Abstract

In Brillouin fiber lasers, the phase fluctuations of the pump laser are transferred to the emitted Stokes field after being strongly reduced. The result is a linewidth narrowing that we study both experimentally and theoretically. We derive simple expressions to connect the linewidths of the waves interacting in the fiber, and we show that the magnitude of the narrowing effect depends only on the acoustic damping rate and the cavity loss rate. We successfully compare these theoretical predictions with experimental results obtained by recording the response of a Brillouin fiber ring laser to frequency modulation of the pump field.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989).
  2. D. Cotter, “Stimulated Brillouin scattering in monomode optical fiber,” J. Opt. Commun. 4, 10–19 (1983).
    [CrossRef]
  3. M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997), and references therein.
    [CrossRef]
  4. C. Montes, D. Bahloul, I. Bongrand, J. Botineau, G. Cheval, A. Mamhoud, E. Picholle, and A. Picozzi, “Self-pulsing and dynamic bistability in cw-pumped Brillouin fiber ring lasers,” J. Opt. Soc. Am. B 16, 932–951 (1999), and references therein.
    [CrossRef]
  5. S. Randoux, V. Lecoeuche, B. Ségard, and J. Zemmouri, “Dynamical analysis of Brillouin fiber lasers: an experimental approach,” Phys. Rev. A 51, 2327–2334 (1995).
    [CrossRef]
  6. C. Montes, A. Mamhoud, and E. Picholle, “Bifurcation in a cw-pumped Brillouin fiber-ring laser: coherent soliton morphogenesis,” Phys. Rev. A 49, 1344–1349 (1994).
    [CrossRef] [PubMed]
  7. Y. Tanaka and K. Hotate, “Analysis of fiber Brillouin ring laser composed of single-polarization single-mode fiber,” J. Lightwave Technol. 15, 838–844 (1997), and references therein.
    [CrossRef]
  8. S. P. Smith, F. Zarinetchi, and S. Ezekiel, “Narrow-linewidth stimulated Brillouin fiber laser and applications,” Opt. Lett. 16, 393–395 (1991).
    [CrossRef] [PubMed]
  9. A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: Theoretical analysis,” Phys. Rev. A 62, 023803–1–023803–4 (2000).
    [CrossRef]
  10. A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
    [CrossRef]
  11. N. Lu, “Effect of laser intensity fluctuations on laser linewidth,” Phys. Rev. A 47, 4322–4330 (1993).
    [CrossRef] [PubMed]
  12. M. P. van Exter, W. A. Hamel, and J. P. Woerdman, “Nonuniform phase diffusion in a laser,” Phys. Rev. A 43, 6241–6246 (1991).
    [CrossRef] [PubMed]
  13. S. Prasad, “Theory of a homogeneously broadened laser with arbitrary mirror outcoupling: intrinsic linewidth and phase diffusion,” Phys. Rev. A 46, 1540–1559 (1992).
    [CrossRef] [PubMed]
  14. S. J. M. Kuppens, M. P. van Exter, and J. P. Woerdman, “Quantum-limited linewidth of a bad-cavity laser,” Phys. Rev. Lett. 72, 3815–3818 (1994).
    [CrossRef] [PubMed]
  15. M. P. van Exter, S. J. M. Kuppens, and J. P. Woerdman, “Theory for the linewidth of a bad-cavity laser,” Phys. Rev. A 51, 809–816 (1995).
    [CrossRef] [PubMed]
  16. C. Benkert, M. O. Scully, and G. Süssmann, “Memory correlation effects on quantum noise in lasers and masers,” Phys. Rev. A 41, 6119–6128 (1990).
    [CrossRef] [PubMed]
  17. M. I. Kolobov, L. Davidovitch, E. Giacobino, and C. Fabre, “Role of pumping statistics and dynamics of atomic polarization in quantum fluctuations of laser sources,” Phys. Rev. A 47, 1431–1446 (1993).
    [CrossRef] [PubMed]
  18. M. Sargent III, M. O. Scully, and W. E. Lamb, Jr., Laser Physics (Addison-Wesley, Reading, Mass., 1974), Chap. 17.
  19. P. Goldberg, P. W. Milonni, and B. Sundaram, “Theory of the fundamental laser linewidth,” Phys. Rev. A 44, 1969–1985 (1991).
    [CrossRef] [PubMed]
  20. P. Goldberg, P. W. Milonni, and B. Sundaram, “Theory of the fundamental laser linewidth. II,” Phys. Rev. A 44, 4556–4563 (1991).
    [CrossRef] [PubMed]
  21. C. H. Henry, “Phase noise in semiconductor lasers,” J. Lightwave Technol. 4, 298–311 (1986).
    [CrossRef]
  22. R. Walser and P. Zoller, “Laser-noise-induced polarization fluctuations as a spectroscopic tool,” Phys. Rev. A 49, 5067–5077 (1994).
    [CrossRef] [PubMed]
  23. C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 259–264 (1982).
    [CrossRef]
  24. K. Vahala and A. Yariv, “Semiclassical theory of noise in semiconductor lasers. I,” IEEE J. Quantum Electron. QE-19, 1096–1101 (1983).
    [CrossRef]
  25. K. Vahala and A. Yariv, “Semiclassical theory of noise in semiconductor lasers. II,” IEEE J. Quantum Electron. QE-19, 1102–1109 (1983).
    [CrossRef]
  26. M. P. van Exter, W. A. Hamel, J. P. Woerdman, and B. R. P. Zeijlmans, “Spectral signature of relaxation oscillations in semiconductor lasers,” IEEE J. Quantum Electron. 28, 1470–1478 (1992).
    [CrossRef]
  27. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995), Chap. 2.
  28. C. Zhu, “Statistics of nonclassical lasers generated via pump-noise suppression,” Phys. Rev. A 48, 3930–3946 (1993).
    [CrossRef] [PubMed]
  29. S. Machida, Y. Yamamoto, and Y. Itaya, “Observation of amplitude squeezing in a constant-current-driven semiconductor laser,” Phys. Rev. Lett. 58, 1000–1003 (1987).
    [CrossRef] [PubMed]
  30. M. A. M. Marte and P. Zoller, “Lasers with sub-Poissonian pump,” Phys. Rev. A 40, 5774–5782 (1989).
    [CrossRef] [PubMed]
  31. H. Ritsch, P. Zoller, C. W. Gardiner, and D. F. Walls, “Sub-Poissonian laser light by dynamic pump-noise suppression,” Phys. Rev. A 44, 3361–3364 (1991).
    [CrossRef] [PubMed]
  32. H. Ritsch and P. Zoller, “Dynamic quantum-noise reduction in multilevel-laser systems,” Phys. Rev. A 45, 1881–1892 (1992).
    [CrossRef] [PubMed]
  33. C. Becher and K. Boller, “Low-intensity-noise operation of Nd:YVO4 microchip lasers by pump noise suppression,” J. Opt. Soc. Am. B 16, 286–295 (1999).
    [CrossRef]
  34. J. Bergou, L. Davidovitch, M. Orszag, C. Benkert, M. Hillery, and M. O. Scully, “Role of pumping statistics in maser and laser dynamics: density-matrix approach,” Phys. Rev. A 40, 5073–5080 (1989).
    [CrossRef] [PubMed]
  35. C. Benkert, M. O. Scully, J. Bergou, L. Davidovitch, M. Hillery, and M. Orszag, “Role of pumping statistics in laser dynamics: quantum Langevin approach,” Phys. Rev. A 41, 2756–2765 (1990).
    [CrossRef] [PubMed]
  36. Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise-suppressed laser oscillator,” Phys. Rev. A 34, 4025–4042 (1986).
    [CrossRef] [PubMed]
  37. G. S. Agarwal, “Inhibition of spontaneous emission noise in lasers without inversion,” Phys. Rev. Lett. 67, 980–982 (1991).
    [CrossRef] [PubMed]
  38. H. Ritsch, M. A. M. Marte, and P. Zoller, “Quantum noise reduction in Raman lasers,” Europhys. Lett. 19, 7–12 (1992).
    [CrossRef]
  39. H. Ritsch and M. A. M. Marte, “Quantum noise in Raman lasers: effects of pump bandwidth and super- and sub-Poissonian pumping,” Phys. Rev. A 47, 2354–2365 (1993).
    [CrossRef] [PubMed]
  40. M. Fleischhauer, M. D. Lukin, D. E. Nikonov, and M. O. Scully, “Influence of pump-field phase diffusion on laser gain in a double-Λ non-inversion laser,” Opt. Commun. 110, 351–357 (1994).
    [CrossRef]
  41. K. M. Gheri, D. F. Walls, and M. A. Marte, “Systematic description of laser phase by linearized Ito equations,” Phys. Rev. A 46, 6002–6009 (1992).
    [CrossRef] [PubMed]
  42. S. Gong, Z. Xu, Z. Zhang, and S. Pan, “Change from an inversion laser to a noninversion laser due to a phase-fluctuation effect,” Phys. Rev. A 52, 4787–4790 (1995).
    [CrossRef] [PubMed]
  43. X. Hu and J. Peng, “Effects of pump phase noise on the linewidth of a Λ-laser without inversion: linewidth reduction,” Chin. Phys. Lett. 15, 571–573 (1998).
    [CrossRef]
  44. S. Prasad, “Quantum noise and squeezing in an optical parametric oscillator with arbitrary output-mirror coupling. III. Effect of pump amplitude and phase fluctuations,” Phys. Rev. A 49, 1406–1426 (1994), and references therein.
    [CrossRef] [PubMed]
  45. P. D. Drummond and M. D. Reid, “Laser bandwidth effects on squeezing in intracavity parametric oscillation,” Phys. Rev. A 37, 1806–1808 (1988).
    [CrossRef] [PubMed]
  46. A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, 3205–3209 (1991).
    [CrossRef] [PubMed]
  47. R. W. Boyd, K. Rzażewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
    [CrossRef] [PubMed]
  48. A. Yariv and W. M. Caton, “Frequency, intensity, and field fluctuations in laser oscillators,” IEEE J. Quantum Electron. QE-10, 509–515 (1974).
    [CrossRef]
  49. A. L. Gaeta and R. W. Boyd, “Stimulated Brillouin scattering in the presence of external feedback,” Int. J. Nonlinear Opt. Phys. 1, 581–594 (1992).
    [CrossRef]
  50. V. Lecoeuche, S. Randoux, B. Ségard, and J. Zemmouri, “Dynamics of a Brillouin fiber ring laser: off-resonant case,” Phys. Rev. A 53, 2822–2828 (1996).
    [CrossRef] [PubMed]
  51. M. P. van Exter, S. J. M. Kuppens, and J. P. Woerdman, “Excess phase noise in self-heterodyne detection,” IEEE J. Quantum Electron. 28, 580–584 (1992).
    [CrossRef]
  52. S. Randoux, V. Lecoeuche, B. Ségard, and J. Zemmouri, “Dynamical behavior of a Brillouin fiber ring laser emitting two Stokes components,” Phys. Rev. A 52, 2327–2334 (1995).
    [CrossRef] [PubMed]
  53. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1988), Chap. 21.
  54. J. Boschung, L. Thévenaz, and P. A. Robert, “High-accuracy measurement of the linewidth of a Brillouin fibre ring laser,” Electron. Lett. 30, 1488–1489 (1994).
    [CrossRef]
  55. R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), Chap. 7.
  56. S. Randoux and J. Zemmouri, “Polarization dynamics of a Brillouin fiber ring laser,” Phys. Rev. A 59, 1644–1653 (1999).
    [CrossRef]
  57. A. Papoulis, Signal Analysis (McGraw-Hill, New York, 1984), Chap. 8.
  58. D. Zwillinger, ed., Standard Mathematical Tables and Formulae, 30th ed. (CRC Press, Boca Raton, Fla., 1996).
  59. D. Heiman, D. S. Hamilton, and R. W. Hellwarth, “Brillouin scattering measurements on optical glasses,” Phys. Rev. B 19, 6583–6592 (1979).
    [CrossRef]
  60. B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
    [CrossRef]

2000 (1)

A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: Theoretical analysis,” Phys. Rev. A 62, 023803–1–023803–4 (2000).
[CrossRef]

1999 (4)

1998 (1)

X. Hu and J. Peng, “Effects of pump phase noise on the linewidth of a Λ-laser without inversion: linewidth reduction,” Chin. Phys. Lett. 15, 571–573 (1998).
[CrossRef]

1997 (2)

Y. Tanaka and K. Hotate, “Analysis of fiber Brillouin ring laser composed of single-polarization single-mode fiber,” J. Lightwave Technol. 15, 838–844 (1997), and references therein.
[CrossRef]

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997), and references therein.
[CrossRef]

1996 (1)

V. Lecoeuche, S. Randoux, B. Ségard, and J. Zemmouri, “Dynamics of a Brillouin fiber ring laser: off-resonant case,” Phys. Rev. A 53, 2822–2828 (1996).
[CrossRef] [PubMed]

1995 (4)

S. Randoux, V. Lecoeuche, B. Ségard, and J. Zemmouri, “Dynamical behavior of a Brillouin fiber ring laser emitting two Stokes components,” Phys. Rev. A 52, 2327–2334 (1995).
[CrossRef] [PubMed]

S. Gong, Z. Xu, Z. Zhang, and S. Pan, “Change from an inversion laser to a noninversion laser due to a phase-fluctuation effect,” Phys. Rev. A 52, 4787–4790 (1995).
[CrossRef] [PubMed]

S. Randoux, V. Lecoeuche, B. Ségard, and J. Zemmouri, “Dynamical analysis of Brillouin fiber lasers: an experimental approach,” Phys. Rev. A 51, 2327–2334 (1995).
[CrossRef]

M. P. van Exter, S. J. M. Kuppens, and J. P. Woerdman, “Theory for the linewidth of a bad-cavity laser,” Phys. Rev. A 51, 809–816 (1995).
[CrossRef] [PubMed]

1994 (6)

S. J. M. Kuppens, M. P. van Exter, and J. P. Woerdman, “Quantum-limited linewidth of a bad-cavity laser,” Phys. Rev. Lett. 72, 3815–3818 (1994).
[CrossRef] [PubMed]

R. Walser and P. Zoller, “Laser-noise-induced polarization fluctuations as a spectroscopic tool,” Phys. Rev. A 49, 5067–5077 (1994).
[CrossRef] [PubMed]

S. Prasad, “Quantum noise and squeezing in an optical parametric oscillator with arbitrary output-mirror coupling. III. Effect of pump amplitude and phase fluctuations,” Phys. Rev. A 49, 1406–1426 (1994), and references therein.
[CrossRef] [PubMed]

M. Fleischhauer, M. D. Lukin, D. E. Nikonov, and M. O. Scully, “Influence of pump-field phase diffusion on laser gain in a double-Λ non-inversion laser,” Opt. Commun. 110, 351–357 (1994).
[CrossRef]

C. Montes, A. Mamhoud, and E. Picholle, “Bifurcation in a cw-pumped Brillouin fiber-ring laser: coherent soliton morphogenesis,” Phys. Rev. A 49, 1344–1349 (1994).
[CrossRef] [PubMed]

J. Boschung, L. Thévenaz, and P. A. Robert, “High-accuracy measurement of the linewidth of a Brillouin fibre ring laser,” Electron. Lett. 30, 1488–1489 (1994).
[CrossRef]

1993 (4)

H. Ritsch and M. A. M. Marte, “Quantum noise in Raman lasers: effects of pump bandwidth and super- and sub-Poissonian pumping,” Phys. Rev. A 47, 2354–2365 (1993).
[CrossRef] [PubMed]

C. Zhu, “Statistics of nonclassical lasers generated via pump-noise suppression,” Phys. Rev. A 48, 3930–3946 (1993).
[CrossRef] [PubMed]

M. I. Kolobov, L. Davidovitch, E. Giacobino, and C. Fabre, “Role of pumping statistics and dynamics of atomic polarization in quantum fluctuations of laser sources,” Phys. Rev. A 47, 1431–1446 (1993).
[CrossRef] [PubMed]

N. Lu, “Effect of laser intensity fluctuations on laser linewidth,” Phys. Rev. A 47, 4322–4330 (1993).
[CrossRef] [PubMed]

1992 (7)

S. Prasad, “Theory of a homogeneously broadened laser with arbitrary mirror outcoupling: intrinsic linewidth and phase diffusion,” Phys. Rev. A 46, 1540–1559 (1992).
[CrossRef] [PubMed]

M. P. van Exter, W. A. Hamel, J. P. Woerdman, and B. R. P. Zeijlmans, “Spectral signature of relaxation oscillations in semiconductor lasers,” IEEE J. Quantum Electron. 28, 1470–1478 (1992).
[CrossRef]

H. Ritsch and P. Zoller, “Dynamic quantum-noise reduction in multilevel-laser systems,” Phys. Rev. A 45, 1881–1892 (1992).
[CrossRef] [PubMed]

H. Ritsch, M. A. M. Marte, and P. Zoller, “Quantum noise reduction in Raman lasers,” Europhys. Lett. 19, 7–12 (1992).
[CrossRef]

K. M. Gheri, D. F. Walls, and M. A. Marte, “Systematic description of laser phase by linearized Ito equations,” Phys. Rev. A 46, 6002–6009 (1992).
[CrossRef] [PubMed]

M. P. van Exter, S. J. M. Kuppens, and J. P. Woerdman, “Excess phase noise in self-heterodyne detection,” IEEE J. Quantum Electron. 28, 580–584 (1992).
[CrossRef]

A. L. Gaeta and R. W. Boyd, “Stimulated Brillouin scattering in the presence of external feedback,” Int. J. Nonlinear Opt. Phys. 1, 581–594 (1992).
[CrossRef]

1991 (7)

A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, 3205–3209 (1991).
[CrossRef] [PubMed]

S. P. Smith, F. Zarinetchi, and S. Ezekiel, “Narrow-linewidth stimulated Brillouin fiber laser and applications,” Opt. Lett. 16, 393–395 (1991).
[CrossRef] [PubMed]

H. Ritsch, P. Zoller, C. W. Gardiner, and D. F. Walls, “Sub-Poissonian laser light by dynamic pump-noise suppression,” Phys. Rev. A 44, 3361–3364 (1991).
[CrossRef] [PubMed]

G. S. Agarwal, “Inhibition of spontaneous emission noise in lasers without inversion,” Phys. Rev. Lett. 67, 980–982 (1991).
[CrossRef] [PubMed]

M. P. van Exter, W. A. Hamel, and J. P. Woerdman, “Nonuniform phase diffusion in a laser,” Phys. Rev. A 43, 6241–6246 (1991).
[CrossRef] [PubMed]

P. Goldberg, P. W. Milonni, and B. Sundaram, “Theory of the fundamental laser linewidth,” Phys. Rev. A 44, 1969–1985 (1991).
[CrossRef] [PubMed]

P. Goldberg, P. W. Milonni, and B. Sundaram, “Theory of the fundamental laser linewidth. II,” Phys. Rev. A 44, 4556–4563 (1991).
[CrossRef] [PubMed]

1990 (3)

C. Benkert, M. O. Scully, and G. Süssmann, “Memory correlation effects on quantum noise in lasers and masers,” Phys. Rev. A 41, 6119–6128 (1990).
[CrossRef] [PubMed]

C. Benkert, M. O. Scully, J. Bergou, L. Davidovitch, M. Hillery, and M. Orszag, “Role of pumping statistics in laser dynamics: quantum Langevin approach,” Phys. Rev. A 41, 2756–2765 (1990).
[CrossRef] [PubMed]

R. W. Boyd, K. Rzażewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[CrossRef] [PubMed]

1989 (2)

J. Bergou, L. Davidovitch, M. Orszag, C. Benkert, M. Hillery, and M. O. Scully, “Role of pumping statistics in maser and laser dynamics: density-matrix approach,” Phys. Rev. A 40, 5073–5080 (1989).
[CrossRef] [PubMed]

M. A. M. Marte and P. Zoller, “Lasers with sub-Poissonian pump,” Phys. Rev. A 40, 5774–5782 (1989).
[CrossRef] [PubMed]

1988 (1)

P. D. Drummond and M. D. Reid, “Laser bandwidth effects on squeezing in intracavity parametric oscillation,” Phys. Rev. A 37, 1806–1808 (1988).
[CrossRef] [PubMed]

1987 (1)

S. Machida, Y. Yamamoto, and Y. Itaya, “Observation of amplitude squeezing in a constant-current-driven semiconductor laser,” Phys. Rev. Lett. 58, 1000–1003 (1987).
[CrossRef] [PubMed]

1986 (2)

Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise-suppressed laser oscillator,” Phys. Rev. A 34, 4025–4042 (1986).
[CrossRef] [PubMed]

C. H. Henry, “Phase noise in semiconductor lasers,” J. Lightwave Technol. 4, 298–311 (1986).
[CrossRef]

1983 (3)

K. Vahala and A. Yariv, “Semiclassical theory of noise in semiconductor lasers. I,” IEEE J. Quantum Electron. QE-19, 1096–1101 (1983).
[CrossRef]

K. Vahala and A. Yariv, “Semiclassical theory of noise in semiconductor lasers. II,” IEEE J. Quantum Electron. QE-19, 1102–1109 (1983).
[CrossRef]

D. Cotter, “Stimulated Brillouin scattering in monomode optical fiber,” J. Opt. Commun. 4, 10–19 (1983).
[CrossRef]

1982 (1)

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 259–264 (1982).
[CrossRef]

1979 (1)

D. Heiman, D. S. Hamilton, and R. W. Hellwarth, “Brillouin scattering measurements on optical glasses,” Phys. Rev. B 19, 6583–6592 (1979).
[CrossRef]

1974 (1)

A. Yariv and W. M. Caton, “Frequency, intensity, and field fluctuations in laser oscillators,” IEEE J. Quantum Electron. QE-10, 509–515 (1974).
[CrossRef]

1958 (1)

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[CrossRef]

Agarwal, G. S.

G. S. Agarwal, “Inhibition of spontaneous emission noise in lasers without inversion,” Phys. Rev. Lett. 67, 980–982 (1991).
[CrossRef] [PubMed]

Bahloul, D.

Becher, C.

Benkert, C.

C. Benkert, M. O. Scully, J. Bergou, L. Davidovitch, M. Hillery, and M. Orszag, “Role of pumping statistics in laser dynamics: quantum Langevin approach,” Phys. Rev. A 41, 2756–2765 (1990).
[CrossRef] [PubMed]

C. Benkert, M. O. Scully, and G. Süssmann, “Memory correlation effects on quantum noise in lasers and masers,” Phys. Rev. A 41, 6119–6128 (1990).
[CrossRef] [PubMed]

J. Bergou, L. Davidovitch, M. Orszag, C. Benkert, M. Hillery, and M. O. Scully, “Role of pumping statistics in maser and laser dynamics: density-matrix approach,” Phys. Rev. A 40, 5073–5080 (1989).
[CrossRef] [PubMed]

Bergou, J.

C. Benkert, M. O. Scully, J. Bergou, L. Davidovitch, M. Hillery, and M. Orszag, “Role of pumping statistics in laser dynamics: quantum Langevin approach,” Phys. Rev. A 41, 2756–2765 (1990).
[CrossRef] [PubMed]

J. Bergou, L. Davidovitch, M. Orszag, C. Benkert, M. Hillery, and M. O. Scully, “Role of pumping statistics in maser and laser dynamics: density-matrix approach,” Phys. Rev. A 40, 5073–5080 (1989).
[CrossRef] [PubMed]

Bergquist, J. C.

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[CrossRef]

Boller, K.

Bongrand, I.

Boschung, J.

J. Boschung, L. Thévenaz, and P. A. Robert, “High-accuracy measurement of the linewidth of a Brillouin fibre ring laser,” Electron. Lett. 30, 1488–1489 (1994).
[CrossRef]

Botineau, J.

Boyd, R. W.

A. L. Gaeta and R. W. Boyd, “Stimulated Brillouin scattering in the presence of external feedback,” Int. J. Nonlinear Opt. Phys. 1, 581–594 (1992).
[CrossRef]

A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, 3205–3209 (1991).
[CrossRef] [PubMed]

R. W. Boyd, K. Rzażewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[CrossRef] [PubMed]

Caton, W. M.

A. Yariv and W. M. Caton, “Frequency, intensity, and field fluctuations in laser oscillators,” IEEE J. Quantum Electron. QE-10, 509–515 (1974).
[CrossRef]

Cheval, G.

Cotter, D.

D. Cotter, “Stimulated Brillouin scattering in monomode optical fiber,” J. Opt. Commun. 4, 10–19 (1983).
[CrossRef]

Cruz, F. C.

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[CrossRef]

Davidovitch, L.

M. I. Kolobov, L. Davidovitch, E. Giacobino, and C. Fabre, “Role of pumping statistics and dynamics of atomic polarization in quantum fluctuations of laser sources,” Phys. Rev. A 47, 1431–1446 (1993).
[CrossRef] [PubMed]

C. Benkert, M. O. Scully, J. Bergou, L. Davidovitch, M. Hillery, and M. Orszag, “Role of pumping statistics in laser dynamics: quantum Langevin approach,” Phys. Rev. A 41, 2756–2765 (1990).
[CrossRef] [PubMed]

J. Bergou, L. Davidovitch, M. Orszag, C. Benkert, M. Hillery, and M. O. Scully, “Role of pumping statistics in maser and laser dynamics: density-matrix approach,” Phys. Rev. A 40, 5073–5080 (1989).
[CrossRef] [PubMed]

Debut, A.

A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: Theoretical analysis,” Phys. Rev. A 62, 023803–1–023803–4 (2000).
[CrossRef]

Drummond, P. D.

P. D. Drummond and M. D. Reid, “Laser bandwidth effects on squeezing in intracavity parametric oscillation,” Phys. Rev. A 37, 1806–1808 (1988).
[CrossRef] [PubMed]

Ezekiel, S.

Fabre, C.

M. I. Kolobov, L. Davidovitch, E. Giacobino, and C. Fabre, “Role of pumping statistics and dynamics of atomic polarization in quantum fluctuations of laser sources,” Phys. Rev. A 47, 1431–1446 (1993).
[CrossRef] [PubMed]

Fleischhauer, M.

M. Fleischhauer, M. D. Lukin, D. E. Nikonov, and M. O. Scully, “Influence of pump-field phase diffusion on laser gain in a double-Λ non-inversion laser,” Opt. Commun. 110, 351–357 (1994).
[CrossRef]

Gaeta, A. L.

A. L. Gaeta and R. W. Boyd, “Stimulated Brillouin scattering in the presence of external feedback,” Int. J. Nonlinear Opt. Phys. 1, 581–594 (1992).
[CrossRef]

A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, 3205–3209 (1991).
[CrossRef] [PubMed]

Gardiner, C. W.

H. Ritsch, P. Zoller, C. W. Gardiner, and D. F. Walls, “Sub-Poissonian laser light by dynamic pump-noise suppression,” Phys. Rev. A 44, 3361–3364 (1991).
[CrossRef] [PubMed]

Gheri, K. M.

K. M. Gheri, D. F. Walls, and M. A. Marte, “Systematic description of laser phase by linearized Ito equations,” Phys. Rev. A 46, 6002–6009 (1992).
[CrossRef] [PubMed]

Giacobino, E.

M. I. Kolobov, L. Davidovitch, E. Giacobino, and C. Fabre, “Role of pumping statistics and dynamics of atomic polarization in quantum fluctuations of laser sources,” Phys. Rev. A 47, 1431–1446 (1993).
[CrossRef] [PubMed]

Goldberg, P.

P. Goldberg, P. W. Milonni, and B. Sundaram, “Theory of the fundamental laser linewidth. II,” Phys. Rev. A 44, 4556–4563 (1991).
[CrossRef] [PubMed]

P. Goldberg, P. W. Milonni, and B. Sundaram, “Theory of the fundamental laser linewidth,” Phys. Rev. A 44, 1969–1985 (1991).
[CrossRef] [PubMed]

Gong, S.

S. Gong, Z. Xu, Z. Zhang, and S. Pan, “Change from an inversion laser to a noninversion laser due to a phase-fluctuation effect,” Phys. Rev. A 52, 4787–4790 (1995).
[CrossRef] [PubMed]

Hamel, W. A.

M. P. van Exter, W. A. Hamel, J. P. Woerdman, and B. R. P. Zeijlmans, “Spectral signature of relaxation oscillations in semiconductor lasers,” IEEE J. Quantum Electron. 28, 1470–1478 (1992).
[CrossRef]

M. P. van Exter, W. A. Hamel, and J. P. Woerdman, “Nonuniform phase diffusion in a laser,” Phys. Rev. A 43, 6241–6246 (1991).
[CrossRef] [PubMed]

Hamilton, D. S.

D. Heiman, D. S. Hamilton, and R. W. Hellwarth, “Brillouin scattering measurements on optical glasses,” Phys. Rev. B 19, 6583–6592 (1979).
[CrossRef]

Heiman, D.

D. Heiman, D. S. Hamilton, and R. W. Hellwarth, “Brillouin scattering measurements on optical glasses,” Phys. Rev. B 19, 6583–6592 (1979).
[CrossRef]

Hellwarth, R. W.

D. Heiman, D. S. Hamilton, and R. W. Hellwarth, “Brillouin scattering measurements on optical glasses,” Phys. Rev. B 19, 6583–6592 (1979).
[CrossRef]

Henry, C. H.

C. H. Henry, “Phase noise in semiconductor lasers,” J. Lightwave Technol. 4, 298–311 (1986).
[CrossRef]

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 259–264 (1982).
[CrossRef]

Hillery, M.

C. Benkert, M. O. Scully, J. Bergou, L. Davidovitch, M. Hillery, and M. Orszag, “Role of pumping statistics in laser dynamics: quantum Langevin approach,” Phys. Rev. A 41, 2756–2765 (1990).
[CrossRef] [PubMed]

J. Bergou, L. Davidovitch, M. Orszag, C. Benkert, M. Hillery, and M. O. Scully, “Role of pumping statistics in maser and laser dynamics: density-matrix approach,” Phys. Rev. A 40, 5073–5080 (1989).
[CrossRef] [PubMed]

Hotate, K.

Y. Tanaka and K. Hotate, “Analysis of fiber Brillouin ring laser composed of single-polarization single-mode fiber,” J. Lightwave Technol. 15, 838–844 (1997), and references therein.
[CrossRef]

Hu, X.

X. Hu and J. Peng, “Effects of pump phase noise on the linewidth of a Λ-laser without inversion: linewidth reduction,” Chin. Phys. Lett. 15, 571–573 (1998).
[CrossRef]

Itano, W. M.

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[CrossRef]

Itaya, Y.

S. Machida, Y. Yamamoto, and Y. Itaya, “Observation of amplitude squeezing in a constant-current-driven semiconductor laser,” Phys. Rev. Lett. 58, 1000–1003 (1987).
[CrossRef] [PubMed]

Kolobov, M. I.

M. I. Kolobov, L. Davidovitch, E. Giacobino, and C. Fabre, “Role of pumping statistics and dynamics of atomic polarization in quantum fluctuations of laser sources,” Phys. Rev. A 47, 1431–1446 (1993).
[CrossRef] [PubMed]

Kuppens, S. J. M.

M. P. van Exter, S. J. M. Kuppens, and J. P. Woerdman, “Theory for the linewidth of a bad-cavity laser,” Phys. Rev. A 51, 809–816 (1995).
[CrossRef] [PubMed]

S. J. M. Kuppens, M. P. van Exter, and J. P. Woerdman, “Quantum-limited linewidth of a bad-cavity laser,” Phys. Rev. Lett. 72, 3815–3818 (1994).
[CrossRef] [PubMed]

M. P. van Exter, S. J. M. Kuppens, and J. P. Woerdman, “Excess phase noise in self-heterodyne detection,” IEEE J. Quantum Electron. 28, 580–584 (1992).
[CrossRef]

Lecoeuche, V.

V. Lecoeuche, S. Randoux, B. Ségard, and J. Zemmouri, “Dynamics of a Brillouin fiber ring laser: off-resonant case,” Phys. Rev. A 53, 2822–2828 (1996).
[CrossRef] [PubMed]

S. Randoux, V. Lecoeuche, B. Ségard, and J. Zemmouri, “Dynamical behavior of a Brillouin fiber ring laser emitting two Stokes components,” Phys. Rev. A 52, 2327–2334 (1995).
[CrossRef] [PubMed]

S. Randoux, V. Lecoeuche, B. Ségard, and J. Zemmouri, “Dynamical analysis of Brillouin fiber lasers: an experimental approach,” Phys. Rev. A 51, 2327–2334 (1995).
[CrossRef]

Lu, N.

N. Lu, “Effect of laser intensity fluctuations on laser linewidth,” Phys. Rev. A 47, 4322–4330 (1993).
[CrossRef] [PubMed]

Lukin, M. D.

M. Fleischhauer, M. D. Lukin, D. E. Nikonov, and M. O. Scully, “Influence of pump-field phase diffusion on laser gain in a double-Λ non-inversion laser,” Opt. Commun. 110, 351–357 (1994).
[CrossRef]

Machida, S.

S. Machida, Y. Yamamoto, and Y. Itaya, “Observation of amplitude squeezing in a constant-current-driven semiconductor laser,” Phys. Rev. Lett. 58, 1000–1003 (1987).
[CrossRef] [PubMed]

Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise-suppressed laser oscillator,” Phys. Rev. A 34, 4025–4042 (1986).
[CrossRef] [PubMed]

Mamhoud, A.

Marte, M. A.

K. M. Gheri, D. F. Walls, and M. A. Marte, “Systematic description of laser phase by linearized Ito equations,” Phys. Rev. A 46, 6002–6009 (1992).
[CrossRef] [PubMed]

Marte, M. A. M.

H. Ritsch and M. A. M. Marte, “Quantum noise in Raman lasers: effects of pump bandwidth and super- and sub-Poissonian pumping,” Phys. Rev. A 47, 2354–2365 (1993).
[CrossRef] [PubMed]

H. Ritsch, M. A. M. Marte, and P. Zoller, “Quantum noise reduction in Raman lasers,” Europhys. Lett. 19, 7–12 (1992).
[CrossRef]

M. A. M. Marte and P. Zoller, “Lasers with sub-Poissonian pump,” Phys. Rev. A 40, 5774–5782 (1989).
[CrossRef] [PubMed]

Milonni, P. W.

P. Goldberg, P. W. Milonni, and B. Sundaram, “Theory of the fundamental laser linewidth. II,” Phys. Rev. A 44, 4556–4563 (1991).
[CrossRef] [PubMed]

P. Goldberg, P. W. Milonni, and B. Sundaram, “Theory of the fundamental laser linewidth,” Phys. Rev. A 44, 1969–1985 (1991).
[CrossRef] [PubMed]

Montes, C.

Narum, P.

R. W. Boyd, K. Rzażewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[CrossRef] [PubMed]

Niklès, M.

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997), and references therein.
[CrossRef]

Nikonov, D. E.

M. Fleischhauer, M. D. Lukin, D. E. Nikonov, and M. O. Scully, “Influence of pump-field phase diffusion on laser gain in a double-Λ non-inversion laser,” Opt. Commun. 110, 351–357 (1994).
[CrossRef]

Nilsson, O.

Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise-suppressed laser oscillator,” Phys. Rev. A 34, 4025–4042 (1986).
[CrossRef] [PubMed]

Orszag, M.

C. Benkert, M. O. Scully, J. Bergou, L. Davidovitch, M. Hillery, and M. Orszag, “Role of pumping statistics in laser dynamics: quantum Langevin approach,” Phys. Rev. A 41, 2756–2765 (1990).
[CrossRef] [PubMed]

J. Bergou, L. Davidovitch, M. Orszag, C. Benkert, M. Hillery, and M. O. Scully, “Role of pumping statistics in maser and laser dynamics: density-matrix approach,” Phys. Rev. A 40, 5073–5080 (1989).
[CrossRef] [PubMed]

Pan, S.

S. Gong, Z. Xu, Z. Zhang, and S. Pan, “Change from an inversion laser to a noninversion laser due to a phase-fluctuation effect,” Phys. Rev. A 52, 4787–4790 (1995).
[CrossRef] [PubMed]

Peng, J.

X. Hu and J. Peng, “Effects of pump phase noise on the linewidth of a Λ-laser without inversion: linewidth reduction,” Chin. Phys. Lett. 15, 571–573 (1998).
[CrossRef]

Picholle, E.

Picozzi, A.

Prasad, S.

S. Prasad, “Quantum noise and squeezing in an optical parametric oscillator with arbitrary output-mirror coupling. III. Effect of pump amplitude and phase fluctuations,” Phys. Rev. A 49, 1406–1426 (1994), and references therein.
[CrossRef] [PubMed]

S. Prasad, “Theory of a homogeneously broadened laser with arbitrary mirror outcoupling: intrinsic linewidth and phase diffusion,” Phys. Rev. A 46, 1540–1559 (1992).
[CrossRef] [PubMed]

Randoux, S.

A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: Theoretical analysis,” Phys. Rev. A 62, 023803–1–023803–4 (2000).
[CrossRef]

S. Randoux and J. Zemmouri, “Polarization dynamics of a Brillouin fiber ring laser,” Phys. Rev. A 59, 1644–1653 (1999).
[CrossRef]

V. Lecoeuche, S. Randoux, B. Ségard, and J. Zemmouri, “Dynamics of a Brillouin fiber ring laser: off-resonant case,” Phys. Rev. A 53, 2822–2828 (1996).
[CrossRef] [PubMed]

S. Randoux, V. Lecoeuche, B. Ségard, and J. Zemmouri, “Dynamical behavior of a Brillouin fiber ring laser emitting two Stokes components,” Phys. Rev. A 52, 2327–2334 (1995).
[CrossRef] [PubMed]

S. Randoux, V. Lecoeuche, B. Ségard, and J. Zemmouri, “Dynamical analysis of Brillouin fiber lasers: an experimental approach,” Phys. Rev. A 51, 2327–2334 (1995).
[CrossRef]

Reid, M. D.

P. D. Drummond and M. D. Reid, “Laser bandwidth effects on squeezing in intracavity parametric oscillation,” Phys. Rev. A 37, 1806–1808 (1988).
[CrossRef] [PubMed]

Ritsch, H.

H. Ritsch and M. A. M. Marte, “Quantum noise in Raman lasers: effects of pump bandwidth and super- and sub-Poissonian pumping,” Phys. Rev. A 47, 2354–2365 (1993).
[CrossRef] [PubMed]

H. Ritsch, M. A. M. Marte, and P. Zoller, “Quantum noise reduction in Raman lasers,” Europhys. Lett. 19, 7–12 (1992).
[CrossRef]

H. Ritsch and P. Zoller, “Dynamic quantum-noise reduction in multilevel-laser systems,” Phys. Rev. A 45, 1881–1892 (1992).
[CrossRef] [PubMed]

H. Ritsch, P. Zoller, C. W. Gardiner, and D. F. Walls, “Sub-Poissonian laser light by dynamic pump-noise suppression,” Phys. Rev. A 44, 3361–3364 (1991).
[CrossRef] [PubMed]

Robert, P. A.

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997), and references therein.
[CrossRef]

J. Boschung, L. Thévenaz, and P. A. Robert, “High-accuracy measurement of the linewidth of a Brillouin fibre ring laser,” Electron. Lett. 30, 1488–1489 (1994).
[CrossRef]

Rzazewski, K.

R. W. Boyd, K. Rzażewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[CrossRef] [PubMed]

Schawlow, A. L.

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[CrossRef]

Scully, M. O.

M. Fleischhauer, M. D. Lukin, D. E. Nikonov, and M. O. Scully, “Influence of pump-field phase diffusion on laser gain in a double-Λ non-inversion laser,” Opt. Commun. 110, 351–357 (1994).
[CrossRef]

C. Benkert, M. O. Scully, and G. Süssmann, “Memory correlation effects on quantum noise in lasers and masers,” Phys. Rev. A 41, 6119–6128 (1990).
[CrossRef] [PubMed]

C. Benkert, M. O. Scully, J. Bergou, L. Davidovitch, M. Hillery, and M. Orszag, “Role of pumping statistics in laser dynamics: quantum Langevin approach,” Phys. Rev. A 41, 2756–2765 (1990).
[CrossRef] [PubMed]

J. Bergou, L. Davidovitch, M. Orszag, C. Benkert, M. Hillery, and M. O. Scully, “Role of pumping statistics in maser and laser dynamics: density-matrix approach,” Phys. Rev. A 40, 5073–5080 (1989).
[CrossRef] [PubMed]

Ségard, B.

V. Lecoeuche, S. Randoux, B. Ségard, and J. Zemmouri, “Dynamics of a Brillouin fiber ring laser: off-resonant case,” Phys. Rev. A 53, 2822–2828 (1996).
[CrossRef] [PubMed]

S. Randoux, V. Lecoeuche, B. Ségard, and J. Zemmouri, “Dynamical behavior of a Brillouin fiber ring laser emitting two Stokes components,” Phys. Rev. A 52, 2327–2334 (1995).
[CrossRef] [PubMed]

S. Randoux, V. Lecoeuche, B. Ségard, and J. Zemmouri, “Dynamical analysis of Brillouin fiber lasers: an experimental approach,” Phys. Rev. A 51, 2327–2334 (1995).
[CrossRef]

Smith, S. P.

Sundaram, B.

P. Goldberg, P. W. Milonni, and B. Sundaram, “Theory of the fundamental laser linewidth,” Phys. Rev. A 44, 1969–1985 (1991).
[CrossRef] [PubMed]

P. Goldberg, P. W. Milonni, and B. Sundaram, “Theory of the fundamental laser linewidth. II,” Phys. Rev. A 44, 4556–4563 (1991).
[CrossRef] [PubMed]

Süssmann, G.

C. Benkert, M. O. Scully, and G. Süssmann, “Memory correlation effects on quantum noise in lasers and masers,” Phys. Rev. A 41, 6119–6128 (1990).
[CrossRef] [PubMed]

Tanaka, Y.

Y. Tanaka and K. Hotate, “Analysis of fiber Brillouin ring laser composed of single-polarization single-mode fiber,” J. Lightwave Technol. 15, 838–844 (1997), and references therein.
[CrossRef]

Thévenaz, L.

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997), and references therein.
[CrossRef]

J. Boschung, L. Thévenaz, and P. A. Robert, “High-accuracy measurement of the linewidth of a Brillouin fibre ring laser,” Electron. Lett. 30, 1488–1489 (1994).
[CrossRef]

Townes, C. H.

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[CrossRef]

Vahala, K.

K. Vahala and A. Yariv, “Semiclassical theory of noise in semiconductor lasers. II,” IEEE J. Quantum Electron. QE-19, 1102–1109 (1983).
[CrossRef]

K. Vahala and A. Yariv, “Semiclassical theory of noise in semiconductor lasers. I,” IEEE J. Quantum Electron. QE-19, 1096–1101 (1983).
[CrossRef]

van Exter, M. P.

M. P. van Exter, S. J. M. Kuppens, and J. P. Woerdman, “Theory for the linewidth of a bad-cavity laser,” Phys. Rev. A 51, 809–816 (1995).
[CrossRef] [PubMed]

S. J. M. Kuppens, M. P. van Exter, and J. P. Woerdman, “Quantum-limited linewidth of a bad-cavity laser,” Phys. Rev. Lett. 72, 3815–3818 (1994).
[CrossRef] [PubMed]

M. P. van Exter, S. J. M. Kuppens, and J. P. Woerdman, “Excess phase noise in self-heterodyne detection,” IEEE J. Quantum Electron. 28, 580–584 (1992).
[CrossRef]

M. P. van Exter, W. A. Hamel, J. P. Woerdman, and B. R. P. Zeijlmans, “Spectral signature of relaxation oscillations in semiconductor lasers,” IEEE J. Quantum Electron. 28, 1470–1478 (1992).
[CrossRef]

M. P. van Exter, W. A. Hamel, and J. P. Woerdman, “Nonuniform phase diffusion in a laser,” Phys. Rev. A 43, 6241–6246 (1991).
[CrossRef] [PubMed]

Walls, D. F.

K. M. Gheri, D. F. Walls, and M. A. Marte, “Systematic description of laser phase by linearized Ito equations,” Phys. Rev. A 46, 6002–6009 (1992).
[CrossRef] [PubMed]

H. Ritsch, P. Zoller, C. W. Gardiner, and D. F. Walls, “Sub-Poissonian laser light by dynamic pump-noise suppression,” Phys. Rev. A 44, 3361–3364 (1991).
[CrossRef] [PubMed]

Walser, R.

R. Walser and P. Zoller, “Laser-noise-induced polarization fluctuations as a spectroscopic tool,” Phys. Rev. A 49, 5067–5077 (1994).
[CrossRef] [PubMed]

Woerdman, J. P.

M. P. van Exter, S. J. M. Kuppens, and J. P. Woerdman, “Theory for the linewidth of a bad-cavity laser,” Phys. Rev. A 51, 809–816 (1995).
[CrossRef] [PubMed]

S. J. M. Kuppens, M. P. van Exter, and J. P. Woerdman, “Quantum-limited linewidth of a bad-cavity laser,” Phys. Rev. Lett. 72, 3815–3818 (1994).
[CrossRef] [PubMed]

M. P. van Exter, S. J. M. Kuppens, and J. P. Woerdman, “Excess phase noise in self-heterodyne detection,” IEEE J. Quantum Electron. 28, 580–584 (1992).
[CrossRef]

M. P. van Exter, W. A. Hamel, J. P. Woerdman, and B. R. P. Zeijlmans, “Spectral signature of relaxation oscillations in semiconductor lasers,” IEEE J. Quantum Electron. 28, 1470–1478 (1992).
[CrossRef]

M. P. van Exter, W. A. Hamel, and J. P. Woerdman, “Nonuniform phase diffusion in a laser,” Phys. Rev. A 43, 6241–6246 (1991).
[CrossRef] [PubMed]

Xu, Z.

S. Gong, Z. Xu, Z. Zhang, and S. Pan, “Change from an inversion laser to a noninversion laser due to a phase-fluctuation effect,” Phys. Rev. A 52, 4787–4790 (1995).
[CrossRef] [PubMed]

Yamamoto, Y.

S. Machida, Y. Yamamoto, and Y. Itaya, “Observation of amplitude squeezing in a constant-current-driven semiconductor laser,” Phys. Rev. Lett. 58, 1000–1003 (1987).
[CrossRef] [PubMed]

Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise-suppressed laser oscillator,” Phys. Rev. A 34, 4025–4042 (1986).
[CrossRef] [PubMed]

Yariv, A.

K. Vahala and A. Yariv, “Semiclassical theory of noise in semiconductor lasers. II,” IEEE J. Quantum Electron. QE-19, 1102–1109 (1983).
[CrossRef]

K. Vahala and A. Yariv, “Semiclassical theory of noise in semiconductor lasers. I,” IEEE J. Quantum Electron. QE-19, 1096–1101 (1983).
[CrossRef]

A. Yariv and W. M. Caton, “Frequency, intensity, and field fluctuations in laser oscillators,” IEEE J. Quantum Electron. QE-10, 509–515 (1974).
[CrossRef]

Young, B. C.

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[CrossRef]

Zarinetchi, F.

Zeijlmans, B. R. P.

M. P. van Exter, W. A. Hamel, J. P. Woerdman, and B. R. P. Zeijlmans, “Spectral signature of relaxation oscillations in semiconductor lasers,” IEEE J. Quantum Electron. 28, 1470–1478 (1992).
[CrossRef]

Zemmouri, J.

A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: Theoretical analysis,” Phys. Rev. A 62, 023803–1–023803–4 (2000).
[CrossRef]

S. Randoux and J. Zemmouri, “Polarization dynamics of a Brillouin fiber ring laser,” Phys. Rev. A 59, 1644–1653 (1999).
[CrossRef]

V. Lecoeuche, S. Randoux, B. Ségard, and J. Zemmouri, “Dynamics of a Brillouin fiber ring laser: off-resonant case,” Phys. Rev. A 53, 2822–2828 (1996).
[CrossRef] [PubMed]

S. Randoux, V. Lecoeuche, B. Ségard, and J. Zemmouri, “Dynamical behavior of a Brillouin fiber ring laser emitting two Stokes components,” Phys. Rev. A 52, 2327–2334 (1995).
[CrossRef] [PubMed]

S. Randoux, V. Lecoeuche, B. Ségard, and J. Zemmouri, “Dynamical analysis of Brillouin fiber lasers: an experimental approach,” Phys. Rev. A 51, 2327–2334 (1995).
[CrossRef]

Zhang, Z.

S. Gong, Z. Xu, Z. Zhang, and S. Pan, “Change from an inversion laser to a noninversion laser due to a phase-fluctuation effect,” Phys. Rev. A 52, 4787–4790 (1995).
[CrossRef] [PubMed]

Zhu, C.

C. Zhu, “Statistics of nonclassical lasers generated via pump-noise suppression,” Phys. Rev. A 48, 3930–3946 (1993).
[CrossRef] [PubMed]

Zoller, P.

R. Walser and P. Zoller, “Laser-noise-induced polarization fluctuations as a spectroscopic tool,” Phys. Rev. A 49, 5067–5077 (1994).
[CrossRef] [PubMed]

H. Ritsch and P. Zoller, “Dynamic quantum-noise reduction in multilevel-laser systems,” Phys. Rev. A 45, 1881–1892 (1992).
[CrossRef] [PubMed]

H. Ritsch, M. A. M. Marte, and P. Zoller, “Quantum noise reduction in Raman lasers,” Europhys. Lett. 19, 7–12 (1992).
[CrossRef]

H. Ritsch, P. Zoller, C. W. Gardiner, and D. F. Walls, “Sub-Poissonian laser light by dynamic pump-noise suppression,” Phys. Rev. A 44, 3361–3364 (1991).
[CrossRef] [PubMed]

M. A. M. Marte and P. Zoller, “Lasers with sub-Poissonian pump,” Phys. Rev. A 40, 5774–5782 (1989).
[CrossRef] [PubMed]

Chin. Phys. Lett. (1)

X. Hu and J. Peng, “Effects of pump phase noise on the linewidth of a Λ-laser without inversion: linewidth reduction,” Chin. Phys. Lett. 15, 571–573 (1998).
[CrossRef]

Electron. Lett. (1)

J. Boschung, L. Thévenaz, and P. A. Robert, “High-accuracy measurement of the linewidth of a Brillouin fibre ring laser,” Electron. Lett. 30, 1488–1489 (1994).
[CrossRef]

Europhys. Lett. (1)

H. Ritsch, M. A. M. Marte, and P. Zoller, “Quantum noise reduction in Raman lasers,” Europhys. Lett. 19, 7–12 (1992).
[CrossRef]

IEEE J. Quantum Electron. (6)

A. Yariv and W. M. Caton, “Frequency, intensity, and field fluctuations in laser oscillators,” IEEE J. Quantum Electron. QE-10, 509–515 (1974).
[CrossRef]

M. P. van Exter, S. J. M. Kuppens, and J. P. Woerdman, “Excess phase noise in self-heterodyne detection,” IEEE J. Quantum Electron. 28, 580–584 (1992).
[CrossRef]

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 259–264 (1982).
[CrossRef]

K. Vahala and A. Yariv, “Semiclassical theory of noise in semiconductor lasers. I,” IEEE J. Quantum Electron. QE-19, 1096–1101 (1983).
[CrossRef]

K. Vahala and A. Yariv, “Semiclassical theory of noise in semiconductor lasers. II,” IEEE J. Quantum Electron. QE-19, 1102–1109 (1983).
[CrossRef]

M. P. van Exter, W. A. Hamel, J. P. Woerdman, and B. R. P. Zeijlmans, “Spectral signature of relaxation oscillations in semiconductor lasers,” IEEE J. Quantum Electron. 28, 1470–1478 (1992).
[CrossRef]

Int. J. Nonlinear Opt. Phys. (1)

A. L. Gaeta and R. W. Boyd, “Stimulated Brillouin scattering in the presence of external feedback,” Int. J. Nonlinear Opt. Phys. 1, 581–594 (1992).
[CrossRef]

J. Lightwave Technol. (3)

C. H. Henry, “Phase noise in semiconductor lasers,” J. Lightwave Technol. 4, 298–311 (1986).
[CrossRef]

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997), and references therein.
[CrossRef]

Y. Tanaka and K. Hotate, “Analysis of fiber Brillouin ring laser composed of single-polarization single-mode fiber,” J. Lightwave Technol. 15, 838–844 (1997), and references therein.
[CrossRef]

J. Opt. Commun. (1)

D. Cotter, “Stimulated Brillouin scattering in monomode optical fiber,” J. Opt. Commun. 4, 10–19 (1983).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

M. Fleischhauer, M. D. Lukin, D. E. Nikonov, and M. O. Scully, “Influence of pump-field phase diffusion on laser gain in a double-Λ non-inversion laser,” Opt. Commun. 110, 351–357 (1994).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (1)

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[CrossRef]

Phys. Rev. A (29)

N. Lu, “Effect of laser intensity fluctuations on laser linewidth,” Phys. Rev. A 47, 4322–4330 (1993).
[CrossRef] [PubMed]

M. P. van Exter, W. A. Hamel, and J. P. Woerdman, “Nonuniform phase diffusion in a laser,” Phys. Rev. A 43, 6241–6246 (1991).
[CrossRef] [PubMed]

S. Prasad, “Theory of a homogeneously broadened laser with arbitrary mirror outcoupling: intrinsic linewidth and phase diffusion,” Phys. Rev. A 46, 1540–1559 (1992).
[CrossRef] [PubMed]

M. P. van Exter, S. J. M. Kuppens, and J. P. Woerdman, “Theory for the linewidth of a bad-cavity laser,” Phys. Rev. A 51, 809–816 (1995).
[CrossRef] [PubMed]

C. Benkert, M. O. Scully, and G. Süssmann, “Memory correlation effects on quantum noise in lasers and masers,” Phys. Rev. A 41, 6119–6128 (1990).
[CrossRef] [PubMed]

M. I. Kolobov, L. Davidovitch, E. Giacobino, and C. Fabre, “Role of pumping statistics and dynamics of atomic polarization in quantum fluctuations of laser sources,” Phys. Rev. A 47, 1431–1446 (1993).
[CrossRef] [PubMed]

A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: Theoretical analysis,” Phys. Rev. A 62, 023803–1–023803–4 (2000).
[CrossRef]

S. Randoux, V. Lecoeuche, B. Ségard, and J. Zemmouri, “Dynamical analysis of Brillouin fiber lasers: an experimental approach,” Phys. Rev. A 51, 2327–2334 (1995).
[CrossRef]

C. Montes, A. Mamhoud, and E. Picholle, “Bifurcation in a cw-pumped Brillouin fiber-ring laser: coherent soliton morphogenesis,” Phys. Rev. A 49, 1344–1349 (1994).
[CrossRef] [PubMed]

J. Bergou, L. Davidovitch, M. Orszag, C. Benkert, M. Hillery, and M. O. Scully, “Role of pumping statistics in maser and laser dynamics: density-matrix approach,” Phys. Rev. A 40, 5073–5080 (1989).
[CrossRef] [PubMed]

C. Benkert, M. O. Scully, J. Bergou, L. Davidovitch, M. Hillery, and M. Orszag, “Role of pumping statistics in laser dynamics: quantum Langevin approach,” Phys. Rev. A 41, 2756–2765 (1990).
[CrossRef] [PubMed]

Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise-suppressed laser oscillator,” Phys. Rev. A 34, 4025–4042 (1986).
[CrossRef] [PubMed]

C. Zhu, “Statistics of nonclassical lasers generated via pump-noise suppression,” Phys. Rev. A 48, 3930–3946 (1993).
[CrossRef] [PubMed]

M. A. M. Marte and P. Zoller, “Lasers with sub-Poissonian pump,” Phys. Rev. A 40, 5774–5782 (1989).
[CrossRef] [PubMed]

H. Ritsch, P. Zoller, C. W. Gardiner, and D. F. Walls, “Sub-Poissonian laser light by dynamic pump-noise suppression,” Phys. Rev. A 44, 3361–3364 (1991).
[CrossRef] [PubMed]

H. Ritsch and P. Zoller, “Dynamic quantum-noise reduction in multilevel-laser systems,” Phys. Rev. A 45, 1881–1892 (1992).
[CrossRef] [PubMed]

R. Walser and P. Zoller, “Laser-noise-induced polarization fluctuations as a spectroscopic tool,” Phys. Rev. A 49, 5067–5077 (1994).
[CrossRef] [PubMed]

P. Goldberg, P. W. Milonni, and B. Sundaram, “Theory of the fundamental laser linewidth,” Phys. Rev. A 44, 1969–1985 (1991).
[CrossRef] [PubMed]

P. Goldberg, P. W. Milonni, and B. Sundaram, “Theory of the fundamental laser linewidth. II,” Phys. Rev. A 44, 4556–4563 (1991).
[CrossRef] [PubMed]

K. M. Gheri, D. F. Walls, and M. A. Marte, “Systematic description of laser phase by linearized Ito equations,” Phys. Rev. A 46, 6002–6009 (1992).
[CrossRef] [PubMed]

S. Gong, Z. Xu, Z. Zhang, and S. Pan, “Change from an inversion laser to a noninversion laser due to a phase-fluctuation effect,” Phys. Rev. A 52, 4787–4790 (1995).
[CrossRef] [PubMed]

H. Ritsch and M. A. M. Marte, “Quantum noise in Raman lasers: effects of pump bandwidth and super- and sub-Poissonian pumping,” Phys. Rev. A 47, 2354–2365 (1993).
[CrossRef] [PubMed]

S. Prasad, “Quantum noise and squeezing in an optical parametric oscillator with arbitrary output-mirror coupling. III. Effect of pump amplitude and phase fluctuations,” Phys. Rev. A 49, 1406–1426 (1994), and references therein.
[CrossRef] [PubMed]

P. D. Drummond and M. D. Reid, “Laser bandwidth effects on squeezing in intracavity parametric oscillation,” Phys. Rev. A 37, 1806–1808 (1988).
[CrossRef] [PubMed]

A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, 3205–3209 (1991).
[CrossRef] [PubMed]

R. W. Boyd, K. Rzażewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[CrossRef] [PubMed]

V. Lecoeuche, S. Randoux, B. Ségard, and J. Zemmouri, “Dynamics of a Brillouin fiber ring laser: off-resonant case,” Phys. Rev. A 53, 2822–2828 (1996).
[CrossRef] [PubMed]

S. Randoux, V. Lecoeuche, B. Ségard, and J. Zemmouri, “Dynamical behavior of a Brillouin fiber ring laser emitting two Stokes components,” Phys. Rev. A 52, 2327–2334 (1995).
[CrossRef] [PubMed]

S. Randoux and J. Zemmouri, “Polarization dynamics of a Brillouin fiber ring laser,” Phys. Rev. A 59, 1644–1653 (1999).
[CrossRef]

Phys. Rev. B (1)

D. Heiman, D. S. Hamilton, and R. W. Hellwarth, “Brillouin scattering measurements on optical glasses,” Phys. Rev. B 19, 6583–6592 (1979).
[CrossRef]

Phys. Rev. Lett. (4)

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[CrossRef]

S. Machida, Y. Yamamoto, and Y. Itaya, “Observation of amplitude squeezing in a constant-current-driven semiconductor laser,” Phys. Rev. Lett. 58, 1000–1003 (1987).
[CrossRef] [PubMed]

G. S. Agarwal, “Inhibition of spontaneous emission noise in lasers without inversion,” Phys. Rev. Lett. 67, 980–982 (1991).
[CrossRef] [PubMed]

S. J. M. Kuppens, M. P. van Exter, and J. P. Woerdman, “Quantum-limited linewidth of a bad-cavity laser,” Phys. Rev. Lett. 72, 3815–3818 (1994).
[CrossRef] [PubMed]

Other (7)

M. Sargent III, M. O. Scully, and W. E. Lamb, Jr., Laser Physics (Addison-Wesley, Reading, Mass., 1974), Chap. 17.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995), Chap. 2.

A. Papoulis, Signal Analysis (McGraw-Hill, New York, 1984), Chap. 8.

D. Zwillinger, ed., Standard Mathematical Tables and Formulae, 30th ed. (CRC Press, Boca Raton, Fla., 1996).

R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), Chap. 7.

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1988), Chap. 21.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Field spectra of pump, Stokes, and acoustic waves: (a) g=6.04, βA=10.93, R=0.36, K2=144, K2=1.19, (b) g=0.77, βA=3.64, R=0.974, K2=2×104, K2=1.015. The frequencies are measured in units of cavity FSR.

Fig. 2
Fig. 2

Numerical simulations: response of the Brillouin fiber ring laser to a sinusoidal modulation of phase ϕ0 of the pump laser (g=6.04, βA=10.93, R=0.36); ϕs is the phase of the emitted Stokes wave, and time τ is normalized to the transit time of the light inside the fiber.

Fig. 3
Fig. 3

Schematic representation of the experimental setup.

Fig. 4
Fig. 4

In each of these experimental figures, the left spectrum is the beat spectrum between the pump fields and the right spectrum is the beat spectrum between the Stokes fields. (a) The modulation index of the pump field is mp=1.25, whereas that of the Stokes field is only ms=0.12 (mp/ms=10.4). (b) The suppression of the central component of the pump spectrum corresponds to an index mp equal to 2.4. The corresponding value of ms is then equal to 0.25 (mp/ms=9.6).

Fig. 5
Fig. 5

Schematic representation of the various spectral components involved in the experiment (see text).

Equations (46)

Equations on this page are rendered with MathJax. Learn more.

τεp+ζεp=-gBεs,
τεs-ζεs=gB*εp,
(1/βA)τB+B=εpεs*.
τAp+ζAp=-gAaAs cos θ,
τAs-ζAs=gAaAp cos θ,
(1/βA)τAa+Aa=ApAs cos θ,
τϕp+ζϕp=-g(AaAs/Ap)sin θ,
τϕs-ζϕs=-g(AaAp/As)sin θ,
(1/βA)τϕa=-(ApAs/Aa)sin θ,
Ap(ζ=0, τ)=μ,
As(ζ=1, τ)=RAs(ζ=0, τ),
ϕp(ζ=0, τ)=ϕ0(τ),
ϕs(ζ=1, τ)=ϕs(ζ=0, τ),
dϕ0(τ)dτ=q(τ),
1βA 1Aa Aaτ+1=ApAsAa cos θ.
1βA 1Aa Aaτ1.
Aa(ζ, τ)Aa(ζ)Ap(ζ, τ)As(ζ, τ)cos θ(ζ, τ).
τϕp+ζϕp=-(g/2)As2(ζ, τ)sin[2θ(ζ, τ)],
τϕs-ζϕs=-(g/2)Ap2(ζ, τ)sin[2θ(ζ, τ)],
(1/βA)τϕa=-(1/2)sin[2θ(ζ, τ)].
τϕp+ζϕp=-gAs2(ζ)θ,
τϕs-ζϕs=-gAp2(ζ)θ,
τϕa=-βAθ.
ϕp(ζ, τ)=ϕ0(τ-ζ).
ϕsτ-ϕsζ=-gΩ1-Δ exp(-2gΩζ)(ϕs+ϕa-ϕp).
ϕaτ=-βA(ϕs+ϕa-ϕp),
Δ=R2-exp(-2gΩ)(R2-1)exp(-2gΩ).
ϕs(ζ, τ)=n=-+Sn(τ)exp(iknζ),
βA+i2πνgΩ(ν-m)S˜m(ν)
=νϕ˜0(ν)01 exp-i(km+2πν)ζ1-Δ exp(-2gΩζ) dζ
-n=-+ S˜n(ν)ν01 exp i(kn-km)ζ1-Δ exp(-2gΩζ) dζ.
S˜0(ν)
=g 01[Ω exp(-i2πνζ)dζ/1-Δ exp(-2gΩζ)]g01[Ωdζ/1-Δ exp(-2gΩζ)]+βA+i2πνϕ˜0(ν).
S˜0(ν)=-ln RβA-ln R+i2πν exp(-iπν)sin πνπνϕ˜0(ν).
K=1+γA/Γc,
K=1+Γc/γA,
Δνs=Δνp/K2,
Δνa=Δνp/K2.
C(t)=Ai2exp{iϕi(τ+t)-ϕi(τ)}
Si(ν)=Ai2 2πΔνi(πΔνi)2+4π2ν2.
Δνa=γA2(γA2+Γc2)Δνp.
Ep0(t)=Ep0 sin(2πνpt),
Ep1(t)=Ep1 sin2π(νp+νRF)t+δνpf sin(2πft),
Sp(ν)=αp n=-+|Jn(mp)|2δ(ν-νRF-nf),
SB(ν)=αB n=-+|Jn(ms)|2δ(ν-νB-nf).
K=1-2πΔνBnLc ln(R2),

Metrics