Abstract

High-bandwidth accumulated spectral gratings are experimentally studied in Tm3+:YAG by the stimulated-photon-echo technique with a mode-locked picosecond Ti:sapphire laser system. The experimental results show that the spectral grating builds up and decays on the time scale of the metastable-state lifetime (∼10 ms), provided that the time interval of accumulating shots is of the order of the excited-state lifetime (800 µs). An echo efficiency of the order of 0.1% was achieved with pulse intensities 2 orders of magnitude less than those needed for a single-shot process. These results fit well an analytic solution of the Bloch equations and a three-level system relaxation model.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Hesselink and D. A. Wiersma, “Picosecond photon echoes stimulated from an accumulated grating,” Phys. Rev. Lett. 43, 1991–1994 (1979).
    [CrossRef]
  2. K. D. Merkel and W. R. Babbitt, “Optical coherent transient continuously programmed continuous processor,” Opt. Lett. 24, 172–174 (1999).
    [CrossRef]
  3. M. Mitsunaga and N. Uesugi, “248-Bit optical data storage in Eu3+:YALO3 by accumulated photon echoes,” Opt. Lett. 15, 195–197 (1990).
    [CrossRef] [PubMed]
  4. M. Mitsunaga, R. Yano, and N. Uesugi, “Time- and frequency-domain hybrid optical memory: 1.6-kbit data storage in Eu3+:Y2SiO5,” Opt. Lett. 16, 1890–1892 (1991).
    [CrossRef] [PubMed]
  5. V. A. Zuikov, D. F. Gainulin, V. V. Samartsev, M. F. Stel’makh, M. A. Yufin, and M. A. Yakshin, “Accumulated long-lived optical echo and optical memory,” Sov. J. Quantum Electron. 21, 477–478 (1991).
    [CrossRef]
  6. R. M. Macfarlane, “Spectral hole burning in the trivalent thulium ion,” Opt. Lett. 18, 829–831 (1993).
    [CrossRef] [PubMed]
  7. R. M. Macfarlane, “Photon-echo measurement on the trivalent thulium ion,” Opt. Lett. 18, 1958–1960 (1993).
    [CrossRef]
  8. J. A. Caird, L. G. Deshazer, and J. Nella, “Characteristics of room-temperature 2.3-μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron. QE-11, 874–881 (1975).
    [CrossRef]
  9. N. M. Strickland, P. B. Sellin, Y. Sun, J. L. Carlsten, and R. L. Cone, “Laser frequency stabilization using regenerative spectral hole burning,” Phys. Rev. B 62, 1473–1475 (2000).
    [CrossRef]
  10. L. Allen and J. H. Eberley, Optical Resonance and Two-Level Atoms (Dover, New York, 1987), p. 58.
  11. W. H. Hesselink and D. A. Wiersma, “Photon echoes stimulated from an accumulated grating: theory of generation and detection,” J. Chem. Phys. 75, 4192–4197 (1981).
    [CrossRef]

2000 (1)

N. M. Strickland, P. B. Sellin, Y. Sun, J. L. Carlsten, and R. L. Cone, “Laser frequency stabilization using regenerative spectral hole burning,” Phys. Rev. B 62, 1473–1475 (2000).
[CrossRef]

1999 (1)

1993 (2)

1991 (2)

V. A. Zuikov, D. F. Gainulin, V. V. Samartsev, M. F. Stel’makh, M. A. Yufin, and M. A. Yakshin, “Accumulated long-lived optical echo and optical memory,” Sov. J. Quantum Electron. 21, 477–478 (1991).
[CrossRef]

M. Mitsunaga, R. Yano, and N. Uesugi, “Time- and frequency-domain hybrid optical memory: 1.6-kbit data storage in Eu3+:Y2SiO5,” Opt. Lett. 16, 1890–1892 (1991).
[CrossRef] [PubMed]

1990 (1)

1981 (1)

W. H. Hesselink and D. A. Wiersma, “Photon echoes stimulated from an accumulated grating: theory of generation and detection,” J. Chem. Phys. 75, 4192–4197 (1981).
[CrossRef]

1979 (1)

W. H. Hesselink and D. A. Wiersma, “Picosecond photon echoes stimulated from an accumulated grating,” Phys. Rev. Lett. 43, 1991–1994 (1979).
[CrossRef]

1975 (1)

J. A. Caird, L. G. Deshazer, and J. Nella, “Characteristics of room-temperature 2.3-μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron. QE-11, 874–881 (1975).
[CrossRef]

Babbitt, W. R.

Caird, J. A.

J. A. Caird, L. G. Deshazer, and J. Nella, “Characteristics of room-temperature 2.3-μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron. QE-11, 874–881 (1975).
[CrossRef]

Carlsten, J. L.

N. M. Strickland, P. B. Sellin, Y. Sun, J. L. Carlsten, and R. L. Cone, “Laser frequency stabilization using regenerative spectral hole burning,” Phys. Rev. B 62, 1473–1475 (2000).
[CrossRef]

Cone, R. L.

N. M. Strickland, P. B. Sellin, Y. Sun, J. L. Carlsten, and R. L. Cone, “Laser frequency stabilization using regenerative spectral hole burning,” Phys. Rev. B 62, 1473–1475 (2000).
[CrossRef]

Deshazer, L. G.

J. A. Caird, L. G. Deshazer, and J. Nella, “Characteristics of room-temperature 2.3-μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron. QE-11, 874–881 (1975).
[CrossRef]

Gainulin, D. F.

V. A. Zuikov, D. F. Gainulin, V. V. Samartsev, M. F. Stel’makh, M. A. Yufin, and M. A. Yakshin, “Accumulated long-lived optical echo and optical memory,” Sov. J. Quantum Electron. 21, 477–478 (1991).
[CrossRef]

Hesselink, W. H.

W. H. Hesselink and D. A. Wiersma, “Photon echoes stimulated from an accumulated grating: theory of generation and detection,” J. Chem. Phys. 75, 4192–4197 (1981).
[CrossRef]

W. H. Hesselink and D. A. Wiersma, “Picosecond photon echoes stimulated from an accumulated grating,” Phys. Rev. Lett. 43, 1991–1994 (1979).
[CrossRef]

Macfarlane, R. M.

Merkel, K. D.

Mitsunaga, M.

Nella, J.

J. A. Caird, L. G. Deshazer, and J. Nella, “Characteristics of room-temperature 2.3-μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron. QE-11, 874–881 (1975).
[CrossRef]

Samartsev, V. V.

V. A. Zuikov, D. F. Gainulin, V. V. Samartsev, M. F. Stel’makh, M. A. Yufin, and M. A. Yakshin, “Accumulated long-lived optical echo and optical memory,” Sov. J. Quantum Electron. 21, 477–478 (1991).
[CrossRef]

Sellin, P. B.

N. M. Strickland, P. B. Sellin, Y. Sun, J. L. Carlsten, and R. L. Cone, “Laser frequency stabilization using regenerative spectral hole burning,” Phys. Rev. B 62, 1473–1475 (2000).
[CrossRef]

Stel’makh, M. F.

V. A. Zuikov, D. F. Gainulin, V. V. Samartsev, M. F. Stel’makh, M. A. Yufin, and M. A. Yakshin, “Accumulated long-lived optical echo and optical memory,” Sov. J. Quantum Electron. 21, 477–478 (1991).
[CrossRef]

Strickland, N. M.

N. M. Strickland, P. B. Sellin, Y. Sun, J. L. Carlsten, and R. L. Cone, “Laser frequency stabilization using regenerative spectral hole burning,” Phys. Rev. B 62, 1473–1475 (2000).
[CrossRef]

Sun, Y.

N. M. Strickland, P. B. Sellin, Y. Sun, J. L. Carlsten, and R. L. Cone, “Laser frequency stabilization using regenerative spectral hole burning,” Phys. Rev. B 62, 1473–1475 (2000).
[CrossRef]

Uesugi, N.

Wiersma, D. A.

W. H. Hesselink and D. A. Wiersma, “Photon echoes stimulated from an accumulated grating: theory of generation and detection,” J. Chem. Phys. 75, 4192–4197 (1981).
[CrossRef]

W. H. Hesselink and D. A. Wiersma, “Picosecond photon echoes stimulated from an accumulated grating,” Phys. Rev. Lett. 43, 1991–1994 (1979).
[CrossRef]

Yakshin, M. A.

V. A. Zuikov, D. F. Gainulin, V. V. Samartsev, M. F. Stel’makh, M. A. Yufin, and M. A. Yakshin, “Accumulated long-lived optical echo and optical memory,” Sov. J. Quantum Electron. 21, 477–478 (1991).
[CrossRef]

Yano, R.

Yufin, M. A.

V. A. Zuikov, D. F. Gainulin, V. V. Samartsev, M. F. Stel’makh, M. A. Yufin, and M. A. Yakshin, “Accumulated long-lived optical echo and optical memory,” Sov. J. Quantum Electron. 21, 477–478 (1991).
[CrossRef]

Zuikov, V. A.

V. A. Zuikov, D. F. Gainulin, V. V. Samartsev, M. F. Stel’makh, M. A. Yufin, and M. A. Yakshin, “Accumulated long-lived optical echo and optical memory,” Sov. J. Quantum Electron. 21, 477–478 (1991).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. A. Caird, L. G. Deshazer, and J. Nella, “Characteristics of room-temperature 2.3-μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron. QE-11, 874–881 (1975).
[CrossRef]

J. Chem. Phys. (1)

W. H. Hesselink and D. A. Wiersma, “Photon echoes stimulated from an accumulated grating: theory of generation and detection,” J. Chem. Phys. 75, 4192–4197 (1981).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. B (1)

N. M. Strickland, P. B. Sellin, Y. Sun, J. L. Carlsten, and R. L. Cone, “Laser frequency stabilization using regenerative spectral hole burning,” Phys. Rev. B 62, 1473–1475 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

W. H. Hesselink and D. A. Wiersma, “Picosecond photon echoes stimulated from an accumulated grating,” Phys. Rev. Lett. 43, 1991–1994 (1979).
[CrossRef]

Sov. J. Quantum Electron. (1)

V. A. Zuikov, D. F. Gainulin, V. V. Samartsev, M. F. Stel’makh, M. A. Yufin, and M. A. Yakshin, “Accumulated long-lived optical echo and optical memory,” Sov. J. Quantum Electron. 21, 477–478 (1991).
[CrossRef]

Other (1)

L. Allen and J. H. Eberley, Optical Resonance and Two-Level Atoms (Dover, New York, 1987), p. 58.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Box configuration. (b) Schematic of the experimental setup. In the second set of experiments the chopper was replaced by an AOM, and the O.D. was used in both locations shown. BS1 and BS2, beam splitters 1 and 2.

Fig. 2
Fig. 2

Recording of echoes at a 1-kHz repetition rate with 16 laser shots of programming and probe beams unblocked followed by 16 laser shots with probe pulses only.

Fig. 3
Fig. 3

Echo efficiencies measured within the programming cycle of 32 ms as for Fig. 2: experimental results (filled circles) and corresponding simulated results (curve).

Fig. 4
Fig. 4

Echo efficiencies at a 1-kHz repetition rate within the programming cycle of 64 ms with 38 programming and probe laser shots and 26 probe-only laser shots: experimental results for the average of 512 cycles (filled circles) and simulation (curves).

Fig. 5
Fig. 5

Echo efficiencies at a 4-kHz repetition rate within the programming cycle of 31 ms with 66 programming and probe laser shots and 62 probe-only laser shots: experimental results of the average of 512 cycles (filled circles) and simulation (curves).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ρ(Δ, t)=ρ11(Δ, t)ρ12(Δ, t)ρ21(Δ, t)ρ22(Δ, t)ρ33(Δ, t),ρ(Δ, 0)=10000,
A(a, τ)=12Ω2 2Ω2-aDΔD-iaSΔD+iaSaD0ΔD-iaSaD+2ΩC+i2ΔSaD-ΔD+iaS0ΔD+iaSaDaD+2ΩC-i2ΔS-ΔD-iaS0aD-ΔD+iaS-ΔD-iaS2Ω2-aD000002Ω2,
B(t)=1001-β exp(-t/T3)+(β-1)exp(-t/T1)1-exp(-t/T3)0000000000000exp(-t/T1)0000β exp(-t/T3)-β exp(-t/T1)exp(-t/T3).
ρm+n(Δ, t3+τ21)=A21A3mB(τR)mA3A32A2A21A1×[B(τR)A3A32A2A21A1](n-1)×ρ(Δ, 0),
ρm+n(Δ, t3+τ21)=A21A3mB(τR)mA3B(0)A2A21A1×[B(τR)A3B(0)A2A21A1](n-1)×ρ(Δ, 0).

Metrics