Abstract

We describe a two-center holographic recording method for the storage of persistent holograms in doubly doped lithium niobate crystals. We use a two-center model, and we show that our experimental observations can be explained by the model. We describe experimental methods for finding the unknown material parameters of LiNbO3:Fe:Mn crystals for the two-center model, and we discuss the optimization of two-center recording.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
    [CrossRef] [PubMed]
  2. I. McMichael, W. Christian, D. Pletcher, T. Y. Chang, and J. H. Hong, “Compact holographic storage demonstrator with rapid access,” Appl. Opt. 35, 2375–2379 (1996).
    [CrossRef] [PubMed]
  3. J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, and G. Wittmann, “Holographic storage promises high data density,” Laser Focus World, April 1996, pp. 81–93.
  4. J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
    [CrossRef]
  5. F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
    [CrossRef]
  6. D. von der Linde, A. M. Glass, and K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
    [CrossRef]
  7. R. A. Rupp, H. C. Külich, U. Schürk, and E. Krätzig, “Diffraction by difference holograms in electrooptic crystals,” Ferroelectrics 8, 25–30 (1987).
    [CrossRef]
  8. H. C. Külich, “A new approach to read volume holograms at different wavelengths,” Opt. Commun. 64, 407–411 (1987).
    [CrossRef]
  9. H. Vormann and E. Krätzig, “Two step excitation in LiTaO3:Fe for optical data storage,” Solid State Commun. 49, 843–847 (1984).
    [CrossRef]
  10. K. Buse, F. Jermann, and E. Krätzig, “Two-step photorefractive hologram recording in LiNbO3:Fe,” Ferroelectrics 141, 197–205 (1993).
    [CrossRef]
  11. K. Buse, F. Jermann, and E. Krätzig, “Infrared holographic recording in LiNbO3:Cu,” Appl. Phys. A 58, 191–195 (1994).
    [CrossRef]
  12. K. Buse, F. Jermann, and E. Krätzig, “Infrared holographic recording in LiNbO3:Fe and LiNbO3:Cu,” Opt. Mater. 4, 237–240 (1995).
    [CrossRef]
  13. N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, “Comparative study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
    [CrossRef]
  14. N. Zotov, H. Boysen, J. Schneider, and F. Frey, “Application of combined neutron and x-ray powder diffraction refinements to the structure of congruent lithium niobate,” Mater. Sci. Forum 166–169, 631–636 (1994).
    [CrossRef]
  15. Y. S. Bai, R. R. Neurgaonkar, and R. Kachru, “Resonant two-photon photorefractive grating in praeseodymium-doped strontium barium niobate with cw lasers,” Opt. Lett. 21, 567–569 (1996).
    [CrossRef] [PubMed]
  16. Y. S. Bai and R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78, 2944–2947 (1997).
    [CrossRef]
  17. H. Guenther, G. Wittmann, R. M. Macfarlane, and R. R. Neurgaonkar, “Intensity dependence and white-light gating of two-color photorefractive gratings in LiNbO3,” Opt. Lett. 22, 1305–1307 (1997).
    [CrossRef]
  18. H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, and R. Neurgaonkar, “Two-color holography in reduced near-stoichiometric lithium niobate,” Appl. Opt. 37, 7611–7623 (1998).
    [CrossRef]
  19. L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neugaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
    [CrossRef] [PubMed]
  20. K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
    [CrossRef]
  21. A. Adibi, K. Buse, and D. Psaltis, “Hologram multiplexing using two-step recording,” in Advanced Optical Memorials and Interfaces to Computer Storage, Z. U. Hasan and P. A. Mitkas, ed., Proc. SPIE 3468, 20–29 (1998).
    [CrossRef]
  22. D. L. Staebler and W. Phillips, “Hologram storage in photochromic LiNbO3,” Appl. Phys. Lett. 24, 268–270 (1974).
    [CrossRef]
  23. O. Thiemann and O. F. Schirmer, “Energy levels of several 3d impurities and EPR of Ti3+ in LiNbO3,” in Electro-Optic and Magneto-Optic Materials, J.-P. Huignard, ed., Proc. SPIE 1018, 18–22 (1988).
    [CrossRef]
  24. W. Phillips, J. J. Amodei, and D. L. Staebler, “Optical and holographic storage properties of transition metal doped lithium niobate,” RCA Rev. 33, 94–109 (1972).
  25. F. Jermann and J. Otten, “Light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B 10, 2085–2092 (1993).
    [CrossRef]
  26. R. T. Smith and F. S. Welsh, “Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate,” J. Appl. Phys. 42, 2219–2230 (1971).
    [CrossRef]
  27. A. Mansingh and A. Dhar, “The ac conductivity and dielectric constant of lithium niobate single crystals,” J. Phys. D 18, 2059–2071 (1985).
    [CrossRef]
  28. K. Onuki, N. Uchida, and T. Saku, “Interferometric method for measuring electro-optic coefficients in crystals,” J. Opt. Soc. Am. 62, 1030–1032 (1972).
    [CrossRef]
  29. G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
    [CrossRef]
  30. Y. Ohmori, M. Yamaguchi, K. Yoshino, and Y. Inuishi, “Electron hall mobility in reduced LiNbO3,” Jpn. J. Appl. Phys. 15, 2263–2264 (1976).
    [CrossRef]
  31. H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers inLiNbO3, studied by optical, Mössbauer, and EPR methods,” Appl. Phys. (N.Y.) 12, 355–368 (1977).
    [CrossRef]
  32. E. Krätzig and H. Kurz, “Photo-induced currents and voltages in LiNbO3,” Ferroelectrics 13, 295–296 (1976).
    [CrossRef]
  33. E. Krätzig and H. Kurz, “Photorefractive and photovoltaic effects in doped LiNbO3,” Opt. Acta 24, 475–482 (1977).
    [CrossRef]
  34. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  35. F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–898 (1996).
    [CrossRef] [PubMed]
  36. R. Orlowski and E. Krätzig, “Holographic method for the determination of photoinduced electron and hole transport in electro-optic crystals,” Solid State Commun. 27, 1351–1354 (1978).
    [CrossRef]
  37. A. Adibi, K. Buse, and D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
    [CrossRef]
  38. A. Adibi, K. Buse, and D. Psaltis, “Multiplexing holograms in LiNbO3:Fe:Mn crystals,” Opt. Lett. 24, 652–654 (1999).
    [CrossRef]
  39. A. Adibi, K. Buse, and D. Psaltis, “Sensitivity improvement in two-center holographic recording,” Opt. Lett. 25, 539–541 (2000).
    [CrossRef]

2000 (1)

1999 (2)

A. Adibi, K. Buse, and D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Multiplexing holograms in LiNbO3:Fe:Mn crystals,” Opt. Lett. 24, 652–654 (1999).
[CrossRef]

1998 (4)

H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, and R. Neurgaonkar, “Two-color holography in reduced near-stoichiometric lithium niobate,” Appl. Opt. 37, 7611–7623 (1998).
[CrossRef]

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neugaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Hologram multiplexing using two-step recording,” in Advanced Optical Memorials and Interfaces to Computer Storage, Z. U. Hasan and P. A. Mitkas, ed., Proc. SPIE 3468, 20–29 (1998).
[CrossRef]

1997 (2)

Y. S. Bai and R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78, 2944–2947 (1997).
[CrossRef]

H. Guenther, G. Wittmann, R. M. Macfarlane, and R. R. Neurgaonkar, “Intensity dependence and white-light gating of two-color photorefractive gratings in LiNbO3,” Opt. Lett. 22, 1305–1307 (1997).
[CrossRef]

1996 (3)

1995 (1)

K. Buse, F. Jermann, and E. Krätzig, “Infrared holographic recording in LiNbO3:Fe and LiNbO3:Cu,” Opt. Mater. 4, 237–240 (1995).
[CrossRef]

1994 (2)

K. Buse, F. Jermann, and E. Krätzig, “Infrared holographic recording in LiNbO3:Cu,” Appl. Phys. A 58, 191–195 (1994).
[CrossRef]

N. Zotov, H. Boysen, J. Schneider, and F. Frey, “Application of combined neutron and x-ray powder diffraction refinements to the structure of congruent lithium niobate,” Mater. Sci. Forum 166–169, 631–636 (1994).
[CrossRef]

1993 (3)

1992 (1)

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, “Comparative study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

1988 (1)

O. Thiemann and O. F. Schirmer, “Energy levels of several 3d impurities and EPR of Ti3+ in LiNbO3,” in Electro-Optic and Magneto-Optic Materials, J.-P. Huignard, ed., Proc. SPIE 1018, 18–22 (1988).
[CrossRef]

1987 (2)

R. A. Rupp, H. C. Külich, U. Schürk, and E. Krätzig, “Diffraction by difference holograms in electrooptic crystals,” Ferroelectrics 8, 25–30 (1987).
[CrossRef]

H. C. Külich, “A new approach to read volume holograms at different wavelengths,” Opt. Commun. 64, 407–411 (1987).
[CrossRef]

1985 (1)

A. Mansingh and A. Dhar, “The ac conductivity and dielectric constant of lithium niobate single crystals,” J. Phys. D 18, 2059–2071 (1985).
[CrossRef]

1984 (2)

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

H. Vormann and E. Krätzig, “Two step excitation in LiTaO3:Fe for optical data storage,” Solid State Commun. 49, 843–847 (1984).
[CrossRef]

1978 (1)

R. Orlowski and E. Krätzig, “Holographic method for the determination of photoinduced electron and hole transport in electro-optic crystals,” Solid State Commun. 27, 1351–1354 (1978).
[CrossRef]

1977 (2)

E. Krätzig and H. Kurz, “Photorefractive and photovoltaic effects in doped LiNbO3,” Opt. Acta 24, 475–482 (1977).
[CrossRef]

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers inLiNbO3, studied by optical, Mössbauer, and EPR methods,” Appl. Phys. (N.Y.) 12, 355–368 (1977).
[CrossRef]

1976 (2)

E. Krätzig and H. Kurz, “Photo-induced currents and voltages in LiNbO3,” Ferroelectrics 13, 295–296 (1976).
[CrossRef]

Y. Ohmori, M. Yamaguchi, K. Yoshino, and Y. Inuishi, “Electron hall mobility in reduced LiNbO3,” Jpn. J. Appl. Phys. 15, 2263–2264 (1976).
[CrossRef]

1974 (2)

D. von der Linde, A. M. Glass, and K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

D. L. Staebler and W. Phillips, “Hologram storage in photochromic LiNbO3,” Appl. Phys. Lett. 24, 268–270 (1974).
[CrossRef]

1972 (3)

F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[CrossRef]

K. Onuki, N. Uchida, and T. Saku, “Interferometric method for measuring electro-optic coefficients in crystals,” J. Opt. Soc. Am. 62, 1030–1032 (1972).
[CrossRef]

W. Phillips, J. J. Amodei, and D. L. Staebler, “Optical and holographic storage properties of transition metal doped lithium niobate,” RCA Rev. 33, 94–109 (1972).

1971 (2)

R. T. Smith and F. S. Welsh, “Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate,” J. Appl. Phys. 42, 2219–2230 (1971).
[CrossRef]

J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Adibi, A.

A. Adibi, K. Buse, and D. Psaltis, “Sensitivity improvement in two-center holographic recording,” Opt. Lett. 25, 539–541 (2000).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Multiplexing holograms in LiNbO3:Fe:Mn crystals,” Opt. Lett. 24, 652–654 (1999).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Hologram multiplexing using two-step recording,” in Advanced Optical Memorials and Interfaces to Computer Storage, Z. U. Hasan and P. A. Mitkas, ed., Proc. SPIE 3468, 20–29 (1998).
[CrossRef]

K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

Akella, A.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neugaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Amodei, J. J.

W. Phillips, J. J. Amodei, and D. L. Staebler, “Optical and holographic storage properties of transition metal doped lithium niobate,” RCA Rev. 33, 94–109 (1972).

J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Asano, H.

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, “Comparative study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Bai, Y. S.

Y. S. Bai and R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78, 2944–2947 (1997).
[CrossRef]

Y. S. Bai, R. R. Neurgaonkar, and R. Kachru, “Resonant two-photon photorefractive grating in praeseodymium-doped strontium barium niobate with cw lasers,” Opt. Lett. 21, 567–569 (1996).
[CrossRef] [PubMed]

Bismuth, G.

F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[CrossRef]

Boysen, H.

N. Zotov, H. Boysen, J. Schneider, and F. Frey, “Application of combined neutron and x-ray powder diffraction refinements to the structure of congruent lithium niobate,” Mater. Sci. Forum 166–169, 631–636 (1994).
[CrossRef]

Burr, G. W.

Buse, K.

A. Adibi, K. Buse, and D. Psaltis, “Sensitivity improvement in two-center holographic recording,” Opt. Lett. 25, 539–541 (2000).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Multiplexing holograms in LiNbO3:Fe:Mn crystals,” Opt. Lett. 24, 652–654 (1999).
[CrossRef]

K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Hologram multiplexing using two-step recording,” in Advanced Optical Memorials and Interfaces to Computer Storage, Z. U. Hasan and P. A. Mitkas, ed., Proc. SPIE 3468, 20–29 (1998).
[CrossRef]

K. Buse, F. Jermann, and E. Krätzig, “Infrared holographic recording in LiNbO3:Fe and LiNbO3:Cu,” Opt. Mater. 4, 237–240 (1995).
[CrossRef]

K. Buse, F. Jermann, and E. Krätzig, “Infrared holographic recording in LiNbO3:Cu,” Appl. Phys. A 58, 191–195 (1994).
[CrossRef]

K. Buse, F. Jermann, and E. Krätzig, “Two-step photorefractive hologram recording in LiNbO3:Fe,” Ferroelectrics 141, 197–205 (1993).
[CrossRef]

Chang, T. Y.

Christian, W.

Dhar, A.

A. Mansingh and A. Dhar, “The ac conductivity and dielectric constant of lithium niobate single crystals,” J. Phys. D 18, 2059–2071 (1985).
[CrossRef]

Dischler, B.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers inLiNbO3, studied by optical, Mössbauer, and EPR methods,” Appl. Phys. (N.Y.) 12, 355–368 (1977).
[CrossRef]

Edwards, G. J.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Engelmann, H.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers inLiNbO3, studied by optical, Mössbauer, and EPR methods,” Appl. Phys. (N.Y.) 12, 355–368 (1977).
[CrossRef]

Frey, F.

N. Zotov, H. Boysen, J. Schneider, and F. Frey, “Application of combined neutron and x-ray powder diffraction refinements to the structure of congruent lithium niobate,” Mater. Sci. Forum 166–169, 631–636 (1994).
[CrossRef]

Furukawa, Y.

Glass, A. M.

D. von der Linde, A. M. Glass, and K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

Gonser, U.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers inLiNbO3, studied by optical, Mössbauer, and EPR methods,” Appl. Phys. (N.Y.) 12, 355–368 (1977).
[CrossRef]

Guenther, H.

Hayashi, T.

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, “Comparative study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Hesselink, L.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neugaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Hong, J. H.

Inuishi, Y.

Y. Ohmori, M. Yamaguchi, K. Yoshino, and Y. Inuishi, “Electron hall mobility in reduced LiNbO3,” Jpn. J. Appl. Phys. 15, 2263–2264 (1976).
[CrossRef]

Iyi, N.

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, “Comparative study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Izumi, F.

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, “Comparative study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Jermann, F.

K. Buse, F. Jermann, and E. Krätzig, “Infrared holographic recording in LiNbO3:Fe and LiNbO3:Cu,” Opt. Mater. 4, 237–240 (1995).
[CrossRef]

K. Buse, F. Jermann, and E. Krätzig, “Infrared holographic recording in LiNbO3:Cu,” Appl. Phys. A 58, 191–195 (1994).
[CrossRef]

K. Buse, F. Jermann, and E. Krätzig, “Two-step photorefractive hologram recording in LiNbO3:Fe,” Ferroelectrics 141, 197–205 (1993).
[CrossRef]

F. Jermann and J. Otten, “Light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B 10, 2085–2092 (1993).
[CrossRef]

Kachru, R.

Y. S. Bai and R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78, 2944–2947 (1997).
[CrossRef]

Y. S. Bai, R. R. Neurgaonkar, and R. Kachru, “Resonant two-photon photorefractive grating in praeseodymium-doped strontium barium niobate with cw lasers,” Opt. Lett. 21, 567–569 (1996).
[CrossRef] [PubMed]

Keune, W.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers inLiNbO3, studied by optical, Mössbauer, and EPR methods,” Appl. Phys. (N.Y.) 12, 355–368 (1977).
[CrossRef]

Kimura, S.

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, “Comparative study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Kitamura, K.

H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, and R. Neurgaonkar, “Two-color holography in reduced near-stoichiometric lithium niobate,” Appl. Opt. 37, 7611–7623 (1998).
[CrossRef]

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, “Comparative study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Krätzig, E.

K. Buse, F. Jermann, and E. Krätzig, “Infrared holographic recording in LiNbO3:Fe and LiNbO3:Cu,” Opt. Mater. 4, 237–240 (1995).
[CrossRef]

K. Buse, F. Jermann, and E. Krätzig, “Infrared holographic recording in LiNbO3:Cu,” Appl. Phys. A 58, 191–195 (1994).
[CrossRef]

K. Buse, F. Jermann, and E. Krätzig, “Two-step photorefractive hologram recording in LiNbO3:Fe,” Ferroelectrics 141, 197–205 (1993).
[CrossRef]

R. A. Rupp, H. C. Külich, U. Schürk, and E. Krätzig, “Diffraction by difference holograms in electrooptic crystals,” Ferroelectrics 8, 25–30 (1987).
[CrossRef]

H. Vormann and E. Krätzig, “Two step excitation in LiTaO3:Fe for optical data storage,” Solid State Commun. 49, 843–847 (1984).
[CrossRef]

R. Orlowski and E. Krätzig, “Holographic method for the determination of photoinduced electron and hole transport in electro-optic crystals,” Solid State Commun. 27, 1351–1354 (1978).
[CrossRef]

E. Krätzig and H. Kurz, “Photorefractive and photovoltaic effects in doped LiNbO3,” Opt. Acta 24, 475–482 (1977).
[CrossRef]

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers inLiNbO3, studied by optical, Mössbauer, and EPR methods,” Appl. Phys. (N.Y.) 12, 355–368 (1977).
[CrossRef]

E. Krätzig and H. Kurz, “Photo-induced currents and voltages in LiNbO3,” Ferroelectrics 13, 295–296 (1976).
[CrossRef]

Külich, H. C.

H. C. Külich, “A new approach to read volume holograms at different wavelengths,” Opt. Commun. 64, 407–411 (1987).
[CrossRef]

R. A. Rupp, H. C. Külich, U. Schürk, and E. Krätzig, “Diffraction by difference holograms in electrooptic crystals,” Ferroelectrics 8, 25–30 (1987).
[CrossRef]

Kurz, H.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers inLiNbO3, studied by optical, Mössbauer, and EPR methods,” Appl. Phys. (N.Y.) 12, 355–368 (1977).
[CrossRef]

E. Krätzig and H. Kurz, “Photorefractive and photovoltaic effects in doped LiNbO3,” Opt. Acta 24, 475–482 (1977).
[CrossRef]

E. Krätzig and H. Kurz, “Photo-induced currents and voltages in LiNbO3,” Ferroelectrics 13, 295–296 (1976).
[CrossRef]

Lande, D.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neugaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Lawrence, M.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Liu, A.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neugaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Macfarlane, R.

Macfarlane, R. M.

Mansingh, A.

A. Mansingh and A. Dhar, “The ac conductivity and dielectric constant of lithium niobate single crystals,” J. Phys. D 18, 2059–2071 (1985).
[CrossRef]

McMichael, I.

Micheron, F.

F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[CrossRef]

Mok, F. H.

Neugaonkar, R. R.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neugaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Neurgaonkar, R.

Neurgaonkar, R. R.

Ohmori, Y.

Y. Ohmori, M. Yamaguchi, K. Yoshino, and Y. Inuishi, “Electron hall mobility in reduced LiNbO3,” Jpn. J. Appl. Phys. 15, 2263–2264 (1976).
[CrossRef]

Onuki, K.

Orlov, S. S.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neugaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Orlowski, R.

R. Orlowski and E. Krätzig, “Holographic method for the determination of photoinduced electron and hole transport in electro-optic crystals,” Solid State Commun. 27, 1351–1354 (1978).
[CrossRef]

Otten, J.

Phillips, W.

D. L. Staebler and W. Phillips, “Hologram storage in photochromic LiNbO3,” Appl. Phys. Lett. 24, 268–270 (1974).
[CrossRef]

W. Phillips, J. J. Amodei, and D. L. Staebler, “Optical and holographic storage properties of transition metal doped lithium niobate,” RCA Rev. 33, 94–109 (1972).

Pletcher, D.

Psaltis, D.

A. Adibi, K. Buse, and D. Psaltis, “Sensitivity improvement in two-center holographic recording,” Opt. Lett. 25, 539–541 (2000).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Multiplexing holograms in LiNbO3:Fe:Mn crystals,” Opt. Lett. 24, 652–654 (1999).
[CrossRef]

K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Hologram multiplexing using two-step recording,” in Advanced Optical Memorials and Interfaces to Computer Storage, Z. U. Hasan and P. A. Mitkas, ed., Proc. SPIE 3468, 20–29 (1998).
[CrossRef]

F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–898 (1996).
[CrossRef] [PubMed]

Räuber, A.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers inLiNbO3, studied by optical, Mössbauer, and EPR methods,” Appl. Phys. (N.Y.) 12, 355–368 (1977).
[CrossRef]

Rodgers, K. F.

D. von der Linde, A. M. Glass, and K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

Rupp, R. A.

R. A. Rupp, H. C. Külich, U. Schürk, and E. Krätzig, “Diffraction by difference holograms in electrooptic crystals,” Ferroelectrics 8, 25–30 (1987).
[CrossRef]

Saku, T.

Schirmer, O. F.

O. Thiemann and O. F. Schirmer, “Energy levels of several 3d impurities and EPR of Ti3+ in LiNbO3,” in Electro-Optic and Magneto-Optic Materials, J.-P. Huignard, ed., Proc. SPIE 1018, 18–22 (1988).
[CrossRef]

Schneider, J.

N. Zotov, H. Boysen, J. Schneider, and F. Frey, “Application of combined neutron and x-ray powder diffraction refinements to the structure of congruent lithium niobate,” Mater. Sci. Forum 166–169, 631–636 (1994).
[CrossRef]

Schürk, U.

R. A. Rupp, H. C. Külich, U. Schürk, and E. Krätzig, “Diffraction by difference holograms in electrooptic crystals,” Ferroelectrics 8, 25–30 (1987).
[CrossRef]

Smith, R. T.

R. T. Smith and F. S. Welsh, “Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate,” J. Appl. Phys. 42, 2219–2230 (1971).
[CrossRef]

Staebler, D. L.

D. L. Staebler and W. Phillips, “Hologram storage in photochromic LiNbO3,” Appl. Phys. Lett. 24, 268–270 (1974).
[CrossRef]

W. Phillips, J. J. Amodei, and D. L. Staebler, “Optical and holographic storage properties of transition metal doped lithium niobate,” RCA Rev. 33, 94–109 (1972).

J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Thiemann, O.

O. Thiemann and O. F. Schirmer, “Energy levels of several 3d impurities and EPR of Ti3+ in LiNbO3,” in Electro-Optic and Magneto-Optic Materials, J.-P. Huignard, ed., Proc. SPIE 1018, 18–22 (1988).
[CrossRef]

Uchida, N.

von der Linde, D.

D. von der Linde, A. M. Glass, and K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

Vormann, H.

H. Vormann and E. Krätzig, “Two step excitation in LiTaO3:Fe for optical data storage,” Solid State Commun. 49, 843–847 (1984).
[CrossRef]

Welsh, F. S.

R. T. Smith and F. S. Welsh, “Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate,” J. Appl. Phys. 42, 2219–2230 (1971).
[CrossRef]

Wittmann, G.

Yamaguchi, M.

Y. Ohmori, M. Yamaguchi, K. Yoshino, and Y. Inuishi, “Electron hall mobility in reduced LiNbO3,” Jpn. J. Appl. Phys. 15, 2263–2264 (1976).
[CrossRef]

Yamamoto, J. K.

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, “Comparative study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Yoshino, K.

Y. Ohmori, M. Yamaguchi, K. Yoshino, and Y. Inuishi, “Electron hall mobility in reduced LiNbO3,” Jpn. J. Appl. Phys. 15, 2263–2264 (1976).
[CrossRef]

Zotov, N.

N. Zotov, H. Boysen, J. Schneider, and F. Frey, “Application of combined neutron and x-ray powder diffraction refinements to the structure of congruent lithium niobate,” Mater. Sci. Forum 166–169, 631–636 (1994).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. (N.Y.) (1)

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers inLiNbO3, studied by optical, Mössbauer, and EPR methods,” Appl. Phys. (N.Y.) 12, 355–368 (1977).
[CrossRef]

Appl. Phys. A (1)

K. Buse, F. Jermann, and E. Krätzig, “Infrared holographic recording in LiNbO3:Cu,” Appl. Phys. A 58, 191–195 (1994).
[CrossRef]

Appl. Phys. Lett. (5)

J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[CrossRef]

D. von der Linde, A. M. Glass, and K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
[CrossRef]

D. L. Staebler and W. Phillips, “Hologram storage in photochromic LiNbO3,” Appl. Phys. Lett. 24, 268–270 (1974).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Ferroelectrics (3)

E. Krätzig and H. Kurz, “Photo-induced currents and voltages in LiNbO3,” Ferroelectrics 13, 295–296 (1976).
[CrossRef]

R. A. Rupp, H. C. Külich, U. Schürk, and E. Krätzig, “Diffraction by difference holograms in electrooptic crystals,” Ferroelectrics 8, 25–30 (1987).
[CrossRef]

K. Buse, F. Jermann, and E. Krätzig, “Two-step photorefractive hologram recording in LiNbO3:Fe,” Ferroelectrics 141, 197–205 (1993).
[CrossRef]

J. Appl. Phys. (1)

R. T. Smith and F. S. Welsh, “Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate,” J. Appl. Phys. 42, 2219–2230 (1971).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

A. Mansingh and A. Dhar, “The ac conductivity and dielectric constant of lithium niobate single crystals,” J. Phys. D 18, 2059–2071 (1985).
[CrossRef]

J. Solid State Chem. (1)

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, “Comparative study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Ohmori, M. Yamaguchi, K. Yoshino, and Y. Inuishi, “Electron hall mobility in reduced LiNbO3,” Jpn. J. Appl. Phys. 15, 2263–2264 (1976).
[CrossRef]

Mater. Sci. Forum (1)

N. Zotov, H. Boysen, J. Schneider, and F. Frey, “Application of combined neutron and x-ray powder diffraction refinements to the structure of congruent lithium niobate,” Mater. Sci. Forum 166–169, 631–636 (1994).
[CrossRef]

Nature (1)

K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

Opt. Acta (1)

E. Krätzig and H. Kurz, “Photorefractive and photovoltaic effects in doped LiNbO3,” Opt. Acta 24, 475–482 (1977).
[CrossRef]

Opt. Commun. (1)

H. C. Külich, “A new approach to read volume holograms at different wavelengths,” Opt. Commun. 64, 407–411 (1987).
[CrossRef]

Opt. Lett. (6)

Opt. Mater. (1)

K. Buse, F. Jermann, and E. Krätzig, “Infrared holographic recording in LiNbO3:Fe and LiNbO3:Cu,” Opt. Mater. 4, 237–240 (1995).
[CrossRef]

Opt. Quantum Electron. (1)

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Phys. Rev. Lett. (1)

Y. S. Bai and R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78, 2944–2947 (1997).
[CrossRef]

Proc. SPIE (2)

A. Adibi, K. Buse, and D. Psaltis, “Hologram multiplexing using two-step recording,” in Advanced Optical Memorials and Interfaces to Computer Storage, Z. U. Hasan and P. A. Mitkas, ed., Proc. SPIE 3468, 20–29 (1998).
[CrossRef]

O. Thiemann and O. F. Schirmer, “Energy levels of several 3d impurities and EPR of Ti3+ in LiNbO3,” in Electro-Optic and Magneto-Optic Materials, J.-P. Huignard, ed., Proc. SPIE 1018, 18–22 (1988).
[CrossRef]

RCA Rev. (1)

W. Phillips, J. J. Amodei, and D. L. Staebler, “Optical and holographic storage properties of transition metal doped lithium niobate,” RCA Rev. 33, 94–109 (1972).

Science (1)

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neugaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Solid State Commun. (2)

H. Vormann and E. Krätzig, “Two step excitation in LiTaO3:Fe for optical data storage,” Solid State Commun. 49, 843–847 (1984).
[CrossRef]

R. Orlowski and E. Krätzig, “Holographic method for the determination of photoinduced electron and hole transport in electro-optic crystals,” Solid State Commun. 27, 1351–1354 (1978).
[CrossRef]

Other (1)

J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, and G. Wittmann, “Holographic storage promises high data density,” Laser Focus World, April 1996, pp. 81–93.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Energy-band diagram for a typical LiNbO3 crystal doped with Fe and Mn. CB and VB, conduction and valance bands, respectively.

Fig. 2
Fig. 2

Experimental setup for holographic recording experiments: (a) basic idea, (b) actual setup. SF, spatial filter; M, mirror; L1, L2, lenses; BS, beam splitter; S1–S3, shutters.

Fig. 3
Fig. 3

Normalized transmitted red intensity in a 0.85-mm LiNbO3:Fe:Mn crystal. (a) Sensitization experiment: The crystal is sensitized with a homogeneous UV beam (wavelength, 365 nm; intensity, 20 mW/cm2) and monitored by a weak red beam (wavelength, 633 nm; intensity, 0.6 mW/cm2; ordinary polarization). (b) Bleaching experiment: The sensitized crystal is bleached with a strong red beam (wavelength, 633 nm; intensity, 300 mW/cm2; ordinary polarization).

Fig. 4
Fig. 4

Diffraction efficiency η versus time for recording, without and with the simultaneous presence of UV light, and for subsequent reading in a LiNbO3:Fe:Mn crystal.

Fig. 5
Fig. 5

Diffraction efficiency η versus time for erasure with the simultaneous presence of UV and one of the red recording beams. The hologram was recorded by simultaneous presence of UV and two red recording beams to an arbitrary diffraction efficiency of nearly 7%.

Fig. 6
Fig. 6

Variation of bleaching speed (1/τb) with bleaching intensity (IR). Solid line, linear fit to the experimental data.

Fig. 7
Fig. 7

Variation of (a) initial sensitization speed {|[d(It/Ii)/dt]|t=0|}/IUV0) and (b) sensitization strength (ratio of the final transmitted red power to the initial transmitted power) with sensitizing intensity (IUV0). Solid line, linear fit to the experimental data.

Fig. 8
Fig. 8

Comparison of theory and experiment: (a) Sensitization by a 20-mW/cm2 homogeneous UV beam at 365 nm monitored by a weak red beam (wavelength, 633 nm). (b) Bleaching of a sensitized crystal by a 300-mW/cm2 red beam. (c) Holographic recording by simultaneous presence of a UV beam (wavelength, 365 nm; intensity, 20 mW/cm2) and two red beams (wavelength, 633 nm; intensity of each beam, 250 mW/cm2; ordinary polarization) with subsequent readout achieved by one of the red recording beams only.

Fig. 9
Fig. 9

Variation of the final persistent diffraction efficiency with recording intensity while (a) the ratio of the recording to sensitizing intensity is fixed (IR0/IUV0=25) and (b) the sensitizing intensity is fixed (IUV0=20 mW/cm2). The wavelength of the sensitizing beam in the calculations is 365 nm. αUV=0 (solid) and αUV=9mm-1 (dashed) are the variation when the absorption of the UV light within the crystal is and is not neglected, respectively.

Fig. 10
Fig. 10

Spatial variations of recording intensity (IR), electron concentration in Fe traps (NFe-), and bulk photovoltaic current (jph) over two grating periods (Λ) at different times in a thin slice of the crystal during holographic recording. Recording is accomplished by two red beams (wavelength, 633 nm; intensity of each beam, 300 mW/cm2; ordinary polarization) (a) without UV illumination during recording, and (b) with simultaneous illumination with a UV beam (wavelength, 365 nm; intensity, 20 mW/cm2). In both cases it is assumed that the crystal was preilluminated by the UV beam for two hours before recording.

Fig. 11
Fig. 11

Spatial variations of electron concentrations in (a) Fe(NFe-) and (b) Mn traps (NMn-) and (c) their sum (NFe-+NMn-) over two grating periods (Λ) at different times (B, at the beginning of recording, S, at saturation, and F, after sufficient readout) in a thin slice of the crystal during holographic recording. Recording is achieved by two red beams (wavelength, 633 nm; intensity of each beam, 300 mW/cm2; ordinary polarization) with simultaneous illumination with a UV beam (wavelength, 365 nm; intensity, 20 mW/cm2). Note that the spatial variation of NFe- has a 180° phase shift from that of the recording intensity, as shown in Fig. 10(b).

Fig. 12
Fig. 12

Effect of Fe concentration on two-center holographic recording in LiNbO3:Fe:Mn crystals. (a) Theoretical variation of the final hologram strength (approximate M/#) with Fe concentration while the Mn concentration is fixed at 3.8×1018 cm-3 (equivalent to 0.01 wt. % MnO). (b) Recording and readout curves for two LiNbO3:Fe:Mn crystals, each doped with 0.01 wt. % MnO. The Fe doping level for each crystal is shown. Recording is accomplished by a UV beam (wavelength, 404 nm; intensity, 4 mW/cm2) and two red beams (wavelength, 633 nm; intensity of each beam, 300 mW/cm2; ordinary polarization). Readout uses one of the red recording beams only.

Fig. 13
Fig. 13

Effect of Mn concentration on two-center holographic recording in LiNbO3:Fe:Mn crystals. (a) Theoretical variation of the final hologram strength (approximate M/#) with Mn concentration while the Fe concentration is fixed at 2.5×1019 cm-3 (equivalent to 0.075 wt. %Fe2O3). In the simulation it is assumed that all Fe traps are empty and that 90% of the Mn traps are filled with electrons. (b) Recording and readout curves for three LiNbO3:Fe:Mn crystals, each doped with 0.05 wt. %Fe2O3. The Mn doping level for each crystal is shown. Recording is achieved by a UV beam (wavelength, 404 nm; intensity, 4 mW/cm2) and two red beams (wavelength, 633 nm; intensity of each beam, 300 mW/cm2; ordinary polarization). Readout uses one of the red recording beams only.

Fig. 14
Fig. 14

Effect of annealing on two-center holographic recording in LiNbO3:Fe:Mn crystals. (a) Theoretical variation of the final hologram strength (approximate M/#) with the portion of filled Mn traps while the Fe and Mn concentrations are fixed at 2.5×1019 cm-3 (equivalent to 0.075 wt. %Fe2O3) and 3.8×1018 cm-3 (equivalent to 0.01 wt. % MnO), respectively. (b) Recording and readout curves for four LiNbO3:Fe:Mn crystals, each doped with 0.075 wt. % Fe2O3 and 0.01 wt. % MnO. The annealing is achieved differently for different crystals (as specified in the text). Recording is performed by a UV beam (wavelength, 365 nm; intensity, 20 mW/cm2) and two red beams (wavelength, 633 nm; intensity of each beam, 300 mW/cm2; ordinary polarization). Readout uses one of the red recording beams only.

Fig. 15
Fig. 15

Absorption spectra of three LiNbO3:Fe:Mn crystals. The crystals are from the same boule, but they are annealed differently.

Fig. 16
Fig. 16

Absorption spectrum of a typical LiNbO3:Mn crystal.

Fig. 17
Fig. 17

Effect of sensitizing wavelength on two-center holographic recording in LiNbO3:Fe:Mn crystals. (a) Recording and readout curves for a 0.85-mm-thick LiNbO3:Fe:Mn crystal doped with 0.075 wt. % Fe2O3 and 0.01 wt. % MnO with two different UV wavelengths. Recording is accomplished by a UV beam (wavelength and intensity in each case are specified) and two red beams (wavelength, 633 nm; intensity of each beam, 300 mW/cm2; ordinary polarization). Readout uses one of the red recording beams only. (b) Selectivity curves of two holograms recorded by the same two red beams and one UV beam with different wavelengths.

Fig. 18
Fig. 18

Variation of the approximate M/# with crystal thickness in two-center holographic recording for different absorption coefficients of the sensitizing beam (intensity, 20 mW/cm2). In this calculation we assumed that recording is achieved by the simultaneous presence of the sensitizing beam and two red beams (wavelength, 633 nm; intensity of each beam, 300 mW/cm2; ordinary polarizaton).

Fig. 19
Fig. 19

Variation of erasure speed (1/τe) with the intensity of the red reading beam (IR) in two-center holographic recording.

Tables (1)

Tables Icon

Table 1 Units, Meaning, and Values of All Quantities Involved in the Analysis of Two-Center Holographic Recording in a LiNbO3:Fe:Mn Crystala

Equations (44)

Equations on this page are rendered with MathJax. Learn more.

NMn-t=-[qMn,RsMn,RIR+qMn,UVsMn,UVIUV]NMn-+γMnn(NMn-NMn-),
NFe-t=-[qFe,RsFe,RIR+qFe,UVIUV]NFe-+γFen(NFe-NFe-),
jx=eNFe-t+NMn-t+nt,
j=eμnE+kBTμ nx+(κFe,RIR+κFe,UVIUV)NFe-+(κMn,RIR+κMn,UVIUV)NMn-,
Ex=ρ0=-e0(NFe-+NMn-+n-NA).
IR=IR,0 [1+m cos(Kx)],
E=E0+E1 exp(iKx).
Δn=-(neff3/2)reffE1,
η=sin2πΔnLλ cos θ,
NMn-t=γMnn(NMn-NMn-),
NFe-t=-qFe,RsFe,RIRNFe-+γFen(NFe-NFe-),
NFe-t+NMn-t=1e jx=0,
NFe-(z)t
=-qFe,RsFe,RIRγMn(NMn-NMn-)γMn(NMn-NMn-)+γFe(NFe-NFe-)NFe-
=-NFe-(z)τb(t, z).
1τbIR=(qFe,RsFe,R)1+γFeNFeγMn(NMn-NA)-1.
It=Ii exp-0L α(z)dzIi1-0L α(z)dz,
α(z)=(sFe,Rhν)NFe-(z),
γFeNFeγMn(NMn-NA)=3.44.
NMn-t=-qMn,UVsMn,UVIUVNMn-+γMnn(NMn-NMn-),
NFe-t=-qFe,UVsFe,UVIUVNFe-+γFen(NFe-NFe-),
NFe-t+NMn-t=1e jx=0,
NFe-t=-qFe,UVsFe,UVγMn(NMn-NA+NFe-)NFe-+γFeqMn,UVsMn,UV(NFe-NFe-)(NA-NFe-)γFe(NFe-NFe-)+γMn(NMn-NA+NFe-)IUV.
d(It/Ii)dtt=0=-sFe,Rhν0LdNFe-(z)dtt=0dz.
d(It/Ii)dtt=0=(sFe,Rhν)qMn,UVsMn,UVNA1+γMn(NMn-NA)γFeNFe IUV0αUV.
(sFe,Rhν)qMn,UVsMn,UVNA1+γMn(NMn-NA)γFeNFe 1αUV=1.06×10-6.
qFe,UVsFe,UVγMn(NMn-NA+NFe,final-)NFe,final-=γFeqMn,UVsMn,UV(NFe-NFe,final-)(NA-NFe,final-).
NA=3.1×1024 m-3,
qMn,UVsMn,UV=3.55×10-5 m2/J,
γMn=8.5γFe=1.32×10-13 m-3 s-1.
jph1=κFe,R(NFe0-IR1-NFe1-IR0),
IR=IR0+IR1 exp(iKx),
NFe-=NFe0--NFe1- exp(iKx),
η=A exp(-t/τe).
NFe-t=-NFe-τ(z)+γFeqMn,UVsMn,UVNFeNAIUV0 exp(-αUVz)γFeNFe+γMn(NMn-NA)+(γMn-γFe)NFe-+O([NFe-]2)=NFe,final--NFe-τ(z),
1τ(z)=qFe,UVsFe,UVγMn(NMn-NA)+γFeqMn,UVsMn,UV(NFe+NA)γFeNFe+γMn(NMn-NA)+(γMn-γFe)NFe-IUV0 exp(-αUVz).
NFe-(z, t)=NFe,final-{1-exp[-At exp(-αUVz)]},
A=qFe,UVsFe,UV1+qMn,UVsMn,UVqFe,UVsFe,UV γFeNFe(1+NA/NFe)γMn(NMn-NA)IUV01+γFe(NFe-NFe-)γMn(NMn-NA)+NFe-(NMn-NA).
It=Ii exp0L-α(z, t)dz,
α(z, t)=sFe,RhνNFe-(z, t),
-1sFe,Rhν ln(It/Ii)
=NFe,final-0L{1-exp[-At exp(-αUVz)]}dz.
0L{1-exp[-At exp(-αUVz)]}dz
=L1-1αUVL At exp(-αUVL)At exp(-u)u du.

Metrics