Abstract

In Brillouin fiber lasers, the phase fluctuations of the pump laser are transferred to the emitted Stokes field after being strongly reduced. The result is a linewidth narrowing that we study both experimentally and theoretically. We derive simple expressions to connect the linewidths of the waves interacting in the fiber, and we show that the magnitude of the narrowing effect depends only on the acoustic damping rate and the cavity loss rate. We successfully compare these theoretical predictions with experimental results obtained by recording the response of a Brillouin fiber ring laser to frequency modulation of the pump field.

© 2001 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits

Benjamin J. Eggleton, Christopher G. Poulton, and Ravi Pant
Adv. Opt. Photon. 5(4) 536-587 (2013)

Mode-hopping suppression in long Brillouin fiber laser with non-resonant pumping

Gwennaël Danion, Ludovic Frein, Denis Bacquet, Grégoire Pillet, Stéphanie Molin, Loïc Morvan, Guillaume Ducournau, Marc Vallet, Pascal Szriftgiser, and Mehdi Alouini
Opt. Lett. 41(10) 2362-2365 (2016)

Narrow-linewidth stimulated Brillouin fiber laser and applications

S. P. Smith, F. Zarinetchi, and S. Ezekiel
Opt. Lett. 16(6) 393-395 (1991)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (46)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription