyk, “A simplified three-level model describing the molecular third-order nonlinear optical susceptibility,” Int. J. Quantum Chem. 43, 27–36 (1992).
[CrossRef]

1991

J. Y. Zhang, J. Y. Huang, Y. R. Shen, C. Chen, and B. Wu, “Picosecond optical parametric amplification in lithium triborate,” Appl. Phys. Lett. 58, 213–215 (1991).
[CrossRef]

1990

M. K. Casstevens, M. Samoc, J. Pfleger, and P. N. Prasad, “Dynamics of third-order nonlinear optical processes in Langmuir–Blodgett and evaporated films of phthalocyanines,” J. Chem. Phys. 92, 2019–2024 (1990).
[CrossRef]

T. Sauer, W. Caseri, and G. Wegner, “Novel phthalocyanine polymers for applications in optical devices,” Mol. Cryst. Liq. Cryst. 183, 387–402 (1990).

C. W. Dirk and M. G. Kuzyk, “Squarylium dye-doped polymer systems as quadratic electrooptic materials,” Chem. Phys. 2, 4–6 (1990).

M. G. Kuzyk and C. W. Dirk, “Effects of centrosymmetry on the nonresonant electronic third-order nonlinear optical susceptibility,” Phys. Rev. A 41, 5098–5109 (1990).
[CrossRef] [PubMed]

J. Y. Huang, J. Y. Zhang, Y. R. Shen, C. Chen, and B. Wu, “High-power, widely tunable, picosecond coherent source from optical parametric amplification in barium borate,” Appl. Phys. Lett. 57, 1961–1963 (1990).
[CrossRef]

1989

1987

1983

B. Schroder, “Optical parametric amplification from quantum noise,” Opt. Quantum Electron. 15, 57–63 (1983).
[CrossRef]

1982

B. I. Greene and R. C. Farrow, “Direct measurement of a subpicosecond birefringent response in CS2,” J. Chem. Phys. 77, 4779–4780 (1982).
[CrossRef]

1979

P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2187 (1979).
[CrossRef]

1977

R. W. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” Prog. Quantum Electron. 5, 1–68 (1977).
[CrossRef]

1975

K. Sala and M. C. Richardson, “Optical Kerr effect induced by ultrashort laser pulses,” Phys. Rev. A 12, 1036–1047 (1975).
[CrossRef]

1974

G. K. L. Wong and Y. R. Shen, “Study of pretransitional behavior of laser-field-induced molecular alignment in isotropic nematic substances,” Phys. Rev. A 10, 1277–1284 (1974).
[CrossRef]

1971

B. J. Orr and J. F. Ward, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys. 20, 513–526 (1971).
[CrossRef]

1969

M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).
[CrossRef]

1964

G. Mayer and F. Gires, “Action d’une onde lumineuse intense sur l’indice de refraction des liquides,” C. R. Acad. Sci. 258, 2039–2042 (1964).

1949

H. Kuhn, “A quantum-mechanical theory of light absorption of organic dyes and similar compounds,” J. Chem. Phys. 17, 1198–1212 (1949).
[CrossRef]

1937

A. L. Sklar, “Theory of color of organic compounds,” J. Chem. Phys. 5, 669–681 (1937).
[CrossRef]

Alfano, R. R.

Andrews, J. H.

J. H. Andrews, J. D. V. Khaydarov, K. D. Singer, D. L. Hull, and K. C. Chuang, “Spectral dispersion of third harmonic generation in squaraines,” Nonlinear Opt. 10, 227–238 (1995).

Bao, J.

C. W. Dirk, J. Bao, M. Kuzyk, and C. Poga, “Soluble phthalocyanine silicone plastics and elastomers for nonlinear optics,” in Nonlinear Optical Properties of Organic Materials VII, G. R. Möhlmann, ed., Proc. SPIE 2285, 32–40 (1994).
[CrossRef]

Bourhill, G.

S. R. Marder, J. W. Perry, G. Bourhill, C. B. Gorman, B. G. Tiemann, and K. Mansour, “Relation between bond-length alternation and second electronic hyperpolarizability of conjugated organic molecules,” Science 261, 186–189 (1993).
[CrossRef] [PubMed]

Brown, T.

Campos, G.

C. W. Dirk, W. C. Herndon, F. Cervantes-Lee, H. Selnau, S. Martinez, P. Kalamegham, A. Tan, G. Campos, M. Velez, J. Zyss, I. Ledoux, and L. Cheng, “Squarylium dyes: structural factors pertaining to the negative third-order nonlinear optical response,” J. Am. Chem. Soc. 117, 2214–2225 (1995).
[CrossRef]

Caseri, W.

T. Sauer, W. Caseri, and G. Wegner, “Novel phthalocyanine polymers for applications in optical devices,” Mol. Cryst. Liq. Cryst. 183, 387–402 (1990).

Casstevens, M. K.

M. K. Casstevens, M. Samoc, J. Pfleger, and P. N. Prasad, “Dynamics of third-order nonlinear optical processes in Langmuir–Blodgett and evaporated films of phthalocyanines,” J. Chem. Phys. 92, 2019–2024 (1990).
[CrossRef]

Cervantes-Lee, F.

C. W. Dirk, W. C. Herndon, F. Cervantes-Lee, H. Selnau, S. Martinez, P. Kalamegham, A. Tan, G. Campos, M. Velez, J. Zyss, I. Ledoux, and L. Cheng, “Squarylium dyes: structural factors pertaining to the negative third-order nonlinear optical response,” J. Am. Chem. Soc. 117, 2214–2225 (1995).
[CrossRef]

Chen, C.

J. Y. Zhang, J. Y. Huang, Y. R. Shen, and C. Chen, “Optical parametric generation and amplification in barium borate and lithium triborate crystals,” J. Opt. Soc. Am. B 10, 1758–1764 (1993).
[CrossRef]

J. Y. Zhang, J. Y. Huang, Y. R. Shen, C. Chen, and B. Wu, “Picosecond optical parametric amplification in lithium triborate,” Appl. Phys. Lett. 58, 213–215 (1991).
[CrossRef]

J. Y. Huang, J. Y. Zhang, Y. R. Shen, C. Chen, and B. Wu, “High-power, widely tunable, picosecond coherent source from optical parametric amplification in barium borate,” Appl. Phys. Lett. 57, 1961–1963 (1990).
[CrossRef]

Cheng, L.

C. W. Dirk, W. C. Herndon, F. Cervantes-Lee, H. Selnau, S. Martinez, P. Kalamegham, A. Tan, G. Campos, M. Velez, J. Zyss, I. Ledoux, and L. Cheng, “Squarylium dyes: structural factors pertaining to the negative third-order nonlinear optical response,” J. Am. Chem. Soc. 117, 2214–2225 (1995).
[CrossRef]

Cheng, L.-T.

C. W. Dirk, L.-T. Cheng, and M. G. Kuzyk, “A simplified three-level model describing the molecular third-order nonlinear optical susceptibility,” Int. J. Quantum Chem. 43, 27–36 (1992).
[CrossRef]

Chuang, K. C.

J. H. Andrews, J. D. V. Khaydarov, K. D. Singer, D. L. Hull, and K. C. Chuang, “Spectral dispersion of third harmonic generation in squaraines,” Nonlinear Opt. 10, 227–238 (1995).

Das, S.

S. Das, T. L. Thanulingam, K. G. Thomas, P. V. Kamat, and M. George, “Photochemistry of squaraine dyes. 5. Aggregation of bis(2, 4-diydroxyphenl) squaraine and bis(2, 4, 6-trihydroxyphenyl) squaraine and their photodissociation in acetonitrile solutions,” J. Phys. Chem. 97, 13620–13624 (1993).
[CrossRef]

Dirk, C.

Dirk, C. W.

K. S. Mathis, M. G. Kuzyk, C. W. Dirk, A. Tan, S. Martinez, and G. Gampos, “Mechanisms of the nonlinear optical properties of squaraine dyes in poly(methyl methacrylate) polymers,” J. Opt. Soc. Am. B 15, 871–883 (1998).
[CrossRef]

C. W. Dirk, W. C. Herndon, F. Cervantes-Lee, H. Selnau, S. Martinez, P. Kalamegham, A. Tan, G. Campos, M. Velez, J. Zyss, I. Ledoux, and L. Cheng, “Squarylium dyes: structural factors pertaining to the negative third-order nonlinear optical response,” J. Am. Chem. Soc. 117, 2214–2225 (1995).
[CrossRef]

C. Poga, T. Brown, M. Kuzyk, and C. W. Dirk, “Characterization of the excited states of a squaraine molecule with quadratic electroabsorption spectroscopy,” J. Opt. Soc. Am. B 12, 531–543 (1995).
[CrossRef]

C. W. Dirk, J. Bao, M. Kuzyk, and C. Poga, “Soluble phthalocyanine silicone plastics and elastomers for nonlinear optics,” in Nonlinear Optical Properties of Organic Materials VII, G. R. Möhlmann, ed., Proc. SPIE 2285, 32–40 (1994).
[CrossRef]

C. W. Dirk, L.-T. Cheng, and M. G. Kuzyk, “A simplified three-level model describing the molecular third-order nonlinear optical susceptibility,” Int. J. Quantum Chem. 43, 27–36 (1992).
[CrossRef]

M. G. Kuzyk and C. W. Dirk, “Effects of centrosymmetry on the nonresonant electronic third-order nonlinear optical susceptibility,” Phys. Rev. A 41, 5098–5109 (1990).
[CrossRef] [PubMed]

C. W. Dirk and M. G. Kuzyk, “Squarylium dye-doped polymer systems as quadratic electrooptic materials,” Chem. Phys. 2, 4–6 (1990).

Duguay, M. A.

M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).
[CrossRef]

Farrow, R. C.

B. I. Greene and R. C. Farrow, “Direct measurement of a subpicosecond birefringent response in CS2,” J. Chem. Phys. 77, 4779–4780 (1982).
[CrossRef]

Finberg, S. E.

Frazier, C. C.

Fukumi, T.

K. Kamada, M. Ueda, T. Sakaguchi, K. Ohta, and T. Fukumi, “Femtosecond optical Kerr dynamics of thiophene in carbon tetrachloride solution,” Chem. Phys. Lett. 249, 329–334 (1996).
[CrossRef]

Gampos, G.

Garito, A. F.

George, M.

S. Das, T. L. Thanulingam, K. G. Thomas, P. V. Kamat, and M. George, “Photochemistry of squaraine dyes. 5. Aggregation of bis(2, 4-diydroxyphenl) squaraine and bis(2, 4, 6-trihydroxyphenyl) squaraine and their photodissociation in acetonitrile solutions,” J. Phys. Chem. 97, 13620–13624 (1993).
[CrossRef]

Gires, F.

G. Mayer and F. Gires, “Action d’une onde lumineuse intense sur l’indice de refraction des liquides,” C. R. Acad. Sci. 258, 2039–2042 (1964).

Gorman, C. B.

S. R. Marder, J. W. Perry, G. Bourhill, C. B. Gorman, B. G. Tiemann, and K. Mansour, “Relation between bond-length alternation and second electronic hyperpolarizability of conjugated organic molecules,” Science 261, 186–189 (1993).
[CrossRef] [PubMed]

Greene, B. I.

B. I. Greene and R. C. Farrow, “Direct measurement of a subpicosecond birefringent response in CS2,” J. Chem. Phys. 77, 4779–4780 (1982).
[CrossRef]

Guha, S.

Hansen, J. W.

M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).
[CrossRef]

Hellwarth, R. W.

R. W. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” Prog. Quantum Electron. 5, 1–68 (1977).
[CrossRef]

Herndon, W. C.

C. W. Dirk, W. C. Herndon, F. Cervantes-Lee, H. Selnau, S. Martinez, P. Kalamegham, A. Tan, G. Campos, M. Velez, J. Zyss, I. Ledoux, and L. Cheng, “Squarylium dyes: structural factors pertaining to the negative third-order nonlinear optical response,” J. Am. Chem. Soc. 117, 2214–2225 (1995).
[CrossRef]

Ho, P. P.

Huang, J. Y.

J. Y. Zhang, J. Y. Huang, Y. R. Shen, and C. Chen, “Optical parametric generation and amplification in barium borate and lithium triborate crystals,” J. Opt. Soc. Am. B 10, 1758–1764 (1993).
[CrossRef]

J. Y. Zhang, J. Y. Huang, Y. R. Shen, C. Chen, and B. Wu, “Picosecond optical parametric amplification in lithium triborate,” Appl. Phys. Lett. 58, 213–215 (1991).
[CrossRef]

J. Y. Huang, J. Y. Zhang, Y. R. Shen, C. Chen, and B. Wu, “High-power, widely tunable, picosecond coherent source from optical parametric amplification in barium borate,” Appl. Phys. Lett. 57, 1961–1963 (1990).
[CrossRef]

Hull, D. L.

J. H. Andrews, J. D. V. Khaydarov, K. D. Singer, D. L. Hull, and K. C. Chuang, “Spectral dispersion of third harmonic generation in squaraines,” Nonlinear Opt. 10, 227–238 (1995).

Jimbo, T.

Kalamegham, P.

C. W. Dirk, W. C. Herndon, F. Cervantes-Lee, H. Selnau, S. Martinez, P. Kalamegham, A. Tan, G. Campos, M. Velez, J. Zyss, I. Ledoux, and L. Cheng, “Squarylium dyes: structural factors pertaining to the negative third-order nonlinear optical response,” J. Am. Chem. Soc. 117, 2214–2225 (1995).
[CrossRef]

Kamada, K.

K. Kamada, M. Ueda, T. Sakaguchi, K. Ohta, and T. Fukumi, “Femtosecond optical Kerr dynamics of thiophene in carbon tetrachloride solution,” Chem. Phys. Lett. 249, 329–334 (1996).
[CrossRef]

Kamat, P. V.

S. Das, T. L. Thanulingam, K. G. Thomas, P. V. Kamat, and M. George, “Photochemistry of squaraine dyes. 5. Aggregation of bis(2, 4-diydroxyphenl) squaraine and bis(2, 4, 6-trihydroxyphenyl) squaraine and their photodissociation in acetonitrile solutions,” J. Phys. Chem. 97, 13620–13624 (1993).
[CrossRef]

Kang, K.

Khaydarov, J. D. V.

J. H. Andrews, J. D. V. Khaydarov, K. D. Singer, D. L. Hull, and K. C. Chuang, “Spectral dispersion of third harmonic generation in squaraines,” Nonlinear Opt. 10, 227–238 (1995).

Kuhn, H.

H. Kuhn, “A quantum-mechanical theory of light absorption of organic dyes and similar compounds,” J. Chem. Phys. 17, 1198–1212 (1949).
[CrossRef]

Kuzyk, M.

Kuzyk, M. G.

M. G. Kuzyk, “Physical limits on electronic nonlinear molecular susceptibilities,” Phys. Rev. Lett. 85, 1218–1221 (2000).
[CrossRef] [PubMed]

M. G. Kuzyk, “Fundamental limits on third-order molecular susceptibilities,” Opt. Lett. 25, 1183–1185 (2000).
[CrossRef]

K. S. Mathis, M. G. Kuzyk, C. W. Dirk, A. Tan, S. Martinez, and G. Gampos, “Mechanisms of the nonlinear optical properties of squaraine dyes in poly(methyl methacrylate) polymers,” J. Opt. Soc. Am. B 15, 871–883 (1998).
[CrossRef]

C. W. Dirk, L.-T. Cheng, and M. G. Kuzyk, “A simplified three-level model describing the molecular third-order nonlinear optical susceptibility,” Int. J. Quantum Chem. 43, 27–36 (1992).
[CrossRef]

M. G. Kuzyk and C. W. Dirk, “Effects of centrosymmetry on the nonresonant electronic third-order nonlinear optical susceptibility,” Phys. Rev. A 41, 5098–5109 (1990).
[CrossRef] [PubMed]

C. W. Dirk and M. G. Kuzyk, “Squarylium dye-doped polymer systems as quadratic electrooptic materials,” Chem. Phys. 2, 4–6 (1990).

M. G. Kuzyk, R. A. Norwood, J. W. Wu, and A. F. Garito, “Frequency dependence of the optical Kerr effect and third-order electronic nonlinear-optical processes of organic liquids,” J. Opt. Soc. Am. B 6, 154–164 (1989).
[CrossRef]

Ledoux, I.

C. W. Dirk, W. C. Herndon, F. Cervantes-Lee, H. Selnau, S. Martinez, P. Kalamegham, A. Tan, G. Campos, M. Velez, J. Zyss, I. Ledoux, and L. Cheng, “Squarylium dyes: structural factors pertaining to the negative third-order nonlinear optical response,” J. Am. Chem. Soc. 117, 2214–2225 (1995).
[CrossRef]

Mansour, K.

S. R. Marder, J. W. Perry, G. Bourhill, C. B. Gorman, B. G. Tiemann, and K. Mansour, “Relation between bond-length alternation and second electronic hyperpolarizability of conjugated organic molecules,” Science 261, 186–189 (1993).
[CrossRef] [PubMed]

Marder, S. R.

S. R. Marder, J. W. Perry, G. Bourhill, C. B. Gorman, B. G. Tiemann, and K. Mansour, “Relation between bond-length alternation and second electronic hyperpolarizability of conjugated organic molecules,” Science 261, 186–189 (1993).
[CrossRef] [PubMed]

Martinez, S.

K. S. Mathis, M. G. Kuzyk, C. W. Dirk, A. Tan, S. Martinez, and G. Gampos, “Mechanisms of the nonlinear optical properties of squaraine dyes in poly(methyl methacrylate) polymers,” J. Opt. Soc. Am. B 15, 871–883 (1998).
[CrossRef]

C. W. Dirk, W. C. Herndon, F. Cervantes-Lee, H. Selnau, S. Martinez, P. Kalamegham, A. Tan, G. Campos, M. Velez, J. Zyss, I. Ledoux, and L. Cheng, “Squarylium dyes: structural factors pertaining to the negative third-order nonlinear optical response,” J. Am. Chem. Soc. 117, 2214–2225 (1995).
[CrossRef]

Mathis, K. S.

Mayer, G.

G. Mayer and F. Gires, “Action d’une onde lumineuse intense sur l’indice de refraction des liquides,” C. R. Acad. Sci. 258, 2039–2042 (1964).

Norwood, R. A.

Ohta, K.

K. Kamada, M. Ueda, T. Sakaguchi, K. Ohta, and T. Fukumi, “Femtosecond optical Kerr dynamics of thiophene in carbon tetrachloride solution,” Chem. Phys. Lett. 249, 329–334 (1996).
[CrossRef]

Orr, B. J.

B. J. Orr and J. F. Ward, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys. 20, 513–526 (1971).
[CrossRef]

Perry, J. W.

S. R. Marder, J. W. Perry, G. Bourhill, C. B. Gorman, B. G. Tiemann, and K. Mansour, “Relation between bond-length alternation and second electronic hyperpolarizability of conjugated organic molecules,” Science 261, 186–189 (1993).
[CrossRef] [PubMed]

Pfleger, J.

M. K. Casstevens, M. Samoc, J. Pfleger, and P. N. Prasad, “Dynamics of third-order nonlinear optical processes in Langmuir–Blodgett and evaporated films of phthalocyanines,” J. Chem. Phys. 92, 2019–2024 (1990).
[CrossRef]

Poga, C.

Porter, P. L.

Prasad, P. N.

M. K. Casstevens, M. Samoc, J. Pfleger, and P. N. Prasad, “Dynamics of third-order nonlinear optical processes in Langmuir–Blodgett and evaporated films of phthalocyanines,” J. Chem. Phys. 92, 2019–2024 (1990).
[CrossRef]

Richardson, M. C.

K. Sala and M. C. Richardson, “Optical Kerr effect induced by ultrashort laser pulses,” Phys. Rev. A 12, 1036–1047 (1975).
[CrossRef]

Sakaguchi, T.

K. Kamada, M. Ueda, T. Sakaguchi, K. Ohta, and T. Fukumi, “Femtosecond optical Kerr dynamics of thiophene in carbon tetrachloride solution,” Chem. Phys. Lett. 249, 329–334 (1996).
[CrossRef]

Sala, K.

K. Sala and M. C. Richardson, “Optical Kerr effect induced by ultrashort laser pulses,” Phys. Rev. A 12, 1036–1047 (1975).
[CrossRef]

Samoc, M.

M. K. Casstevens, M. Samoc, J. Pfleger, and P. N. Prasad, “Dynamics of third-order nonlinear optical processes in Langmuir–Blodgett and evaporated films of phthalocyanines,” J. Chem. Phys. 92, 2019–2024 (1990).
[CrossRef]

Sauer, T.

T. Sauer, W. Caseri, and G. Wegner, “Novel phthalocyanine polymers for applications in optical devices,” Mol. Cryst. Liq. Cryst. 183, 387–402 (1990).

Schroder, B.

B. Schroder, “Optical parametric amplification from quantum noise,” Opt. Quantum Electron. 15, 57–63 (1983).
[CrossRef]

Selnau, H.

C. W. Dirk, W. C. Herndon, F. Cervantes-Lee, H. Selnau, S. Martinez, P. Kalamegham, A. Tan, G. Campos, M. Velez, J. Zyss, I. Ledoux, and L. Cheng, “Squarylium dyes: structural factors pertaining to the negative third-order nonlinear optical response,” J. Am. Chem. Soc. 117, 2214–2225 (1995).
[CrossRef]

Shen, Y. R.

J. Y. Zhang, J. Y. Huang, Y. R. Shen, and C. Chen, “Optical parametric generation and amplification in barium borate and lithium triborate crystals,” J. Opt. Soc. Am. B 10, 1758–1764 (1993).
[CrossRef]

J. Y. Zhang, J. Y. Huang, Y. R. Shen, C. Chen, and B. Wu, “Picosecond optical parametric amplification in lithium triborate,” Appl. Phys. Lett. 58, 213–215 (1991).
[CrossRef]

J. Y. Huang, J. Y. Zhang, Y. R. Shen, C. Chen, and B. Wu, “High-power, widely tunable, picosecond coherent source from optical parametric amplification in barium borate,” Appl. Phys. Lett. 57, 1961–1963 (1990).
[CrossRef]

G. K. L. Wong and Y. R. Shen, “Study of pretransitional behavior of laser-field-induced molecular alignment in isotropic nematic substances,” Phys. Rev. A 10, 1277–1284 (1974).
[CrossRef]

Shi, R. F.

Q. L. Zhou, R. F. Shi, O. Zamani-Khamari, and A. F. Garito, “Negative third-order optical responses in squaraines,” Nonlinear Opt. 6, 145–154 (1993).

Singer, K. D.

J. H. Andrews, J. D. V. Khaydarov, K. D. Singer, D. L. Hull, and K. C. Chuang, “Spectral dispersion of third harmonic generation in squaraines,” Nonlinear Opt. 10, 227–238 (1995).

Sklar, A. L.

A. L. Sklar, “Theory of color of organic compounds,” J. Chem. Phys. 5, 669–681 (1937).
[CrossRef]

Tan, A.

K. S. Mathis, M. G. Kuzyk, C. W. Dirk, A. Tan, S. Martinez, and G. Gampos, “Mechanisms of the nonlinear optical properties of squaraine dyes in poly(methyl methacrylate) polymers,” J. Opt. Soc. Am. B 15, 871–883 (1998).
[CrossRef]

C. W. Dirk, W. C. Herndon, F. Cervantes-Lee, H. Selnau, S. Martinez, P. Kalamegham, A. Tan, G. Campos, M. Velez, J. Zyss, I. Ledoux, and L. Cheng, “Squarylium dyes: structural factors pertaining to the negative third-order nonlinear optical response,” J. Am. Chem. Soc. 117, 2214–2225 (1995).
[CrossRef]

Thanulingam, T. L.

S. Das, T. L. Thanulingam, K. G. Thomas, P. V. Kamat, and M. George, “Photochemistry of squaraine dyes. 5. Aggregation of bis(2, 4-diydroxyphenl) squaraine and bis(2, 4, 6-trihydroxyphenyl) squaraine and their photodissociation in acetonitrile solutions,” J. Phys. Chem. 97, 13620–13624 (1993).
[CrossRef]

Thomas, K. G.

S. Das, T. L. Thanulingam, K. G. Thomas, P. V. Kamat, and M. George, “Photochemistry of squaraine dyes. 5. Aggregation of bis(2, 4-diydroxyphenl) squaraine and bis(2, 4, 6-trihydroxyphenyl) squaraine and their photodissociation in acetonitrile solutions,” J. Phys. Chem. 97, 13620–13624 (1993).
[CrossRef]

Tiemann, B. G.

S. R. Marder, J. W. Perry, G. Bourhill, C. B. Gorman, B. G. Tiemann, and K. Mansour, “Relation between bond-length alternation and second electronic hyperpolarizability of conjugated organic molecules,” Science 261, 186–189 (1993).
[CrossRef] [PubMed]

Ueda, M.

K. Kamada, M. Ueda, T. Sakaguchi, K. Ohta, and T. Fukumi, “Femtosecond optical Kerr dynamics of thiophene in carbon tetrachloride solution,” Chem. Phys. Lett. 249, 329–334 (1996).
[CrossRef]

Velez, M.

C. W. Dirk, W. C. Herndon, F. Cervantes-Lee, H. Selnau, S. Martinez, P. Kalamegham, A. Tan, G. Campos, M. Velez, J. Zyss, I. Ledoux, and L. Cheng, “Squarylium dyes: structural factors pertaining to the negative third-order nonlinear optical response,” J. Am. Chem. Soc. 117, 2214–2225 (1995).
[CrossRef]

Wang, Q. Z.

Ward, J. F.

B. J. Orr and J. F. Ward, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys. 20, 513–526 (1971).
[CrossRef]

Wegner, G.

T. Sauer, W. Caseri, and G. Wegner, “Novel phthalocyanine polymers for applications in optical devices,” Mol. Cryst. Liq. Cryst. 183, 387–402 (1990).

Wong, G. K. L.

G. K. L. Wong and Y. R. Shen, “Study of pretransitional behavior of laser-field-induced molecular alignment in isotropic nematic substances,” Phys. Rev. A 10, 1277–1284 (1974).
[CrossRef]

Wu, B.

J. Y. Zhang, J. Y. Huang, Y. R. Shen, C. Chen, and B. Wu, “Picosecond optical parametric amplification in lithium triborate,” Appl. Phys. Lett. 58, 213–215 (1991).
[CrossRef]

J. Y. Huang, J. Y. Zhang, Y. R. Shen, C. Chen, and B. Wu, “High-power, widely tunable, picosecond coherent source from optical parametric amplification in barium borate,” Appl. Phys. Lett. 57, 1961–1963 (1990).
[CrossRef]

Wu, J. W.

Yang, N. L.

Zamani-Khamari, O.

Q. L. Zhou, R. F. Shi, O. Zamani-Khamari, and A. F. Garito, “Negative third-order optical responses in squaraines,” Nonlinear Opt. 6, 145–154 (1993).

Zhang, J. Y.

J. Y. Zhang, J. Y. Huang, Y. R. Shen, and C. Chen, “Optical parametric generation and amplification in barium borate and lithium triborate crystals,” J. Opt. Soc. Am. B 10, 1758–1764 (1993).
[CrossRef]

J. Y. Zhang, J. Y. Huang, Y. R. Shen, C. Chen, and B. Wu, “Picosecond optical parametric amplification in lithium triborate,” Appl. Phys. Lett. 58, 213–215 (1991).
[CrossRef]

J. Y. Huang, J. Y. Zhang, Y. R. Shen, C. Chen, and B. Wu, “High-power, widely tunable, picosecond coherent source from optical parametric amplification in barium borate,” Appl. Phys. Lett. 57, 1961–1963 (1990).
[CrossRef]

Zhou, Q. L.

Q. L. Zhou, R. F. Shi, O. Zamani-Khamari, and A. F. Garito, “Negative third-order optical responses in squaraines,” Nonlinear Opt. 6, 145–154 (1993).

Zyss, J.

C. W. Dirk, W. C. Herndon, F. Cervantes-Lee, H. Selnau, S. Martinez, P. Kalamegham, A. Tan, G. Campos, M. Velez, J. Zyss, I. Ledoux, and L. Cheng, “Squarylium dyes: structural factors pertaining to the negative third-order nonlinear optical response,” J. Am. Chem. Soc. 117, 2214–2225 (1995).
[CrossRef]

Appl. Phys. Lett.

M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).
[CrossRef]

J. Y. Huang, J. Y. Zhang, Y. R. Shen, C. Chen, and B. Wu, “High-power, widely tunable, picosecond coherent source from optical parametric amplification in barium borate,” Appl. Phys. Lett. 57, 1961–1963 (1990).
[CrossRef]

J. Y. Zhang, J. Y. Huang, Y. R. Shen, C. Chen, and B. Wu, “Picosecond optical parametric amplification in lithium triborate,” Appl. Phys. Lett. 58, 213–215 (1991).
[CrossRef]

C. R. Acad. Sci.

G. Mayer and F. Gires, “Action d’une onde lumineuse intense sur l’indice de refraction des liquides,” C. R. Acad. Sci. 258, 2039–2042 (1964).

Chem. Phys.

C. W. Dirk and M. G. Kuzyk, “Squarylium dye-doped polymer systems as quadratic electrooptic materials,” Chem. Phys. 2, 4–6 (1990).

Chem. Phys. Lett.

K. Kamada, M. Ueda, T. Sakaguchi, K. Ohta, and T. Fukumi, “Femtosecond optical Kerr dynamics of thiophene in carbon tetrachloride solution,” Chem. Phys. Lett. 249, 329–334 (1996).
[CrossRef]

Int. J. Quantum Chem.

C. W. Dirk, L.-T. Cheng, and M. G. Kuzyk, “A simplified three-level model describing the molecular third-order nonlinear optical susceptibility,” Int. J. Quantum Chem. 43, 27–36 (1992).
[CrossRef]

J. Am. Chem. Soc.

C. W. Dirk, W. C. Herndon, F. Cervantes-Lee, H. Selnau, S. Martinez, P. Kalamegham, A. Tan, G. Campos, M. Velez, J. Zyss, I. Ledoux, and L. Cheng, “Squarylium dyes: structural factors pertaining to the negative third-order nonlinear optical response,” J. Am. Chem. Soc. 117, 2214–2225 (1995).
[CrossRef]

J. Chem. Phys.

A. L. Sklar, “Theory of color of organic compounds,” J. Chem. Phys. 5, 669–681 (1937).
[CrossRef]

B. I. Greene and R. C. Farrow, “Direct measurement of a subpicosecond birefringent response in CS2,” J. Chem. Phys. 77, 4779–4780 (1982).
[CrossRef]

H. Kuhn, “A quantum-mechanical theory of light absorption of organic dyes and similar compounds,” J. Chem. Phys. 17, 1198–1212 (1949).
[CrossRef]

M. K. Casstevens, M. Samoc, J. Pfleger, and P. N. Prasad, “Dynamics of third-order nonlinear optical processes in Langmuir–Blodgett and evaporated films of phthalocyanines,” J. Chem. Phys. 92, 2019–2024 (1990).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem.

S. Das, T. L. Thanulingam, K. G. Thomas, P. V. Kamat, and M. George, “Photochemistry of squaraine dyes. 5. Aggregation of bis(2, 4-diydroxyphenl) squaraine and bis(2, 4, 6-trihydroxyphenyl) squaraine and their photodissociation in acetonitrile solutions,” J. Phys. Chem. 97, 13620–13624 (1993).
[CrossRef]

Mol. Cryst. Liq. Cryst.

T. Sauer, W. Caseri, and G. Wegner, “Novel phthalocyanine polymers for applications in optical devices,” Mol. Cryst. Liq. Cryst. 183, 387–402 (1990).

Mol. Phys.

B. J. Orr and J. F. Ward, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys. 20, 513–526 (1971).
[CrossRef]

Nonlinear Opt.

Q. L. Zhou, R. F. Shi, O. Zamani-Khamari, and A. F. Garito, “Negative third-order optical responses in squaraines,” Nonlinear Opt. 6, 145–154 (1993).

J. H. Andrews, J. D. V. Khaydarov, K. D. Singer, D. L. Hull, and K. C. Chuang, “Spectral dispersion of third harmonic generation in squaraines,” Nonlinear Opt. 10, 227–238 (1995).

Opt. Lett.

Opt. Quantum Electron.

B. Schroder, “Optical parametric amplification from quantum noise,” Opt. Quantum Electron. 15, 57–63 (1983).
[CrossRef]

Phys. Rev. A

P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2187 (1979).
[CrossRef]

M. G. Kuzyk and C. W. Dirk, “Effects of centrosymmetry on the nonresonant electronic third-order nonlinear optical susceptibility,” Phys. Rev. A 41, 5098–5109 (1990).
[CrossRef] [PubMed]

K. Sala and M. C. Richardson, “Optical Kerr effect induced by ultrashort laser pulses,” Phys. Rev. A 12, 1036–1047 (1975).
[CrossRef]

G. K. L. Wong and Y. R. Shen, “Study of pretransitional behavior of laser-field-induced molecular alignment in isotropic nematic substances,” Phys. Rev. A 10, 1277–1284 (1974).
[CrossRef]

Phys. Rev. Lett.

M. G. Kuzyk, “Physical limits on electronic nonlinear molecular susceptibilities,” Phys. Rev. Lett. 85, 1218–1221 (2000).
[CrossRef] [PubMed]

Proc. SPIE

C. W. Dirk, J. Bao, M. Kuzyk, and C. Poga, “Soluble phthalocyanine silicone plastics and elastomers for nonlinear optics,” in Nonlinear Optical Properties of Organic Materials VII, G. R. Möhlmann, ed., Proc. SPIE 2285, 32–40 (1994).
[CrossRef]

Prog. Quantum Electron.

R. W. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” Prog. Quantum Electron. 5, 1–68 (1977).
[CrossRef]

Science

S. R. Marder, J. W. Perry, G. Bourhill, C. B. Gorman, B. G. Tiemann, and K. Mansour, “Relation between bond-length alternation and second electronic hyperpolarizability of conjugated organic molecules,” Science 261, 186–189 (1993).
[CrossRef] [PubMed]

Other

N. N. Bogoliubov and J. A. Mitropolsky, Asymptotic Methods in the Theory of Nonlinear Oscillations (Nauka, Moscow, 1948).

P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics, Vol. 9 of Cambridge Studies in Modern Optics (Cambridge University Press, Cambridge, UK, 1990).

J. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1982).

S. R. Vigil, “Nonlinear optical studies of organic liquids and polymer optical fibers,” Ph.D. dissertation (Washington State University, Pullman, Wash., 2000).

M. G. Kuzyk and C. W. Dirk, eds., Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials, Vol. 60 of Optical Engineering (Marcel Dekker, New York, 1998).

R. J. Kruhlak, “Characterization of molecular excited states for nonlinear optics,” Ph.D. dissertation (Washington State University, Pullman, Wash., 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Dependence of the measured optical Kerr intensity on the angle θ between the pump and the probe polarization vectors. (Statistical error bars are smaller than marker size.)

Fig. 2
Fig. 2

Quadratic intensity dependence of the optical Kerr effect signal of nitrobenzene. The solid curve is a fit of the function IOKE/Iprobe=aIpump2 to the data.

Fig. 3
Fig. 3

Schematic of the optical Kerr effect measurement apparatus: GLP, Glan-Laser polarizer; HWP, half-wave plate (1064 nm); PBS, polarizing beam splitter; PD, silicon photodiode; PHP, polarizer–half-wave plate–attenuator; PMT, photomultiplier tube; Pol., polarizer; SF, spatial filter.

Fig. 4
Fig. 4

Spatial intensity profiles of pump (left) and probe (right) pulses at the Kerr-cell position. The bottom graph shows data and a fit to a Gaussian profile exp(-x2 /2x02) through a diameter of each profile. Pump FWHM=0.92 mm; probe FWHM=0.36 mm.

Fig. 5
Fig. 5

Histogram of a 900-shot Kerr-signal experiment displaying a Poissonian distribution.

Fig. 6
Fig. 6

Chemical structure and molecular coordinate system of ISQ (top) and SiPc-MMA (bottom).

Fig. 7
Fig. 7

Measured optical Kerr effect dispersion of a 5×1015/mL ISQ:CCl4 solution (left ordinate). The measured molecular linear-absorption cross section and the calculated two-level best fit to it are also shown (right ordinate).

Fig. 8
Fig. 8

Measured optical Kerr effect dispersion of a 2×1015/mL SiPc-MMA:CCl4 solution (left ordinate). The measured molecular linear-absorption cross section and the calculated four-level best fit to it are also shown (right ordinate).

Fig. 9
Fig. 9

Measured OKE spectrum (large dots), spectrum calculated from the single one-photon state, and the best-fit spectrum, obtained by the four-level model consisting of the single one-photon state and two two-photon states given in Table 3, of a 5×1015/mL ISQ:CCl4 solution. The pump wavelength is 1064 nm.

Fig. 10
Fig. 10

Measured OKE spectrum (large dots), spectrum calculated from the three one-photon states, and the best-fit spectrum, obtained by a seven-level model consisting of the three one-photon states and three two-photon states as given in Table 4, of a 2×1015/mL SiPc-MMA:CCl4 solution. The pump wavelength is 1064 nm.

Fig. 11
Fig. 11

Calculated third-order molecular susceptibility γxxxx(-ω2;ω1,-ω1, ω2) of SiPc-MMA from the best fit to the OKE dispersion data in Fig. 10 and Table 4. The pump wavelength is 1064 nm.

Fig. 12
Fig. 12

Calculated third-order molecular susceptibility γxxxx(-ω2;ω1,-ω1, ω2) of ISQ from the best fit to the OKE dispersion data in Fig. 9 and Table 3. The pump wavelength is 1064 nm.

Tables (6)

Tables Icon

Table 1 Comparison of Absolute χOKE(3) Measurements

Tables Icon

Table 2 Parameters Necessary for Specifying an Excited Stationary State in the Sum-Over-States Calculation of Molecular Susceptibilities

Tables Icon

Table 3 Best-Fit One- and Two-Photon (Italic) Excited-State Parameters Used to Calculate the ISQ OKE Spectrum of Fig. 9a

Tables Icon

Table 4 Best-Fit One- and Two-Photon (Italic) Excited-State Parameters Used to Calculate SiPc-MMA OKE Spectrum of Fig. 10a

Tables Icon

Table 5 Real Part of the Resonant and Nonresonant Third-Order Molecular Susceptibilities γxxxx(-ω2;ω1,-ω1, ω2) of the Molecules Studied

Tables Icon

Table 6 Comparison of Data-Derived and Theoretical Maximum value of lim(ω1, ω2)0γxxxx(-ω2; ω1,-ω1, ω2) for SiPc-MMA and ISQ

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

δϕ=2πλ(δn-δn)L,
Δn=δn-δn=12n2B|E|2,
E=E1+E2,
E1=12[A1 exp(iϕ1)+c.c.],
E2=12 (A2 exp(iϕ2){exp[iδ(z)]cos θxˆ+sin θyˆ}+c.c.),
ϕ1=k1z-ω1t+ϕ(z),
ϕ2=k2z-ω2t,
δ(z)=3k2π|A1|2z0(ω2)χ(3)(-ω2; ω1,-ω1, ω2),
Itrans(ω2; t)=η2(t)exp(-α2Lc)×24π3Lλ2n0(ω2)η1(t)2 sin2(2θ2)×|χxyyx(3)(-ω2; ω1,-ω1, ω2)+χxyxy(3)(-ω2; ω1,-ω1, ω2)|2,
ηi=Iimaxpi(t),
γijkl(-ω; ω1, ω2, ω3)=e443 a,b,c=13δω, ω1+ω2+ω3×mnν xigmxj¯mnxk¯nνxlνg(Ωmg-ωc-ωb-ωa)(Ωng-ωb-ωa)(Ωνg-ωc)+xigmxj¯mnxk¯nνxlνg(Ωmg*+ωc)(Ωng-ωa-ωb)(Ωνg-ωa)×xigmxj¯mnxk¯nνxlνg(Ωmg*+ωa)(Ωng*+ωa+ωb)(Ωνg-ωc)+xigmxj¯mnxk¯nνxlνg(Ωmg*+ωa)(Ωng*+ωa+ωb)(Ωνg*+ωa+ωb+ωc)-mn xigmxjmgxkgnxlng(Ωmg-ωc-ωb-ωa)(Ωmg-ωc)(Ωng-ωa)+xigmxjmgxkgnxlng(Ωmg-ωc)(Ωng*+ωb)(Ωng-ωa)×xigmxjmgxkgnxlng(Ωmg*+ωa+ωb+ωc)(Ωmg*+ωc)(Ωng*+ωa)+xigmxjmgxkgnxlng(Ωmg*+ωc)(Ωng-ωb)(Ωng*+ωa),
Ωmg=Ωmg0-iΓm,
i(t)=Rdet(λ)R(t, t)I(t)dAdt,
NADC=1RADC -Δt/2Δt/2i(t)dt,
NADC=Rdet(λ)RADCE(λ)=RADC(λ)E(λ),
Ipulse(r, t)=I0 exp(-r2/2rpulse2)exp(-t2/2tpulse2),
|χxyyx(3)(ω2)+χxyxy(3)(ω2)|2
=72π5 exp(α2Lc)cλ2n0(ω2)L2×r12(r12+2r22)t12(t12+2t22) NPMTR2R12N2N12RPMT,
-02π0I2(r, t)I1(r, t)2rdrdθdt
=I20(I10)2t1t28π3t12+2t22r12r22r12+2r22,
-02π0Ii(r, t)rdrdθdt
=8π3Ii0tiri2=Ei,
|χOKE(3)|=|χxyyx(3)+χxyxy(3)|,
χ(3)=χsolute(3)+χsolvent(3).
S(-ω2;ω2, ω1,-ω1)=|χsoln.(3)|2|χCCl4(3)|2=|χdye(3)+χCCl4(3)|2|χCCl4(3)|2,
αabs(ω)=2k0[-R{0(ω)}+|0(ω)|]1/2,
pi=αijEj+D3γijklEjEkEl,
G(Ω, pmol(E))=exp[-(p·E/kBT)],
-e44m2 N2E1g5γ0max4 e44m2 N2E1g5,
μmn=em|x|n,
μˆ=μ00..........................μ10μ11......................μ20g21μ22 ..................μ30μ31μ32μ33.............................................μn0μn1.........μnn.
μˆ=μ10μ11................μ20μ21μ22...........μ30μ31μ32μ33...............................μn0μn1......μnn.

Metrics