Abstract

The third nonlinear optical susceptibility (χ3) of a new family of octupolar molecules with one, two, and three double bonds has been measured at 532 in tetrahydrofuran solutions by the degenerate four-wave mixing (DFWM) method. For comparison, we also measured the analogous dipolar subunits of the molecules. The second hyperpolarizability (γ) for these molecules was deduced. We found that octupolar molecules exhibit large second-order hyperpolarizability (γ) values. The γ  values obtained for octupolar compounds are approximately 10 times larger than those of their corresponding dipolar subunits and 104 times larger than those of CS2, which is a reference material for DFWM.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Kuzyk and G. W. Dirk, eds., Characterization Technique and Tabulations for Organic Nonlinear Optics Materials (Marcel Dekker, New York, 1998).
  2. F. Kajzar and J. D. Swalen, eds., Organic Thin Films for Waveguiding Nonlinear Optics (Gordon & Breach, London, 1996).
  3. K.-S. Lee and O.-K. Kim, “NLO materials based on stilbozolium salt chromophores,” Photonics Sci. News 4, 9 (1999).
  4. S. Wang, W. Huang, T. Zhang, H. Yang, Q. Gong, Y. Okuma, M. Horikiri, and Y. F. Miura, “Third order nonlinear optical properties of didodecldimethylammonium-Au(dmit)2,” Appl. Phys. Lett. 75, 1845–1847 (1999).
    [CrossRef]
  5. P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).
  6. J. Zyss and D. Chemla, eds., Nonlinear Optical Properties of Organic Materials and Crystals (Academic, New York, 1987).
  7. M. Joffre, D. Yaron, R. J. Silbey, and J. Zyss, “Second order optical nonlinearity in octupolar aromatic systems,” J. Chem. Phys. 97, 5607–5615 (1992).
    [CrossRef]
  8. J. Zyss, “Octupolar organic systems in quadratic nonlinear optics: molecules and materials,” Nonlinear Opt. 1, 3–18 (1991).
  9. J. Zyss, “Molecular engineering implications of rotational invariance in nonlinear optics: octupolar systems for quadratic processes,” in Nonlinear Optics: Fundamentals, Materials and Devices, S. Miyata, ed. (North-Holland, Amsterdam, 1992), pp. 33–48.
  10. J. Zyss, “Molecular engineering implications of rotational invariance in quadratic nonlinear optics: from dipolar to octupolar molecules and materials,” J. Chem. Phys. 98, 6583–6599 (1993).
    [CrossRef]
  11. J. Zyss and I. Ledoux, “Nonlinear optics in multipolar media: theory and experiments,” Chem. Rev. 94, 77–105 (1994).
    [CrossRef]
  12. B. Sahraoui, X. Nguyen Phu, M. Sallé, and A. Gorgues, “Electronic and nuclear contributions to the third order nonlinear optical susceptibilities of new p-N, N′-dimethylaniline tetrathiafulvalene derivatives,” Opt. Lett. 23, 1811–1813 (1998).
    [CrossRef]
  13. L. X. Chen and P. D. Laible, “Third order nonlinear properties of bacteriochlorophylls in bacterial photosynthetic light-harvesting proteins,” Chem. Phys. Lett. 270, 255–262 (1997).
    [CrossRef]
  14. C. Andraud, T. Zabulon, A. Collet, and J. Zyss, “Nonlinera optical properties of polyenoctupoles: a multipolar tensorial quantum analisis,” Chem. Phys. 245, 243–261 (1999).
    [CrossRef]
  15. B. Sahraoui, R. Chavalier, G. Rivoire, J. Zaremba, and M. Sallé, “Nonlinear optical properties of new hyper-tetrathiafulvalene derivatives: saturable absorption and degenerate four wave mixing,” Opt. Commun. 135, 109–115 (1997).
    [CrossRef]
  16. I. V. Kityk, B. Sahraoui, P. X. Nguyen, G. Rivoire, and J. Kasperczyk, “Nonliner optical susceptibilities of tetrathiafulvalene derivatives,” Nonlin. Opt. 18, 13–30 (1997).
  17. C. Andraud, T. Brotin, C. Garcia, F. Pellé, P. Goldner, B. Bigot, and A. Collet, “Theoretical and experimental investigations of the nonlinear optical properties of vanillin, polyenovanillin, and bisvanillin derivatives,” J. Am. Chem. Soc. 116, 2094–2102 (1994).
    [CrossRef]
  18. T. Brotin, C. Andraud, I. Ledoux, S. Brasselet, J. Zyss, M. Perrin, A. Thozet, and A. Collet, “n-polyenovanillins (n= 1−6) as a new push–pull polyenes for nonlinear optics: synthesis, structural studies, and experimental and theoretical investigation of their spectroscopic properties, electronic structures, and quadratic hyperpolarizabilities,” Chem. Mater. 8, 890–906 (1996).
    [CrossRef]
  19. T. Nozdryn, J. Cousseau, B. Sahraoui, X. N. Phu, and G. Rivoire, “Third order nonlinear optical properties of new polyfluoroalkylsulfanyl-substituted tetrathiafulvalene derivatives,” Synth. Met. 94, 57–60 (1998).
    [CrossRef]
  20. B. Sahraoui, G. Rivoire, N. Terkia-Derdra, M. Sallé, and J. Zaremba, “Third order nonlinear optical properties of new bisdithiafulvenyl-substituted tetrathiafulvalene,” J. Opt. Soc. Am. B 15, 923–928 (1998).
    [CrossRef]

1999 (3)

C. Andraud, T. Zabulon, A. Collet, and J. Zyss, “Nonlinera optical properties of polyenoctupoles: a multipolar tensorial quantum analisis,” Chem. Phys. 245, 243–261 (1999).
[CrossRef]

K.-S. Lee and O.-K. Kim, “NLO materials based on stilbozolium salt chromophores,” Photonics Sci. News 4, 9 (1999).

S. Wang, W. Huang, T. Zhang, H. Yang, Q. Gong, Y. Okuma, M. Horikiri, and Y. F. Miura, “Third order nonlinear optical properties of didodecldimethylammonium-Au(dmit)2,” Appl. Phys. Lett. 75, 1845–1847 (1999).
[CrossRef]

1998 (3)

1997 (3)

L. X. Chen and P. D. Laible, “Third order nonlinear properties of bacteriochlorophylls in bacterial photosynthetic light-harvesting proteins,” Chem. Phys. Lett. 270, 255–262 (1997).
[CrossRef]

B. Sahraoui, R. Chavalier, G. Rivoire, J. Zaremba, and M. Sallé, “Nonlinear optical properties of new hyper-tetrathiafulvalene derivatives: saturable absorption and degenerate four wave mixing,” Opt. Commun. 135, 109–115 (1997).
[CrossRef]

I. V. Kityk, B. Sahraoui, P. X. Nguyen, G. Rivoire, and J. Kasperczyk, “Nonliner optical susceptibilities of tetrathiafulvalene derivatives,” Nonlin. Opt. 18, 13–30 (1997).

1996 (1)

T. Brotin, C. Andraud, I. Ledoux, S. Brasselet, J. Zyss, M. Perrin, A. Thozet, and A. Collet, “n-polyenovanillins (n= 1−6) as a new push–pull polyenes for nonlinear optics: synthesis, structural studies, and experimental and theoretical investigation of their spectroscopic properties, electronic structures, and quadratic hyperpolarizabilities,” Chem. Mater. 8, 890–906 (1996).
[CrossRef]

1994 (2)

J. Zyss and I. Ledoux, “Nonlinear optics in multipolar media: theory and experiments,” Chem. Rev. 94, 77–105 (1994).
[CrossRef]

C. Andraud, T. Brotin, C. Garcia, F. Pellé, P. Goldner, B. Bigot, and A. Collet, “Theoretical and experimental investigations of the nonlinear optical properties of vanillin, polyenovanillin, and bisvanillin derivatives,” J. Am. Chem. Soc. 116, 2094–2102 (1994).
[CrossRef]

1993 (1)

J. Zyss, “Molecular engineering implications of rotational invariance in quadratic nonlinear optics: from dipolar to octupolar molecules and materials,” J. Chem. Phys. 98, 6583–6599 (1993).
[CrossRef]

1992 (1)

M. Joffre, D. Yaron, R. J. Silbey, and J. Zyss, “Second order optical nonlinearity in octupolar aromatic systems,” J. Chem. Phys. 97, 5607–5615 (1992).
[CrossRef]

1991 (1)

J. Zyss, “Octupolar organic systems in quadratic nonlinear optics: molecules and materials,” Nonlinear Opt. 1, 3–18 (1991).

Andraud, C.

C. Andraud, T. Zabulon, A. Collet, and J. Zyss, “Nonlinera optical properties of polyenoctupoles: a multipolar tensorial quantum analisis,” Chem. Phys. 245, 243–261 (1999).
[CrossRef]

T. Brotin, C. Andraud, I. Ledoux, S. Brasselet, J. Zyss, M. Perrin, A. Thozet, and A. Collet, “n-polyenovanillins (n= 1−6) as a new push–pull polyenes for nonlinear optics: synthesis, structural studies, and experimental and theoretical investigation of their spectroscopic properties, electronic structures, and quadratic hyperpolarizabilities,” Chem. Mater. 8, 890–906 (1996).
[CrossRef]

C. Andraud, T. Brotin, C. Garcia, F. Pellé, P. Goldner, B. Bigot, and A. Collet, “Theoretical and experimental investigations of the nonlinear optical properties of vanillin, polyenovanillin, and bisvanillin derivatives,” J. Am. Chem. Soc. 116, 2094–2102 (1994).
[CrossRef]

Bigot, B.

C. Andraud, T. Brotin, C. Garcia, F. Pellé, P. Goldner, B. Bigot, and A. Collet, “Theoretical and experimental investigations of the nonlinear optical properties of vanillin, polyenovanillin, and bisvanillin derivatives,” J. Am. Chem. Soc. 116, 2094–2102 (1994).
[CrossRef]

Brasselet, S.

T. Brotin, C. Andraud, I. Ledoux, S. Brasselet, J. Zyss, M. Perrin, A. Thozet, and A. Collet, “n-polyenovanillins (n= 1−6) as a new push–pull polyenes for nonlinear optics: synthesis, structural studies, and experimental and theoretical investigation of their spectroscopic properties, electronic structures, and quadratic hyperpolarizabilities,” Chem. Mater. 8, 890–906 (1996).
[CrossRef]

Brotin, T.

T. Brotin, C. Andraud, I. Ledoux, S. Brasselet, J. Zyss, M. Perrin, A. Thozet, and A. Collet, “n-polyenovanillins (n= 1−6) as a new push–pull polyenes for nonlinear optics: synthesis, structural studies, and experimental and theoretical investigation of their spectroscopic properties, electronic structures, and quadratic hyperpolarizabilities,” Chem. Mater. 8, 890–906 (1996).
[CrossRef]

C. Andraud, T. Brotin, C. Garcia, F. Pellé, P. Goldner, B. Bigot, and A. Collet, “Theoretical and experimental investigations of the nonlinear optical properties of vanillin, polyenovanillin, and bisvanillin derivatives,” J. Am. Chem. Soc. 116, 2094–2102 (1994).
[CrossRef]

Chavalier, R.

B. Sahraoui, R. Chavalier, G. Rivoire, J. Zaremba, and M. Sallé, “Nonlinear optical properties of new hyper-tetrathiafulvalene derivatives: saturable absorption and degenerate four wave mixing,” Opt. Commun. 135, 109–115 (1997).
[CrossRef]

Chen, L. X.

L. X. Chen and P. D. Laible, “Third order nonlinear properties of bacteriochlorophylls in bacterial photosynthetic light-harvesting proteins,” Chem. Phys. Lett. 270, 255–262 (1997).
[CrossRef]

Collet, A.

C. Andraud, T. Zabulon, A. Collet, and J. Zyss, “Nonlinera optical properties of polyenoctupoles: a multipolar tensorial quantum analisis,” Chem. Phys. 245, 243–261 (1999).
[CrossRef]

T. Brotin, C. Andraud, I. Ledoux, S. Brasselet, J. Zyss, M. Perrin, A. Thozet, and A. Collet, “n-polyenovanillins (n= 1−6) as a new push–pull polyenes for nonlinear optics: synthesis, structural studies, and experimental and theoretical investigation of their spectroscopic properties, electronic structures, and quadratic hyperpolarizabilities,” Chem. Mater. 8, 890–906 (1996).
[CrossRef]

C. Andraud, T. Brotin, C. Garcia, F. Pellé, P. Goldner, B. Bigot, and A. Collet, “Theoretical and experimental investigations of the nonlinear optical properties of vanillin, polyenovanillin, and bisvanillin derivatives,” J. Am. Chem. Soc. 116, 2094–2102 (1994).
[CrossRef]

Cousseau, J.

T. Nozdryn, J. Cousseau, B. Sahraoui, X. N. Phu, and G. Rivoire, “Third order nonlinear optical properties of new polyfluoroalkylsulfanyl-substituted tetrathiafulvalene derivatives,” Synth. Met. 94, 57–60 (1998).
[CrossRef]

Garcia, C.

C. Andraud, T. Brotin, C. Garcia, F. Pellé, P. Goldner, B. Bigot, and A. Collet, “Theoretical and experimental investigations of the nonlinear optical properties of vanillin, polyenovanillin, and bisvanillin derivatives,” J. Am. Chem. Soc. 116, 2094–2102 (1994).
[CrossRef]

Goldner, P.

C. Andraud, T. Brotin, C. Garcia, F. Pellé, P. Goldner, B. Bigot, and A. Collet, “Theoretical and experimental investigations of the nonlinear optical properties of vanillin, polyenovanillin, and bisvanillin derivatives,” J. Am. Chem. Soc. 116, 2094–2102 (1994).
[CrossRef]

Gong, Q.

S. Wang, W. Huang, T. Zhang, H. Yang, Q. Gong, Y. Okuma, M. Horikiri, and Y. F. Miura, “Third order nonlinear optical properties of didodecldimethylammonium-Au(dmit)2,” Appl. Phys. Lett. 75, 1845–1847 (1999).
[CrossRef]

Gorgues, A.

Horikiri, M.

S. Wang, W. Huang, T. Zhang, H. Yang, Q. Gong, Y. Okuma, M. Horikiri, and Y. F. Miura, “Third order nonlinear optical properties of didodecldimethylammonium-Au(dmit)2,” Appl. Phys. Lett. 75, 1845–1847 (1999).
[CrossRef]

Huang, W.

S. Wang, W. Huang, T. Zhang, H. Yang, Q. Gong, Y. Okuma, M. Horikiri, and Y. F. Miura, “Third order nonlinear optical properties of didodecldimethylammonium-Au(dmit)2,” Appl. Phys. Lett. 75, 1845–1847 (1999).
[CrossRef]

Joffre, M.

M. Joffre, D. Yaron, R. J. Silbey, and J. Zyss, “Second order optical nonlinearity in octupolar aromatic systems,” J. Chem. Phys. 97, 5607–5615 (1992).
[CrossRef]

Kasperczyk, J.

I. V. Kityk, B. Sahraoui, P. X. Nguyen, G. Rivoire, and J. Kasperczyk, “Nonliner optical susceptibilities of tetrathiafulvalene derivatives,” Nonlin. Opt. 18, 13–30 (1997).

Kim, O.-K.

K.-S. Lee and O.-K. Kim, “NLO materials based on stilbozolium salt chromophores,” Photonics Sci. News 4, 9 (1999).

Kityk, I. V.

I. V. Kityk, B. Sahraoui, P. X. Nguyen, G. Rivoire, and J. Kasperczyk, “Nonliner optical susceptibilities of tetrathiafulvalene derivatives,” Nonlin. Opt. 18, 13–30 (1997).

Laible, P. D.

L. X. Chen and P. D. Laible, “Third order nonlinear properties of bacteriochlorophylls in bacterial photosynthetic light-harvesting proteins,” Chem. Phys. Lett. 270, 255–262 (1997).
[CrossRef]

Ledoux, I.

T. Brotin, C. Andraud, I. Ledoux, S. Brasselet, J. Zyss, M. Perrin, A. Thozet, and A. Collet, “n-polyenovanillins (n= 1−6) as a new push–pull polyenes for nonlinear optics: synthesis, structural studies, and experimental and theoretical investigation of their spectroscopic properties, electronic structures, and quadratic hyperpolarizabilities,” Chem. Mater. 8, 890–906 (1996).
[CrossRef]

J. Zyss and I. Ledoux, “Nonlinear optics in multipolar media: theory and experiments,” Chem. Rev. 94, 77–105 (1994).
[CrossRef]

Lee, K.-S.

K.-S. Lee and O.-K. Kim, “NLO materials based on stilbozolium salt chromophores,” Photonics Sci. News 4, 9 (1999).

Miura, Y. F.

S. Wang, W. Huang, T. Zhang, H. Yang, Q. Gong, Y. Okuma, M. Horikiri, and Y. F. Miura, “Third order nonlinear optical properties of didodecldimethylammonium-Au(dmit)2,” Appl. Phys. Lett. 75, 1845–1847 (1999).
[CrossRef]

Nguyen, P. X.

I. V. Kityk, B. Sahraoui, P. X. Nguyen, G. Rivoire, and J. Kasperczyk, “Nonliner optical susceptibilities of tetrathiafulvalene derivatives,” Nonlin. Opt. 18, 13–30 (1997).

Nozdryn, T.

T. Nozdryn, J. Cousseau, B. Sahraoui, X. N. Phu, and G. Rivoire, “Third order nonlinear optical properties of new polyfluoroalkylsulfanyl-substituted tetrathiafulvalene derivatives,” Synth. Met. 94, 57–60 (1998).
[CrossRef]

Okuma, Y.

S. Wang, W. Huang, T. Zhang, H. Yang, Q. Gong, Y. Okuma, M. Horikiri, and Y. F. Miura, “Third order nonlinear optical properties of didodecldimethylammonium-Au(dmit)2,” Appl. Phys. Lett. 75, 1845–1847 (1999).
[CrossRef]

Pellé, F.

C. Andraud, T. Brotin, C. Garcia, F. Pellé, P. Goldner, B. Bigot, and A. Collet, “Theoretical and experimental investigations of the nonlinear optical properties of vanillin, polyenovanillin, and bisvanillin derivatives,” J. Am. Chem. Soc. 116, 2094–2102 (1994).
[CrossRef]

Perrin, M.

T. Brotin, C. Andraud, I. Ledoux, S. Brasselet, J. Zyss, M. Perrin, A. Thozet, and A. Collet, “n-polyenovanillins (n= 1−6) as a new push–pull polyenes for nonlinear optics: synthesis, structural studies, and experimental and theoretical investigation of their spectroscopic properties, electronic structures, and quadratic hyperpolarizabilities,” Chem. Mater. 8, 890–906 (1996).
[CrossRef]

Phu, X. N.

T. Nozdryn, J. Cousseau, B. Sahraoui, X. N. Phu, and G. Rivoire, “Third order nonlinear optical properties of new polyfluoroalkylsulfanyl-substituted tetrathiafulvalene derivatives,” Synth. Met. 94, 57–60 (1998).
[CrossRef]

Phu, X. Nguyen

Rivoire, G.

T. Nozdryn, J. Cousseau, B. Sahraoui, X. N. Phu, and G. Rivoire, “Third order nonlinear optical properties of new polyfluoroalkylsulfanyl-substituted tetrathiafulvalene derivatives,” Synth. Met. 94, 57–60 (1998).
[CrossRef]

B. Sahraoui, G. Rivoire, N. Terkia-Derdra, M. Sallé, and J. Zaremba, “Third order nonlinear optical properties of new bisdithiafulvenyl-substituted tetrathiafulvalene,” J. Opt. Soc. Am. B 15, 923–928 (1998).
[CrossRef]

B. Sahraoui, R. Chavalier, G. Rivoire, J. Zaremba, and M. Sallé, “Nonlinear optical properties of new hyper-tetrathiafulvalene derivatives: saturable absorption and degenerate four wave mixing,” Opt. Commun. 135, 109–115 (1997).
[CrossRef]

I. V. Kityk, B. Sahraoui, P. X. Nguyen, G. Rivoire, and J. Kasperczyk, “Nonliner optical susceptibilities of tetrathiafulvalene derivatives,” Nonlin. Opt. 18, 13–30 (1997).

Sahraoui, B.

B. Sahraoui, X. Nguyen Phu, M. Sallé, and A. Gorgues, “Electronic and nuclear contributions to the third order nonlinear optical susceptibilities of new p-N, N′-dimethylaniline tetrathiafulvalene derivatives,” Opt. Lett. 23, 1811–1813 (1998).
[CrossRef]

T. Nozdryn, J. Cousseau, B. Sahraoui, X. N. Phu, and G. Rivoire, “Third order nonlinear optical properties of new polyfluoroalkylsulfanyl-substituted tetrathiafulvalene derivatives,” Synth. Met. 94, 57–60 (1998).
[CrossRef]

B. Sahraoui, G. Rivoire, N. Terkia-Derdra, M. Sallé, and J. Zaremba, “Third order nonlinear optical properties of new bisdithiafulvenyl-substituted tetrathiafulvalene,” J. Opt. Soc. Am. B 15, 923–928 (1998).
[CrossRef]

B. Sahraoui, R. Chavalier, G. Rivoire, J. Zaremba, and M. Sallé, “Nonlinear optical properties of new hyper-tetrathiafulvalene derivatives: saturable absorption and degenerate four wave mixing,” Opt. Commun. 135, 109–115 (1997).
[CrossRef]

I. V. Kityk, B. Sahraoui, P. X. Nguyen, G. Rivoire, and J. Kasperczyk, “Nonliner optical susceptibilities of tetrathiafulvalene derivatives,” Nonlin. Opt. 18, 13–30 (1997).

Sallé, M.

Silbey, R. J.

M. Joffre, D. Yaron, R. J. Silbey, and J. Zyss, “Second order optical nonlinearity in octupolar aromatic systems,” J. Chem. Phys. 97, 5607–5615 (1992).
[CrossRef]

Terkia-Derdra, N.

Thozet, A.

T. Brotin, C. Andraud, I. Ledoux, S. Brasselet, J. Zyss, M. Perrin, A. Thozet, and A. Collet, “n-polyenovanillins (n= 1−6) as a new push–pull polyenes for nonlinear optics: synthesis, structural studies, and experimental and theoretical investigation of their spectroscopic properties, electronic structures, and quadratic hyperpolarizabilities,” Chem. Mater. 8, 890–906 (1996).
[CrossRef]

Wang, S.

S. Wang, W. Huang, T. Zhang, H. Yang, Q. Gong, Y. Okuma, M. Horikiri, and Y. F. Miura, “Third order nonlinear optical properties of didodecldimethylammonium-Au(dmit)2,” Appl. Phys. Lett. 75, 1845–1847 (1999).
[CrossRef]

Yang, H.

S. Wang, W. Huang, T. Zhang, H. Yang, Q. Gong, Y. Okuma, M. Horikiri, and Y. F. Miura, “Third order nonlinear optical properties of didodecldimethylammonium-Au(dmit)2,” Appl. Phys. Lett. 75, 1845–1847 (1999).
[CrossRef]

Yaron, D.

M. Joffre, D. Yaron, R. J. Silbey, and J. Zyss, “Second order optical nonlinearity in octupolar aromatic systems,” J. Chem. Phys. 97, 5607–5615 (1992).
[CrossRef]

Zabulon, T.

C. Andraud, T. Zabulon, A. Collet, and J. Zyss, “Nonlinera optical properties of polyenoctupoles: a multipolar tensorial quantum analisis,” Chem. Phys. 245, 243–261 (1999).
[CrossRef]

Zaremba, J.

B. Sahraoui, G. Rivoire, N. Terkia-Derdra, M. Sallé, and J. Zaremba, “Third order nonlinear optical properties of new bisdithiafulvenyl-substituted tetrathiafulvalene,” J. Opt. Soc. Am. B 15, 923–928 (1998).
[CrossRef]

B. Sahraoui, R. Chavalier, G. Rivoire, J. Zaremba, and M. Sallé, “Nonlinear optical properties of new hyper-tetrathiafulvalene derivatives: saturable absorption and degenerate four wave mixing,” Opt. Commun. 135, 109–115 (1997).
[CrossRef]

Zhang, T.

S. Wang, W. Huang, T. Zhang, H. Yang, Q. Gong, Y. Okuma, M. Horikiri, and Y. F. Miura, “Third order nonlinear optical properties of didodecldimethylammonium-Au(dmit)2,” Appl. Phys. Lett. 75, 1845–1847 (1999).
[CrossRef]

Zyss, J.

C. Andraud, T. Zabulon, A. Collet, and J. Zyss, “Nonlinera optical properties of polyenoctupoles: a multipolar tensorial quantum analisis,” Chem. Phys. 245, 243–261 (1999).
[CrossRef]

T. Brotin, C. Andraud, I. Ledoux, S. Brasselet, J. Zyss, M. Perrin, A. Thozet, and A. Collet, “n-polyenovanillins (n= 1−6) as a new push–pull polyenes for nonlinear optics: synthesis, structural studies, and experimental and theoretical investigation of their spectroscopic properties, electronic structures, and quadratic hyperpolarizabilities,” Chem. Mater. 8, 890–906 (1996).
[CrossRef]

J. Zyss and I. Ledoux, “Nonlinear optics in multipolar media: theory and experiments,” Chem. Rev. 94, 77–105 (1994).
[CrossRef]

J. Zyss, “Molecular engineering implications of rotational invariance in quadratic nonlinear optics: from dipolar to octupolar molecules and materials,” J. Chem. Phys. 98, 6583–6599 (1993).
[CrossRef]

M. Joffre, D. Yaron, R. J. Silbey, and J. Zyss, “Second order optical nonlinearity in octupolar aromatic systems,” J. Chem. Phys. 97, 5607–5615 (1992).
[CrossRef]

J. Zyss, “Octupolar organic systems in quadratic nonlinear optics: molecules and materials,” Nonlinear Opt. 1, 3–18 (1991).

Appl. Phys. Lett. (1)

S. Wang, W. Huang, T. Zhang, H. Yang, Q. Gong, Y. Okuma, M. Horikiri, and Y. F. Miura, “Third order nonlinear optical properties of didodecldimethylammonium-Au(dmit)2,” Appl. Phys. Lett. 75, 1845–1847 (1999).
[CrossRef]

Chem. Mater. (1)

T. Brotin, C. Andraud, I. Ledoux, S. Brasselet, J. Zyss, M. Perrin, A. Thozet, and A. Collet, “n-polyenovanillins (n= 1−6) as a new push–pull polyenes for nonlinear optics: synthesis, structural studies, and experimental and theoretical investigation of their spectroscopic properties, electronic structures, and quadratic hyperpolarizabilities,” Chem. Mater. 8, 890–906 (1996).
[CrossRef]

Chem. Phys. (1)

C. Andraud, T. Zabulon, A. Collet, and J. Zyss, “Nonlinera optical properties of polyenoctupoles: a multipolar tensorial quantum analisis,” Chem. Phys. 245, 243–261 (1999).
[CrossRef]

Chem. Phys. Lett. (1)

L. X. Chen and P. D. Laible, “Third order nonlinear properties of bacteriochlorophylls in bacterial photosynthetic light-harvesting proteins,” Chem. Phys. Lett. 270, 255–262 (1997).
[CrossRef]

Chem. Rev. (1)

J. Zyss and I. Ledoux, “Nonlinear optics in multipolar media: theory and experiments,” Chem. Rev. 94, 77–105 (1994).
[CrossRef]

J. Am. Chem. Soc. (1)

C. Andraud, T. Brotin, C. Garcia, F. Pellé, P. Goldner, B. Bigot, and A. Collet, “Theoretical and experimental investigations of the nonlinear optical properties of vanillin, polyenovanillin, and bisvanillin derivatives,” J. Am. Chem. Soc. 116, 2094–2102 (1994).
[CrossRef]

J. Chem. Phys. (2)

M. Joffre, D. Yaron, R. J. Silbey, and J. Zyss, “Second order optical nonlinearity in octupolar aromatic systems,” J. Chem. Phys. 97, 5607–5615 (1992).
[CrossRef]

J. Zyss, “Molecular engineering implications of rotational invariance in quadratic nonlinear optics: from dipolar to octupolar molecules and materials,” J. Chem. Phys. 98, 6583–6599 (1993).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nonlin. Opt. (1)

I. V. Kityk, B. Sahraoui, P. X. Nguyen, G. Rivoire, and J. Kasperczyk, “Nonliner optical susceptibilities of tetrathiafulvalene derivatives,” Nonlin. Opt. 18, 13–30 (1997).

Nonlinear Opt. (1)

J. Zyss, “Octupolar organic systems in quadratic nonlinear optics: molecules and materials,” Nonlinear Opt. 1, 3–18 (1991).

Opt. Commun. (1)

B. Sahraoui, R. Chavalier, G. Rivoire, J. Zaremba, and M. Sallé, “Nonlinear optical properties of new hyper-tetrathiafulvalene derivatives: saturable absorption and degenerate four wave mixing,” Opt. Commun. 135, 109–115 (1997).
[CrossRef]

Opt. Lett. (1)

Photonics Sci. News (1)

K.-S. Lee and O.-K. Kim, “NLO materials based on stilbozolium salt chromophores,” Photonics Sci. News 4, 9 (1999).

Synth. Met. (1)

T. Nozdryn, J. Cousseau, B. Sahraoui, X. N. Phu, and G. Rivoire, “Third order nonlinear optical properties of new polyfluoroalkylsulfanyl-substituted tetrathiafulvalene derivatives,” Synth. Met. 94, 57–60 (1998).
[CrossRef]

Other (5)

J. Zyss, “Molecular engineering implications of rotational invariance in nonlinear optics: octupolar systems for quadratic processes,” in Nonlinear Optics: Fundamentals, Materials and Devices, S. Miyata, ed. (North-Holland, Amsterdam, 1992), pp. 33–48.

P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).

J. Zyss and D. Chemla, eds., Nonlinear Optical Properties of Organic Materials and Crystals (Academic, New York, 1987).

M. G. Kuzyk and G. W. Dirk, eds., Characterization Technique and Tabulations for Organic Nonlinear Optics Materials (Marcel Dekker, New York, 1998).

F. Kajzar and J. D. Swalen, eds., Organic Thin Films for Waveguiding Nonlinear Optics (Gordon & Breach, London, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Molecular structures of In and IIn.

Fig. 2
Fig. 2

Experimetnal setup: S, sample; FT, neutral filter; R1R3 delay lines; G, Glan prism; Vc, Vt, control photodiodes; PM, photomultiplier tube; BS’s, beam splitter; other abbreviations defined in text.

Fig. 3
Fig. 3

Nonlinear transmission as a function of incident intensity I1 for octupole I3 and for its corresponding dipolar subunit II3.

Fig. 4
Fig. 4

Linear absorption coefficient (α) versus concentration for octupolar molecule I3 and for its corresponding dipolar subunit II3.

Fig. 5
Fig. 5

DFWM efficient (R) as a function of incident light (I1) for (a) octupolar molecules In and (b) dipolar molecules.

Fig. 6
Fig. 6

Third-order nonlinear optical susceptibility (χ3) as a function of concentration for octupole I3 and for its corresponding dipolar subunit II3.

Tables (3)

Tables Icon

Table 1 Linear Spectroscopic Data of Octupoles In

Tables Icon

Table 2 Linear Spectroscopic Data of Dipoles IIn

Tables Icon

Table 3 Values of Linear Absorption (α) Coefficients, Absolute Value of the Third-Order Nonlinear Optical Susceptibility (χ3), and Second-Order Hyperpolarizability (γ) for Octupolar Molecules and Their Corresponding Dipolar Subunits

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

χ3=χ3+iχ3,
T=exp(-αL)=exp(-μC).
R=I4(0)I3(0)=48π3n2cλχ32I1(0)I2(0)exp(-αL)p coth(pL)+(α/2)]2,
p2=α24-48π3n2cλχ32I1(0)I2(0).
χ3=χsolvent3+F4NAγC,
γ=χ3/F4N,

Metrics