Abstract

Collimated and conical emissions that appear when Yb vapor is illuminated by light pulses at 262 nm (near the one-photon Yb 6s2 1S06s7p 3P1 transition) are experimentally investigated. Conical emission is observed at multiple wavelengths. Parametric and nonparametric nonlinear optical processes are studied by investigation of the spatial distribution of generated light and the efficiency of light generation as a function of the incident light frequency.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. B. Delone and V. P. Krainov, Nonlinear Optics of Atomic Gases (Wiley, New York, 1988).
  2. D. C. Hanna, M. A. Yuratich, and D. Cotter, Nonlinear Optics of Free Atoms and Molecules (Springer-Verlag, Berlin, 1979).
  3. R. W. Boyd, Nonlinear Optics (Academic, San Diego, 1992).
  4. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  5. R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93, 99–110 (1954).
    [CrossRef]
  6. U. Domiaty, D. Gruber, L. Windholz, S. G. Dinev, M. Allegrini, G. De Filippo, F. Fuso, and R.-H. Rinkleff, “Nonlinear emission in sodium vapor upon pulsed-laser excitation of the 4 2P levels,” Appl. Phys. B 59, 525–531 (1994).
    [CrossRef]
  7. T. Stacewicz, N. A. Gorbunov, and P. Kozlowski, “Excitation of sodium atoms by 330-nm laser pulses,” Appl. Phys. B 66, 461–465 (1998).
    [CrossRef]
  8. T. Stacewicz and P. Kozlowski, “Time-resolved studies of emission excited in sodium vapor by 330 nm laser pulses,” Appl. Phys. B 65, 69–74 (1997).
    [CrossRef]
  9. A. Dreischuh, V. Kamenov, S. Dinev, U. Reiter-Domiaty, D. Gruber, and L. Windholz, “Spectral and spatial evolution of a conical emission in Na vapor,” J. Opt. Soc. Am. B 15, 34–40 (1998).
    [CrossRef]
  10. A. Dreischuh, U. Reiter-Domiaty, D. Gruber, L. Windholz, and S. Dinev, “Nonlinear alignment between conical emissions generated in a four-wave parametric mixing process,” Appl. Phys. B 66, 175–180 (1998).
    [CrossRef]
  11. M. Bashkansky, P. Battle, R. Mahon, and J. Reintjes, “New regime of conical emissions in multi-level optically-pumped atomic vapors,” Opt. Commun. 120, 189–193 (1995).
    [CrossRef]
  12. X. Han, Z. Lü, and Z. Ma, “Raman-resonant spontaneous four-wave parametric process in sodium vapor,” Opt. Commun. 67, 383–386 (1988).
    [CrossRef]
  13. D. I. Chekhov, D. V. Gaidarenko, and A. G. Leonov, “Conical emission and spectral behavior of strong near resonant laser wave at low-frequency detuning,” Opt. Commun. 105, 209–213 (1994).
    [CrossRef]
  14. G. De Filippo, S. Guldberg-Kjaer, S. Milosevic, and J. O. P. Pedersen, “Population of metastable barium associated with conical emission,” Opt. Commun. 144, 315–321 (1997).
    [CrossRef]
  15. W. Chałupczak, W. Gawlik, and J. Zachorowski, “Conical emission as cooperative fluorescence,” Phys. Rev. A 49, R2227–R2230 (1994).
    [CrossRef] [PubMed]
  16. W. Chałupczak, W. Gawlik, and J. Zachorowski, “Conical emission in barium vapor,” Opt. Commun. 99, 49–54 (1993).
    [CrossRef]
  17. J. F. Valley, G. Khitrova, H. M. Gibbs, J. W. Grantham, and X. Jiajin, “Cw conical emission: first comparison and agreement between theory and experiment,” Phys. Rev. Lett. 64, 2362–2365 (1990).
    [CrossRef] [PubMed]
  18. A. S. Zibrov, L. Hollberg, M. D. Lukin, M. O. Scully, and V. L. Velichansky, “Blue beam generation via cascade two-photon transitions in Rb vapor,” in Laser Spectroscopy, R. Blatt, J. Eschner, D. Leibfried, and F. Schmidt-Kaler, eds. (World Scientific, Singapore, 1999), pp. 362–363.
  19. D. F. Kimball, “Parity-nonconserving optical rotation on the 6s6p 3P0→6s6p 1P1 transition in atomic ytterbium,” Phys. Rev. A (to be published).
  20. D. F. Kimball, D. Clyde, D. Budker, D. DeMille, S. J. Freedman, S. Rochester, J. E. Stalnaker, and M. Zolotorev, “Collisional perturbation of states in atomic ytterbium by helium and neon,” Phys. Rev. A 60, 1103–1112 (1999).
    [CrossRef]
  21. D. F. Kimball, “Collisional perturbation of states in atomic ytterbium,” undergraduate thesis (University of California at Berkeley, Berkeley, Calif., 1998), available at http://phylabs.berkeley.edu/budker.
  22. I. S. Grigoriev and E. Z. Meilikhov, eds., Handbook of Physical Quantities (CRC Press, Boca Raton, Fla., 1997).
  23. C. J. Bowers, D. Budker, E. D. Commins, D. DeMille, S. J. Freedman, A.-T. Nguyen, S.-Q. Shang, and M. Zolotorev, “Experimental investigation of excited-state lifetimes in atomic ytterbium,” Phys. Rev. A 53, 3103–3109 (1996).
    [CrossRef] [PubMed]
  24. M. S. Malcuit, D. J. Gauthier, and R. W. Boyd, “Suppression of amplified spontaneous emission by the four-wave mixing process,” Phys. Rev. Lett. 55, 1086–1089 (1985).
    [CrossRef] [PubMed]
  25. R. W. Boyd, M. S. Malcuit, and D. J. Gauthier, “Competition between amplified spontaneous emission and the four-wave-mixing process,” Phys. Rev. A 35, 1648–1658 (1987).
    [CrossRef] [PubMed]
  26. Y. Shevy, S. Hochman, and M. Rosenbluh, “Competition between stimulated three-photon scattering and parametric four wave mixing,” Opt. Lett. 13, 215–217 (1988).
    [CrossRef] [PubMed]
  27. W. R. Garrett, “Forward gain suppression of optically pumped stimulated emissions due to self-induced wave-mixing interference during a pump pulse,” Phys. Rev. Lett. 70, 4059–4062 (1993).
    [CrossRef] [PubMed]
  28. W. R. Garrett, M. A. Moore, R. C. Hart, J. E. Wray, I. Datskou, M. G. Payne, and R. Wunderlich, “Suppression effects in stimulated hyper-Raman emissions and parametric four-wave mixing in sodium vapor,” Phys. Rev. A 45, 6687–6709 (1992).
    [CrossRef] [PubMed]
  29. Estimates indicate that, in our case, the real part of the index of refraction for any wavelength differs from 1 by less than ~10−2. Therefore radical changes in the wave-vector direction are impossible.
  30. D. DeMille, “Parity nonconservation in the 6s2 1S0→6s5d 3D1 transition in atomic ytterbium,” Phys. Rev. Lett. 74, 4165–4168 (1995).
    [CrossRef] [PubMed]
  31. D. Budker, “Parity nonconservation in atoms,” WEIN-98 Conference Proceedings, C. Hoffman and P. Herzeg, eds. (World Scientific, River Edge, N.J., 1999), pp. 418–441.
  32. M.-A. Bouchiat and C. Bouchiat, “Parity violation in atoms,” Rep. Prog. Phys. 60, 1351–1397 (1997).
    [CrossRef]
  33. C. J. Bowers, D. Budker, S. J. Freedman, G. Gwinner, J. E. Stalnaker, and D. DeMille, “Experimental investigation of the 6s2 1S0→6s5d 3D1, 2 forbidden transitions in atomic ytterbium,” Phys. Rev. A 59, 3513–3526 (1999).
    [CrossRef]
  34. J. E. Stalnaker, “Experimental investigation of the 6s2 1 S0→6s5d 3D1 magnetic dipole transition in atomic ytterbium,” undergraduate thesis (University of California at Berkeley, Berkeley, Calif., 1998), available at http: //phylabs.berkeley.edu/budker.
  35. I. B. Khriplovich, Parity Nonconservation in Atomic Phenomena (Gordon & Breach, Philadelphia, Pa., 1991).

1999 (2)

D. F. Kimball, D. Clyde, D. Budker, D. DeMille, S. J. Freedman, S. Rochester, J. E. Stalnaker, and M. Zolotorev, “Collisional perturbation of states in atomic ytterbium by helium and neon,” Phys. Rev. A 60, 1103–1112 (1999).
[CrossRef]

C. J. Bowers, D. Budker, S. J. Freedman, G. Gwinner, J. E. Stalnaker, and D. DeMille, “Experimental investigation of the 6s2 1S0→6s5d 3D1, 2 forbidden transitions in atomic ytterbium,” Phys. Rev. A 59, 3513–3526 (1999).
[CrossRef]

1998 (3)

A. Dreischuh, V. Kamenov, S. Dinev, U. Reiter-Domiaty, D. Gruber, and L. Windholz, “Spectral and spatial evolution of a conical emission in Na vapor,” J. Opt. Soc. Am. B 15, 34–40 (1998).
[CrossRef]

A. Dreischuh, U. Reiter-Domiaty, D. Gruber, L. Windholz, and S. Dinev, “Nonlinear alignment between conical emissions generated in a four-wave parametric mixing process,” Appl. Phys. B 66, 175–180 (1998).
[CrossRef]

T. Stacewicz, N. A. Gorbunov, and P. Kozlowski, “Excitation of sodium atoms by 330-nm laser pulses,” Appl. Phys. B 66, 461–465 (1998).
[CrossRef]

1997 (3)

T. Stacewicz and P. Kozlowski, “Time-resolved studies of emission excited in sodium vapor by 330 nm laser pulses,” Appl. Phys. B 65, 69–74 (1997).
[CrossRef]

G. De Filippo, S. Guldberg-Kjaer, S. Milosevic, and J. O. P. Pedersen, “Population of metastable barium associated with conical emission,” Opt. Commun. 144, 315–321 (1997).
[CrossRef]

M.-A. Bouchiat and C. Bouchiat, “Parity violation in atoms,” Rep. Prog. Phys. 60, 1351–1397 (1997).
[CrossRef]

1996 (1)

C. J. Bowers, D. Budker, E. D. Commins, D. DeMille, S. J. Freedman, A.-T. Nguyen, S.-Q. Shang, and M. Zolotorev, “Experimental investigation of excited-state lifetimes in atomic ytterbium,” Phys. Rev. A 53, 3103–3109 (1996).
[CrossRef] [PubMed]

1995 (2)

M. Bashkansky, P. Battle, R. Mahon, and J. Reintjes, “New regime of conical emissions in multi-level optically-pumped atomic vapors,” Opt. Commun. 120, 189–193 (1995).
[CrossRef]

D. DeMille, “Parity nonconservation in the 6s2 1S0→6s5d 3D1 transition in atomic ytterbium,” Phys. Rev. Lett. 74, 4165–4168 (1995).
[CrossRef] [PubMed]

1994 (3)

W. Chałupczak, W. Gawlik, and J. Zachorowski, “Conical emission as cooperative fluorescence,” Phys. Rev. A 49, R2227–R2230 (1994).
[CrossRef] [PubMed]

D. I. Chekhov, D. V. Gaidarenko, and A. G. Leonov, “Conical emission and spectral behavior of strong near resonant laser wave at low-frequency detuning,” Opt. Commun. 105, 209–213 (1994).
[CrossRef]

U. Domiaty, D. Gruber, L. Windholz, S. G. Dinev, M. Allegrini, G. De Filippo, F. Fuso, and R.-H. Rinkleff, “Nonlinear emission in sodium vapor upon pulsed-laser excitation of the 4 2P levels,” Appl. Phys. B 59, 525–531 (1994).
[CrossRef]

1993 (2)

W. R. Garrett, “Forward gain suppression of optically pumped stimulated emissions due to self-induced wave-mixing interference during a pump pulse,” Phys. Rev. Lett. 70, 4059–4062 (1993).
[CrossRef] [PubMed]

W. Chałupczak, W. Gawlik, and J. Zachorowski, “Conical emission in barium vapor,” Opt. Commun. 99, 49–54 (1993).
[CrossRef]

1992 (1)

W. R. Garrett, M. A. Moore, R. C. Hart, J. E. Wray, I. Datskou, M. G. Payne, and R. Wunderlich, “Suppression effects in stimulated hyper-Raman emissions and parametric four-wave mixing in sodium vapor,” Phys. Rev. A 45, 6687–6709 (1992).
[CrossRef] [PubMed]

1990 (1)

J. F. Valley, G. Khitrova, H. M. Gibbs, J. W. Grantham, and X. Jiajin, “Cw conical emission: first comparison and agreement between theory and experiment,” Phys. Rev. Lett. 64, 2362–2365 (1990).
[CrossRef] [PubMed]

1988 (2)

X. Han, Z. Lü, and Z. Ma, “Raman-resonant spontaneous four-wave parametric process in sodium vapor,” Opt. Commun. 67, 383–386 (1988).
[CrossRef]

Y. Shevy, S. Hochman, and M. Rosenbluh, “Competition between stimulated three-photon scattering and parametric four wave mixing,” Opt. Lett. 13, 215–217 (1988).
[CrossRef] [PubMed]

1987 (1)

R. W. Boyd, M. S. Malcuit, and D. J. Gauthier, “Competition between amplified spontaneous emission and the four-wave-mixing process,” Phys. Rev. A 35, 1648–1658 (1987).
[CrossRef] [PubMed]

1985 (1)

M. S. Malcuit, D. J. Gauthier, and R. W. Boyd, “Suppression of amplified spontaneous emission by the four-wave mixing process,” Phys. Rev. Lett. 55, 1086–1089 (1985).
[CrossRef] [PubMed]

1954 (1)

R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93, 99–110 (1954).
[CrossRef]

Allegrini, M.

U. Domiaty, D. Gruber, L. Windholz, S. G. Dinev, M. Allegrini, G. De Filippo, F. Fuso, and R.-H. Rinkleff, “Nonlinear emission in sodium vapor upon pulsed-laser excitation of the 4 2P levels,” Appl. Phys. B 59, 525–531 (1994).
[CrossRef]

Bashkansky, M.

M. Bashkansky, P. Battle, R. Mahon, and J. Reintjes, “New regime of conical emissions in multi-level optically-pumped atomic vapors,” Opt. Commun. 120, 189–193 (1995).
[CrossRef]

Battle, P.

M. Bashkansky, P. Battle, R. Mahon, and J. Reintjes, “New regime of conical emissions in multi-level optically-pumped atomic vapors,” Opt. Commun. 120, 189–193 (1995).
[CrossRef]

Bouchiat, C.

M.-A. Bouchiat and C. Bouchiat, “Parity violation in atoms,” Rep. Prog. Phys. 60, 1351–1397 (1997).
[CrossRef]

Bouchiat, M.-A.

M.-A. Bouchiat and C. Bouchiat, “Parity violation in atoms,” Rep. Prog. Phys. 60, 1351–1397 (1997).
[CrossRef]

Bowers, C. J.

C. J. Bowers, D. Budker, S. J. Freedman, G. Gwinner, J. E. Stalnaker, and D. DeMille, “Experimental investigation of the 6s2 1S0→6s5d 3D1, 2 forbidden transitions in atomic ytterbium,” Phys. Rev. A 59, 3513–3526 (1999).
[CrossRef]

C. J. Bowers, D. Budker, E. D. Commins, D. DeMille, S. J. Freedman, A.-T. Nguyen, S.-Q. Shang, and M. Zolotorev, “Experimental investigation of excited-state lifetimes in atomic ytterbium,” Phys. Rev. A 53, 3103–3109 (1996).
[CrossRef] [PubMed]

Boyd, R. W.

R. W. Boyd, M. S. Malcuit, and D. J. Gauthier, “Competition between amplified spontaneous emission and the four-wave-mixing process,” Phys. Rev. A 35, 1648–1658 (1987).
[CrossRef] [PubMed]

M. S. Malcuit, D. J. Gauthier, and R. W. Boyd, “Suppression of amplified spontaneous emission by the four-wave mixing process,” Phys. Rev. Lett. 55, 1086–1089 (1985).
[CrossRef] [PubMed]

Budker, D.

C. J. Bowers, D. Budker, S. J. Freedman, G. Gwinner, J. E. Stalnaker, and D. DeMille, “Experimental investigation of the 6s2 1S0→6s5d 3D1, 2 forbidden transitions in atomic ytterbium,” Phys. Rev. A 59, 3513–3526 (1999).
[CrossRef]

D. F. Kimball, D. Clyde, D. Budker, D. DeMille, S. J. Freedman, S. Rochester, J. E. Stalnaker, and M. Zolotorev, “Collisional perturbation of states in atomic ytterbium by helium and neon,” Phys. Rev. A 60, 1103–1112 (1999).
[CrossRef]

C. J. Bowers, D. Budker, E. D. Commins, D. DeMille, S. J. Freedman, A.-T. Nguyen, S.-Q. Shang, and M. Zolotorev, “Experimental investigation of excited-state lifetimes in atomic ytterbium,” Phys. Rev. A 53, 3103–3109 (1996).
[CrossRef] [PubMed]

Chalupczak, W.

W. Chałupczak, W. Gawlik, and J. Zachorowski, “Conical emission as cooperative fluorescence,” Phys. Rev. A 49, R2227–R2230 (1994).
[CrossRef] [PubMed]

W. Chałupczak, W. Gawlik, and J. Zachorowski, “Conical emission in barium vapor,” Opt. Commun. 99, 49–54 (1993).
[CrossRef]

Chekhov, D. I.

D. I. Chekhov, D. V. Gaidarenko, and A. G. Leonov, “Conical emission and spectral behavior of strong near resonant laser wave at low-frequency detuning,” Opt. Commun. 105, 209–213 (1994).
[CrossRef]

Clyde, D.

D. F. Kimball, D. Clyde, D. Budker, D. DeMille, S. J. Freedman, S. Rochester, J. E. Stalnaker, and M. Zolotorev, “Collisional perturbation of states in atomic ytterbium by helium and neon,” Phys. Rev. A 60, 1103–1112 (1999).
[CrossRef]

Commins, E. D.

C. J. Bowers, D. Budker, E. D. Commins, D. DeMille, S. J. Freedman, A.-T. Nguyen, S.-Q. Shang, and M. Zolotorev, “Experimental investigation of excited-state lifetimes in atomic ytterbium,” Phys. Rev. A 53, 3103–3109 (1996).
[CrossRef] [PubMed]

Datskou, I.

W. R. Garrett, M. A. Moore, R. C. Hart, J. E. Wray, I. Datskou, M. G. Payne, and R. Wunderlich, “Suppression effects in stimulated hyper-Raman emissions and parametric four-wave mixing in sodium vapor,” Phys. Rev. A 45, 6687–6709 (1992).
[CrossRef] [PubMed]

De Filippo, G.

G. De Filippo, S. Guldberg-Kjaer, S. Milosevic, and J. O. P. Pedersen, “Population of metastable barium associated with conical emission,” Opt. Commun. 144, 315–321 (1997).
[CrossRef]

U. Domiaty, D. Gruber, L. Windholz, S. G. Dinev, M. Allegrini, G. De Filippo, F. Fuso, and R.-H. Rinkleff, “Nonlinear emission in sodium vapor upon pulsed-laser excitation of the 4 2P levels,” Appl. Phys. B 59, 525–531 (1994).
[CrossRef]

DeMille, D.

D. F. Kimball, D. Clyde, D. Budker, D. DeMille, S. J. Freedman, S. Rochester, J. E. Stalnaker, and M. Zolotorev, “Collisional perturbation of states in atomic ytterbium by helium and neon,” Phys. Rev. A 60, 1103–1112 (1999).
[CrossRef]

C. J. Bowers, D. Budker, S. J. Freedman, G. Gwinner, J. E. Stalnaker, and D. DeMille, “Experimental investigation of the 6s2 1S0→6s5d 3D1, 2 forbidden transitions in atomic ytterbium,” Phys. Rev. A 59, 3513–3526 (1999).
[CrossRef]

C. J. Bowers, D. Budker, E. D. Commins, D. DeMille, S. J. Freedman, A.-T. Nguyen, S.-Q. Shang, and M. Zolotorev, “Experimental investigation of excited-state lifetimes in atomic ytterbium,” Phys. Rev. A 53, 3103–3109 (1996).
[CrossRef] [PubMed]

D. DeMille, “Parity nonconservation in the 6s2 1S0→6s5d 3D1 transition in atomic ytterbium,” Phys. Rev. Lett. 74, 4165–4168 (1995).
[CrossRef] [PubMed]

Dicke, R. H.

R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93, 99–110 (1954).
[CrossRef]

Dinev, S.

A. Dreischuh, V. Kamenov, S. Dinev, U. Reiter-Domiaty, D. Gruber, and L. Windholz, “Spectral and spatial evolution of a conical emission in Na vapor,” J. Opt. Soc. Am. B 15, 34–40 (1998).
[CrossRef]

A. Dreischuh, U. Reiter-Domiaty, D. Gruber, L. Windholz, and S. Dinev, “Nonlinear alignment between conical emissions generated in a four-wave parametric mixing process,” Appl. Phys. B 66, 175–180 (1998).
[CrossRef]

Dinev, S. G.

U. Domiaty, D. Gruber, L. Windholz, S. G. Dinev, M. Allegrini, G. De Filippo, F. Fuso, and R.-H. Rinkleff, “Nonlinear emission in sodium vapor upon pulsed-laser excitation of the 4 2P levels,” Appl. Phys. B 59, 525–531 (1994).
[CrossRef]

Domiaty, U.

U. Domiaty, D. Gruber, L. Windholz, S. G. Dinev, M. Allegrini, G. De Filippo, F. Fuso, and R.-H. Rinkleff, “Nonlinear emission in sodium vapor upon pulsed-laser excitation of the 4 2P levels,” Appl. Phys. B 59, 525–531 (1994).
[CrossRef]

Dreischuh, A.

A. Dreischuh, V. Kamenov, S. Dinev, U. Reiter-Domiaty, D. Gruber, and L. Windholz, “Spectral and spatial evolution of a conical emission in Na vapor,” J. Opt. Soc. Am. B 15, 34–40 (1998).
[CrossRef]

A. Dreischuh, U. Reiter-Domiaty, D. Gruber, L. Windholz, and S. Dinev, “Nonlinear alignment between conical emissions generated in a four-wave parametric mixing process,” Appl. Phys. B 66, 175–180 (1998).
[CrossRef]

Freedman, S. J.

C. J. Bowers, D. Budker, S. J. Freedman, G. Gwinner, J. E. Stalnaker, and D. DeMille, “Experimental investigation of the 6s2 1S0→6s5d 3D1, 2 forbidden transitions in atomic ytterbium,” Phys. Rev. A 59, 3513–3526 (1999).
[CrossRef]

D. F. Kimball, D. Clyde, D. Budker, D. DeMille, S. J. Freedman, S. Rochester, J. E. Stalnaker, and M. Zolotorev, “Collisional perturbation of states in atomic ytterbium by helium and neon,” Phys. Rev. A 60, 1103–1112 (1999).
[CrossRef]

C. J. Bowers, D. Budker, E. D. Commins, D. DeMille, S. J. Freedman, A.-T. Nguyen, S.-Q. Shang, and M. Zolotorev, “Experimental investigation of excited-state lifetimes in atomic ytterbium,” Phys. Rev. A 53, 3103–3109 (1996).
[CrossRef] [PubMed]

Fuso, F.

U. Domiaty, D. Gruber, L. Windholz, S. G. Dinev, M. Allegrini, G. De Filippo, F. Fuso, and R.-H. Rinkleff, “Nonlinear emission in sodium vapor upon pulsed-laser excitation of the 4 2P levels,” Appl. Phys. B 59, 525–531 (1994).
[CrossRef]

Gaidarenko, D. V.

D. I. Chekhov, D. V. Gaidarenko, and A. G. Leonov, “Conical emission and spectral behavior of strong near resonant laser wave at low-frequency detuning,” Opt. Commun. 105, 209–213 (1994).
[CrossRef]

Garrett, W. R.

W. R. Garrett, “Forward gain suppression of optically pumped stimulated emissions due to self-induced wave-mixing interference during a pump pulse,” Phys. Rev. Lett. 70, 4059–4062 (1993).
[CrossRef] [PubMed]

W. R. Garrett, M. A. Moore, R. C. Hart, J. E. Wray, I. Datskou, M. G. Payne, and R. Wunderlich, “Suppression effects in stimulated hyper-Raman emissions and parametric four-wave mixing in sodium vapor,” Phys. Rev. A 45, 6687–6709 (1992).
[CrossRef] [PubMed]

Gauthier, D. J.

R. W. Boyd, M. S. Malcuit, and D. J. Gauthier, “Competition between amplified spontaneous emission and the four-wave-mixing process,” Phys. Rev. A 35, 1648–1658 (1987).
[CrossRef] [PubMed]

M. S. Malcuit, D. J. Gauthier, and R. W. Boyd, “Suppression of amplified spontaneous emission by the four-wave mixing process,” Phys. Rev. Lett. 55, 1086–1089 (1985).
[CrossRef] [PubMed]

Gawlik, W.

W. Chałupczak, W. Gawlik, and J. Zachorowski, “Conical emission as cooperative fluorescence,” Phys. Rev. A 49, R2227–R2230 (1994).
[CrossRef] [PubMed]

W. Chałupczak, W. Gawlik, and J. Zachorowski, “Conical emission in barium vapor,” Opt. Commun. 99, 49–54 (1993).
[CrossRef]

Gibbs, H. M.

J. F. Valley, G. Khitrova, H. M. Gibbs, J. W. Grantham, and X. Jiajin, “Cw conical emission: first comparison and agreement between theory and experiment,” Phys. Rev. Lett. 64, 2362–2365 (1990).
[CrossRef] [PubMed]

Gorbunov, N. A.

T. Stacewicz, N. A. Gorbunov, and P. Kozlowski, “Excitation of sodium atoms by 330-nm laser pulses,” Appl. Phys. B 66, 461–465 (1998).
[CrossRef]

Grantham, J. W.

J. F. Valley, G. Khitrova, H. M. Gibbs, J. W. Grantham, and X. Jiajin, “Cw conical emission: first comparison and agreement between theory and experiment,” Phys. Rev. Lett. 64, 2362–2365 (1990).
[CrossRef] [PubMed]

Gruber, D.

A. Dreischuh, V. Kamenov, S. Dinev, U. Reiter-Domiaty, D. Gruber, and L. Windholz, “Spectral and spatial evolution of a conical emission in Na vapor,” J. Opt. Soc. Am. B 15, 34–40 (1998).
[CrossRef]

A. Dreischuh, U. Reiter-Domiaty, D. Gruber, L. Windholz, and S. Dinev, “Nonlinear alignment between conical emissions generated in a four-wave parametric mixing process,” Appl. Phys. B 66, 175–180 (1998).
[CrossRef]

U. Domiaty, D. Gruber, L. Windholz, S. G. Dinev, M. Allegrini, G. De Filippo, F. Fuso, and R.-H. Rinkleff, “Nonlinear emission in sodium vapor upon pulsed-laser excitation of the 4 2P levels,” Appl. Phys. B 59, 525–531 (1994).
[CrossRef]

Guldberg-Kjaer, S.

G. De Filippo, S. Guldberg-Kjaer, S. Milosevic, and J. O. P. Pedersen, “Population of metastable barium associated with conical emission,” Opt. Commun. 144, 315–321 (1997).
[CrossRef]

Gwinner, G.

C. J. Bowers, D. Budker, S. J. Freedman, G. Gwinner, J. E. Stalnaker, and D. DeMille, “Experimental investigation of the 6s2 1S0→6s5d 3D1, 2 forbidden transitions in atomic ytterbium,” Phys. Rev. A 59, 3513–3526 (1999).
[CrossRef]

Han, X.

X. Han, Z. Lü, and Z. Ma, “Raman-resonant spontaneous four-wave parametric process in sodium vapor,” Opt. Commun. 67, 383–386 (1988).
[CrossRef]

Hart, R. C.

W. R. Garrett, M. A. Moore, R. C. Hart, J. E. Wray, I. Datskou, M. G. Payne, and R. Wunderlich, “Suppression effects in stimulated hyper-Raman emissions and parametric four-wave mixing in sodium vapor,” Phys. Rev. A 45, 6687–6709 (1992).
[CrossRef] [PubMed]

Hochman, S.

Jiajin, X.

J. F. Valley, G. Khitrova, H. M. Gibbs, J. W. Grantham, and X. Jiajin, “Cw conical emission: first comparison and agreement between theory and experiment,” Phys. Rev. Lett. 64, 2362–2365 (1990).
[CrossRef] [PubMed]

Kamenov, V.

Khitrova, G.

J. F. Valley, G. Khitrova, H. M. Gibbs, J. W. Grantham, and X. Jiajin, “Cw conical emission: first comparison and agreement between theory and experiment,” Phys. Rev. Lett. 64, 2362–2365 (1990).
[CrossRef] [PubMed]

Kimball, D. F.

D. F. Kimball, D. Clyde, D. Budker, D. DeMille, S. J. Freedman, S. Rochester, J. E. Stalnaker, and M. Zolotorev, “Collisional perturbation of states in atomic ytterbium by helium and neon,” Phys. Rev. A 60, 1103–1112 (1999).
[CrossRef]

Kozlowski, P.

T. Stacewicz, N. A. Gorbunov, and P. Kozlowski, “Excitation of sodium atoms by 330-nm laser pulses,” Appl. Phys. B 66, 461–465 (1998).
[CrossRef]

T. Stacewicz and P. Kozlowski, “Time-resolved studies of emission excited in sodium vapor by 330 nm laser pulses,” Appl. Phys. B 65, 69–74 (1997).
[CrossRef]

Leonov, A. G.

D. I. Chekhov, D. V. Gaidarenko, and A. G. Leonov, “Conical emission and spectral behavior of strong near resonant laser wave at low-frequency detuning,” Opt. Commun. 105, 209–213 (1994).
[CrossRef]

Lü, Z.

X. Han, Z. Lü, and Z. Ma, “Raman-resonant spontaneous four-wave parametric process in sodium vapor,” Opt. Commun. 67, 383–386 (1988).
[CrossRef]

Ma, Z.

X. Han, Z. Lü, and Z. Ma, “Raman-resonant spontaneous four-wave parametric process in sodium vapor,” Opt. Commun. 67, 383–386 (1988).
[CrossRef]

Mahon, R.

M. Bashkansky, P. Battle, R. Mahon, and J. Reintjes, “New regime of conical emissions in multi-level optically-pumped atomic vapors,” Opt. Commun. 120, 189–193 (1995).
[CrossRef]

Malcuit, M. S.

R. W. Boyd, M. S. Malcuit, and D. J. Gauthier, “Competition between amplified spontaneous emission and the four-wave-mixing process,” Phys. Rev. A 35, 1648–1658 (1987).
[CrossRef] [PubMed]

M. S. Malcuit, D. J. Gauthier, and R. W. Boyd, “Suppression of amplified spontaneous emission by the four-wave mixing process,” Phys. Rev. Lett. 55, 1086–1089 (1985).
[CrossRef] [PubMed]

Milosevic, S.

G. De Filippo, S. Guldberg-Kjaer, S. Milosevic, and J. O. P. Pedersen, “Population of metastable barium associated with conical emission,” Opt. Commun. 144, 315–321 (1997).
[CrossRef]

Moore, M. A.

W. R. Garrett, M. A. Moore, R. C. Hart, J. E. Wray, I. Datskou, M. G. Payne, and R. Wunderlich, “Suppression effects in stimulated hyper-Raman emissions and parametric four-wave mixing in sodium vapor,” Phys. Rev. A 45, 6687–6709 (1992).
[CrossRef] [PubMed]

Nguyen, A.-T.

C. J. Bowers, D. Budker, E. D. Commins, D. DeMille, S. J. Freedman, A.-T. Nguyen, S.-Q. Shang, and M. Zolotorev, “Experimental investigation of excited-state lifetimes in atomic ytterbium,” Phys. Rev. A 53, 3103–3109 (1996).
[CrossRef] [PubMed]

Payne, M. G.

W. R. Garrett, M. A. Moore, R. C. Hart, J. E. Wray, I. Datskou, M. G. Payne, and R. Wunderlich, “Suppression effects in stimulated hyper-Raman emissions and parametric four-wave mixing in sodium vapor,” Phys. Rev. A 45, 6687–6709 (1992).
[CrossRef] [PubMed]

Pedersen, J. O. P.

G. De Filippo, S. Guldberg-Kjaer, S. Milosevic, and J. O. P. Pedersen, “Population of metastable barium associated with conical emission,” Opt. Commun. 144, 315–321 (1997).
[CrossRef]

Reintjes, J.

M. Bashkansky, P. Battle, R. Mahon, and J. Reintjes, “New regime of conical emissions in multi-level optically-pumped atomic vapors,” Opt. Commun. 120, 189–193 (1995).
[CrossRef]

Reiter-Domiaty, U.

A. Dreischuh, V. Kamenov, S. Dinev, U. Reiter-Domiaty, D. Gruber, and L. Windholz, “Spectral and spatial evolution of a conical emission in Na vapor,” J. Opt. Soc. Am. B 15, 34–40 (1998).
[CrossRef]

A. Dreischuh, U. Reiter-Domiaty, D. Gruber, L. Windholz, and S. Dinev, “Nonlinear alignment between conical emissions generated in a four-wave parametric mixing process,” Appl. Phys. B 66, 175–180 (1998).
[CrossRef]

Rinkleff, R.-H.

U. Domiaty, D. Gruber, L. Windholz, S. G. Dinev, M. Allegrini, G. De Filippo, F. Fuso, and R.-H. Rinkleff, “Nonlinear emission in sodium vapor upon pulsed-laser excitation of the 4 2P levels,” Appl. Phys. B 59, 525–531 (1994).
[CrossRef]

Rochester, S.

D. F. Kimball, D. Clyde, D. Budker, D. DeMille, S. J. Freedman, S. Rochester, J. E. Stalnaker, and M. Zolotorev, “Collisional perturbation of states in atomic ytterbium by helium and neon,” Phys. Rev. A 60, 1103–1112 (1999).
[CrossRef]

Rosenbluh, M.

Shang, S.-Q.

C. J. Bowers, D. Budker, E. D. Commins, D. DeMille, S. J. Freedman, A.-T. Nguyen, S.-Q. Shang, and M. Zolotorev, “Experimental investigation of excited-state lifetimes in atomic ytterbium,” Phys. Rev. A 53, 3103–3109 (1996).
[CrossRef] [PubMed]

Shevy, Y.

Stacewicz, T.

T. Stacewicz, N. A. Gorbunov, and P. Kozlowski, “Excitation of sodium atoms by 330-nm laser pulses,” Appl. Phys. B 66, 461–465 (1998).
[CrossRef]

T. Stacewicz and P. Kozlowski, “Time-resolved studies of emission excited in sodium vapor by 330 nm laser pulses,” Appl. Phys. B 65, 69–74 (1997).
[CrossRef]

Stalnaker, J. E.

D. F. Kimball, D. Clyde, D. Budker, D. DeMille, S. J. Freedman, S. Rochester, J. E. Stalnaker, and M. Zolotorev, “Collisional perturbation of states in atomic ytterbium by helium and neon,” Phys. Rev. A 60, 1103–1112 (1999).
[CrossRef]

C. J. Bowers, D. Budker, S. J. Freedman, G. Gwinner, J. E. Stalnaker, and D. DeMille, “Experimental investigation of the 6s2 1S0→6s5d 3D1, 2 forbidden transitions in atomic ytterbium,” Phys. Rev. A 59, 3513–3526 (1999).
[CrossRef]

Valley, J. F.

J. F. Valley, G. Khitrova, H. M. Gibbs, J. W. Grantham, and X. Jiajin, “Cw conical emission: first comparison and agreement between theory and experiment,” Phys. Rev. Lett. 64, 2362–2365 (1990).
[CrossRef] [PubMed]

Windholz, L.

A. Dreischuh, V. Kamenov, S. Dinev, U. Reiter-Domiaty, D. Gruber, and L. Windholz, “Spectral and spatial evolution of a conical emission in Na vapor,” J. Opt. Soc. Am. B 15, 34–40 (1998).
[CrossRef]

A. Dreischuh, U. Reiter-Domiaty, D. Gruber, L. Windholz, and S. Dinev, “Nonlinear alignment between conical emissions generated in a four-wave parametric mixing process,” Appl. Phys. B 66, 175–180 (1998).
[CrossRef]

U. Domiaty, D. Gruber, L. Windholz, S. G. Dinev, M. Allegrini, G. De Filippo, F. Fuso, and R.-H. Rinkleff, “Nonlinear emission in sodium vapor upon pulsed-laser excitation of the 4 2P levels,” Appl. Phys. B 59, 525–531 (1994).
[CrossRef]

Wray, J. E.

W. R. Garrett, M. A. Moore, R. C. Hart, J. E. Wray, I. Datskou, M. G. Payne, and R. Wunderlich, “Suppression effects in stimulated hyper-Raman emissions and parametric four-wave mixing in sodium vapor,” Phys. Rev. A 45, 6687–6709 (1992).
[CrossRef] [PubMed]

Wunderlich, R.

W. R. Garrett, M. A. Moore, R. C. Hart, J. E. Wray, I. Datskou, M. G. Payne, and R. Wunderlich, “Suppression effects in stimulated hyper-Raman emissions and parametric four-wave mixing in sodium vapor,” Phys. Rev. A 45, 6687–6709 (1992).
[CrossRef] [PubMed]

Zachorowski, J.

W. Chałupczak, W. Gawlik, and J. Zachorowski, “Conical emission as cooperative fluorescence,” Phys. Rev. A 49, R2227–R2230 (1994).
[CrossRef] [PubMed]

W. Chałupczak, W. Gawlik, and J. Zachorowski, “Conical emission in barium vapor,” Opt. Commun. 99, 49–54 (1993).
[CrossRef]

Zolotorev, M.

D. F. Kimball, D. Clyde, D. Budker, D. DeMille, S. J. Freedman, S. Rochester, J. E. Stalnaker, and M. Zolotorev, “Collisional perturbation of states in atomic ytterbium by helium and neon,” Phys. Rev. A 60, 1103–1112 (1999).
[CrossRef]

C. J. Bowers, D. Budker, E. D. Commins, D. DeMille, S. J. Freedman, A.-T. Nguyen, S.-Q. Shang, and M. Zolotorev, “Experimental investigation of excited-state lifetimes in atomic ytterbium,” Phys. Rev. A 53, 3103–3109 (1996).
[CrossRef] [PubMed]

Appl. Phys. B (4)

A. Dreischuh, U. Reiter-Domiaty, D. Gruber, L. Windholz, and S. Dinev, “Nonlinear alignment between conical emissions generated in a four-wave parametric mixing process,” Appl. Phys. B 66, 175–180 (1998).
[CrossRef]

U. Domiaty, D. Gruber, L. Windholz, S. G. Dinev, M. Allegrini, G. De Filippo, F. Fuso, and R.-H. Rinkleff, “Nonlinear emission in sodium vapor upon pulsed-laser excitation of the 4 2P levels,” Appl. Phys. B 59, 525–531 (1994).
[CrossRef]

T. Stacewicz, N. A. Gorbunov, and P. Kozlowski, “Excitation of sodium atoms by 330-nm laser pulses,” Appl. Phys. B 66, 461–465 (1998).
[CrossRef]

T. Stacewicz and P. Kozlowski, “Time-resolved studies of emission excited in sodium vapor by 330 nm laser pulses,” Appl. Phys. B 65, 69–74 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (5)

M. Bashkansky, P. Battle, R. Mahon, and J. Reintjes, “New regime of conical emissions in multi-level optically-pumped atomic vapors,” Opt. Commun. 120, 189–193 (1995).
[CrossRef]

X. Han, Z. Lü, and Z. Ma, “Raman-resonant spontaneous four-wave parametric process in sodium vapor,” Opt. Commun. 67, 383–386 (1988).
[CrossRef]

D. I. Chekhov, D. V. Gaidarenko, and A. G. Leonov, “Conical emission and spectral behavior of strong near resonant laser wave at low-frequency detuning,” Opt. Commun. 105, 209–213 (1994).
[CrossRef]

G. De Filippo, S. Guldberg-Kjaer, S. Milosevic, and J. O. P. Pedersen, “Population of metastable barium associated with conical emission,” Opt. Commun. 144, 315–321 (1997).
[CrossRef]

W. Chałupczak, W. Gawlik, and J. Zachorowski, “Conical emission in barium vapor,” Opt. Commun. 99, 49–54 (1993).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (1)

R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93, 99–110 (1954).
[CrossRef]

Phys. Rev. A (6)

C. J. Bowers, D. Budker, S. J. Freedman, G. Gwinner, J. E. Stalnaker, and D. DeMille, “Experimental investigation of the 6s2 1S0→6s5d 3D1, 2 forbidden transitions in atomic ytterbium,” Phys. Rev. A 59, 3513–3526 (1999).
[CrossRef]

W. R. Garrett, M. A. Moore, R. C. Hart, J. E. Wray, I. Datskou, M. G. Payne, and R. Wunderlich, “Suppression effects in stimulated hyper-Raman emissions and parametric four-wave mixing in sodium vapor,” Phys. Rev. A 45, 6687–6709 (1992).
[CrossRef] [PubMed]

W. Chałupczak, W. Gawlik, and J. Zachorowski, “Conical emission as cooperative fluorescence,” Phys. Rev. A 49, R2227–R2230 (1994).
[CrossRef] [PubMed]

D. F. Kimball, D. Clyde, D. Budker, D. DeMille, S. J. Freedman, S. Rochester, J. E. Stalnaker, and M. Zolotorev, “Collisional perturbation of states in atomic ytterbium by helium and neon,” Phys. Rev. A 60, 1103–1112 (1999).
[CrossRef]

C. J. Bowers, D. Budker, E. D. Commins, D. DeMille, S. J. Freedman, A.-T. Nguyen, S.-Q. Shang, and M. Zolotorev, “Experimental investigation of excited-state lifetimes in atomic ytterbium,” Phys. Rev. A 53, 3103–3109 (1996).
[CrossRef] [PubMed]

R. W. Boyd, M. S. Malcuit, and D. J. Gauthier, “Competition between amplified spontaneous emission and the four-wave-mixing process,” Phys. Rev. A 35, 1648–1658 (1987).
[CrossRef] [PubMed]

Phys. Rev. Lett. (4)

M. S. Malcuit, D. J. Gauthier, and R. W. Boyd, “Suppression of amplified spontaneous emission by the four-wave mixing process,” Phys. Rev. Lett. 55, 1086–1089 (1985).
[CrossRef] [PubMed]

J. F. Valley, G. Khitrova, H. M. Gibbs, J. W. Grantham, and X. Jiajin, “Cw conical emission: first comparison and agreement between theory and experiment,” Phys. Rev. Lett. 64, 2362–2365 (1990).
[CrossRef] [PubMed]

D. DeMille, “Parity nonconservation in the 6s2 1S0→6s5d 3D1 transition in atomic ytterbium,” Phys. Rev. Lett. 74, 4165–4168 (1995).
[CrossRef] [PubMed]

W. R. Garrett, “Forward gain suppression of optically pumped stimulated emissions due to self-induced wave-mixing interference during a pump pulse,” Phys. Rev. Lett. 70, 4059–4062 (1993).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

M.-A. Bouchiat and C. Bouchiat, “Parity violation in atoms,” Rep. Prog. Phys. 60, 1351–1397 (1997).
[CrossRef]

Other (12)

J. E. Stalnaker, “Experimental investigation of the 6s2 1 S0→6s5d 3D1 magnetic dipole transition in atomic ytterbium,” undergraduate thesis (University of California at Berkeley, Berkeley, Calif., 1998), available at http: //phylabs.berkeley.edu/budker.

I. B. Khriplovich, Parity Nonconservation in Atomic Phenomena (Gordon & Breach, Philadelphia, Pa., 1991).

D. Budker, “Parity nonconservation in atoms,” WEIN-98 Conference Proceedings, C. Hoffman and P. Herzeg, eds. (World Scientific, River Edge, N.J., 1999), pp. 418–441.

Estimates indicate that, in our case, the real part of the index of refraction for any wavelength differs from 1 by less than ~10−2. Therefore radical changes in the wave-vector direction are impossible.

A. S. Zibrov, L. Hollberg, M. D. Lukin, M. O. Scully, and V. L. Velichansky, “Blue beam generation via cascade two-photon transitions in Rb vapor,” in Laser Spectroscopy, R. Blatt, J. Eschner, D. Leibfried, and F. Schmidt-Kaler, eds. (World Scientific, Singapore, 1999), pp. 362–363.

D. F. Kimball, “Parity-nonconserving optical rotation on the 6s6p 3P0→6s6p 1P1 transition in atomic ytterbium,” Phys. Rev. A (to be published).

D. F. Kimball, “Collisional perturbation of states in atomic ytterbium,” undergraduate thesis (University of California at Berkeley, Berkeley, Calif., 1998), available at http://phylabs.berkeley.edu/budker.

I. S. Grigoriev and E. Z. Meilikhov, eds., Handbook of Physical Quantities (CRC Press, Boca Raton, Fla., 1997).

N. B. Delone and V. P. Krainov, Nonlinear Optics of Atomic Gases (Wiley, New York, 1988).

D. C. Hanna, M. A. Yuratich, and D. Cotter, Nonlinear Optics of Free Atoms and Molecules (Springer-Verlag, Berlin, 1979).

R. W. Boyd, Nonlinear Optics (Academic, San Diego, 1992).

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of experimental setup.

Fig. 2
Fig. 2

Primary channels observed when the pump beam is tuned near the one-photon Yb 6 1S07 3P1 transition. Transitions between the 6 3P0 state and the ground state are strictly forbidden because the two states have zero angular momentum.

Fig. 3
Fig. 3

Plots of spatial intensity distribution of 649-nm emission in the forward direction (single pulse) measured with a CCD camera: both three-dimensional and gray-scale plots of intensity versus position are shown. The cell temperature is ≈1150 K; the buffer gas (Ne) pressure is ∼10 Torr; and incident 262-nm light is detuned to the high-frequency side of resonance by ≈5 GHz (a fraction of the laser linewidth). The spatial intensity distribution of 649-nm emission is qualitatively similar throughout the tuning range of 262-nm light where such emission is observed.

Fig. 4
Fig. 4

Plots of spatial intensity distribution of 680-nm emission in the forward direction (single pulse) measured with a CCD camera for the same experimental conditions as in Fig. 3. Note both CE and spatially resolved collimated emission inside the cone. The choice of optical filters was a compromise between reduced saturation of the CCD and the ability to see all relevant features of the emission.

Fig. 5
Fig. 5

Plots of spatial intensity distribution in the forward direction (single pulse) of 611-nm emission measured with a CCD camera for the same experimental conditions as in Fig. 3.

Fig. 6
Fig. 6

Plots of spatial intensity distribution in the forward direction (single pulse) of 556-nm emission measured with a CCD camera for the same experimental conditions as in Fig. 3.

Fig. 7
Fig. 7

Illustration of phase-matching conditions for parametric 4WM. Since ωG is nearly resonant with a strong transition coupling to the atomic ground state, the susceptibility for ωG can be relatively large. Therefore |kG|+|kR|+|kIR| can be greater than |kL|. To satisfy momentum conservation, light must be emitted off axis, causing CE at multiple wavelengths. This illustration assumes that IR light, possibly originating from stimulated Raman scattering, propagates collinearly with the excitation beam. Fields at frequencies ωG and ωR can build up from noise through parametric amplification.

Fig. 8
Fig. 8

Dependence of nonlinear emissions observed in both the forward and the backward directions on 262-nm light detuning. (a) Relative energy of emitted radiation with respect to incident 262-nm light detuning. The cell temperature is ≈1100 K; Ne pressure is ≈3 Torr. (b) Intensity of low-power 262-nm light (where no nonlinear optical effects are observed) after it passes through the vapor cell. The overall slope is caused by an approximately linear decrease in the initial laser intensity as a function of detuning.

Fig. 9
Fig. 9

Relative energy with respect to detuning of incident 262-nm light of each visible wavelength emitted in the forward direction. The cell temperature is ≈1150 K; Ne pressure is ≈10 Torr. The relative energy of the 611-nm emission is multiplied by 2 with respect to energies of other wavelengths, since emitted intensity at this wavelength is smaller than for the other wavelengths. Note that the 556-nm emission, which can be produced only by parametric 4WM, has a reduced intensity near the 262-nm resonance, whereas the 649-nm emission, which is produced purely through nonparametric processes, has a maximum intensity near the 262-nm resonance.

Fig. 10
Fig. 10

Low-lying Yb energy levels and relevant transitions for measurement of PNC-induced optical rotation.

Tables (1)

Tables Icon

Table 1 Summary of Observed Emissions

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ωL=ωIR+ωR+ωG,
kL=kIR+kR+kG,

Metrics