Abstract

Doppler-free high-resolution spectroscopy is applied to molecular iodine at 532 nm by Nd:YAG lasers. The main hyperfine components as well as the crossover lines are measured for R(56)32-0 and P(54)32-0 transitions by heterodyne beating of two I2-stabilized lasers. The measured hyperfine splittings including both main and crossover lines are fitted to a four-term Hamiltonian, which includes the electric quadrupole, spin–rotation, tensor spin–spin, and scalar spin–spin interactions, with an average deviation of 1 kHz. Absolute values of the electric quadrupole hyperfine constants for both the upper and the lower states are obtained. The rotation dependence of the ground-state (v=0) electric quadrupole constant eQq is found to be eQq(J)=-2452.556(2)-0.000164(5)J(J+1)-0.000000005(2)J2(J+1)2 MHz.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Levenson and A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A 6, 10–20 (1972).
    [CrossRef]
  2. H. J. Foth and F. Spieweck, “Hyperfine Structure of the R(98), 58–1 line of 127I2 at 514.5 nm,” Chem. Phys. Lett. 65, 347–352 (1979).
    [CrossRef]
  3. Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, and J. Vigué, “High precision saturation spectroscopy of 127I2 with argon lasers at 5145 Å and 5017 Å. I. Main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
    [CrossRef]
  4. G. R. Hanes and C. E. Dahlstrom, “Iodine hyperfine structure observed in saturated absorption at 633 nm,” Appl. Phys. Lett. 14, 362–364 (1969).
    [CrossRef]
  5. P. Cérez and S. J. Bennett, “Helium–neon laser stabilized by saturated absorption in iodine at 612 nm,” Appl. Opt. 18, 1079–1083 (1979).
    [CrossRef]
  6. J.-M. Chartier, S. Fredin-Picard, and L. Robertsson, “Frequency-stabilized 543 nm HeNe laser system: a new candidate for the realization of the meter?” Opt. Commun. 74, 87–92 (1989).
    [CrossRef]
  7. B. Couillaud and A. Ducasse, “Saturated absorption experiments using a free running cw dye laser,” Opt. Commun. 13, 398–401 (1975).
    [CrossRef]
  8. A. Razet and S. Picard, “A tabulation of calculations of the hyperfine structure in 127I2,” Metrologia 33, 19–27 (1996).
    [CrossRef]
  9. J. L. Hall, L.-S. Ma, M. Taubman, B. Tiemann, F.-L. Hong, O. Pfister, and J. Ye, “Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
    [CrossRef]
  10. A. Arie and R. L. Byer, “Laser heterodyne spectroscopy of 127I2 hyperfine structure near 532 nm,” J. Opt. Soc. Am. B 10, 1990–1997 (1993).
    [CrossRef]
  11. A. Arie and R. L. Byer, “The hyperfine structure of the 127I2 P(119) 35–0 transition,” Opt. Commun. 111, 253–258 (1994).
    [CrossRef]
  12. M. L. Eickhoff and J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
    [CrossRef]
  13. J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
    [CrossRef]
  14. T. J. Quinn, “Practical realization of the definition of the metre (1997),” Metrologia 36, 211–244 (1999).
    [CrossRef]
  15. P. A. Jungner, S. Swartz, M. Eickhoff, J. Ye, J. L. Hall, and S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32–0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
    [CrossRef]
  16. P. Jungner, M. L. Eickhoff, S. D. Swartz, J. Ye, and J. L. Hall, “Stability and absolute frequency of molecular iodine transitions near 532 nm,” in Laser Frequency Stabilization and Noise Reduction, Y. Shevy, ed., Proc. SPIE 2378, 22–34 (1995).
    [CrossRef]
  17. F.-L. Hong, J. Ishikawa, T. H. Yoon, L.-S. Ma, J. Ye, and J. L. Hall, “A portable I2-stabilized Nd:YAG laser for wavelength standards at 532 nm and 1064 nm,” in Recent Developments in Optical Gauge Block Metrology, N. Brown and J. E. Decker, eds., Proc. SPIE 3477, 2–10 (1998).
    [CrossRef]
  18. F.-L. Hong, J. Ishikawa, J. Yoda, J. Ye, L.-S. Ma, and J. L. Hall, “Frequency comparison of 127I2-stabilized Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 48, 532–536 (1999).
    [CrossRef]
  19. M. S. Sorem, T. W. Hänsch, and A. L. Schawlow, “Nuclear quadrupole coupling in the 1Σg+ and 3Πou+ states of molecular iodine,” Chem. Phys. Lett. 17, 300–302 (1972).
    [CrossRef]
  20. A. Yokozeki and J. S. Muenter, “Laser fluorescence state selected and detected molecular beam magnetic resonance in I2,” J. Chem. Phys. 72, 3796–3804 (1980).
    [CrossRef]
  21. J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, and Ch. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. J. D 6, 63–76 (1999).
  22. (Personal communication of Ch. J. Bordé with J. L. Hall, 1998.)
  23. T. W. Hänsch and B. Couillaud, “Laser frequency stabilizaion by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
    [CrossRef]
  24. G. Camy, C. J. Bordé, and M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturation beam,” Opt. Commun. 41, 325–330 (1982), especially Refs. 6 and 7 therein.
    [CrossRef]
  25. J. H. Shirley, “Modulation transfer processes in optical heterodyne saturation spectroscopy,” Opt. Lett. 7, 537–539 (1982).
    [CrossRef] [PubMed]
  26. L. S. Ma, J. H. Shirley, L. Hollberg, and J. L. Hall, “Modulation transfer spectroscopy for stabilizing lasers,” U.S. patent 4, 590, 597 (May 26, 1986).
  27. M. Kroll, “Hyperfine structure in the visible molecular-iodine absorption spectrum,” Phys. Rev. Lett. 23, 631–633 (1969).
    [CrossRef]
  28. P. R. Bunker and G. R. Hanes, “Nuclear spin-spin coupling in the spectrum of I2 at 6328 Å,” Chem. Phys. Lett. 28, 377–379 (1974).
    [CrossRef]
  29. L. A. Hackel, K. H. Casleton, S. G. Kukolich, and S. Ezekiel, “Observation of magnetic octupole and scalar spin-spin interaction in I2 using laser spectroscopy,” Phys. Rev. Lett. 35, 568–571 (1975).
    [CrossRef]
  30. See also B. M. Landsberg, “Nuclear hyperfine splittings in B–X electronic band system of 127I2,” Chem. Phys. Lett. 43, 102–103 (1976).
    [CrossRef]
  31. S. Gerstenkorn and P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B–X) system,” J. Phys. (Paris) 46, 867–881 (1985).
    [CrossRef]
  32. Ch. J. Bordé, G. Camy, N. and B. Decomps, “Measurement of the recoil shift of saturation resonances of 127I2 at 5145 Å: a test of accuracy for high-resolution spectroscopy,” Phys. Rev. A 20, 254–268 (1979).J. Bordeé and Ch. J. Bordé, “Intensities of hyperfine components in saturation spectroscopy,” J. Mol. Spectrosc. 78, 353–378 (1979).
    [CrossRef]
  33. A. Razet and S. Picard, “A test of new empirical formulas for the prediction of hyperfine component frequencies in 127I2,” Metrologia 34, 181–186 (1997).
    [CrossRef]
  34. V. Jaccarino, J. G. King, R. A. Satten, and H. H. Stroke, “Hyperfine structure of I127. Nuclear magnetic octupole moment,” Phys. Rev. 94, 1798–1616 (1954).
    [CrossRef]
  35. R. M. Herman and S. Short, “New theoretical method for the accurate calculation of expectation values on functions of internuclear in 1Σ-state diatomic molecules,” J. Chem. Phys. 48, 1266–1272 (1968).
    [CrossRef]
  36. F. H. de Leeuw and A. Dymanus, “Magnetic properties and molecular quadrupole moment of HF and HCl by molecular-beam electric-resonance spectroscopy,” J. Mol. Spectrosc. 48, 427–445 (1973).
    [CrossRef]
  37. J. K. G. Watson, “The inversion of diatomic vibration-rotation expectation values,” J. Mol. Spectrosc. 74, 319–321 (1979).
    [CrossRef]
  38. See also P. R. Bunker, “The breakdown of the Born–Oppenheimer approximation for a diatomic molecule: the dipole moment and nuclear quadrupole coupling constants,” J. Mol. Spectrosc. 45, 151–158 (1973).
    [CrossRef]
  39. G. Gouédard, N. Billy, B. Girard, and J. Vigué, “Hyperfine structure measurements in the IF B–X system,” J. Phys. II 2, 813–825 (1992).
  40. Ch. Chardonnet, M. L. Palma, and Ch. J. Bordé, “Hyperfine interactions in the v3 band of osmium tetroxide: the elec-tric quadrupole interaction in 189OsO4,” J. Mol. Spectrosc. 170, 542–566 (1995).
    [CrossRef]
  41. M. Wakasugi, T. Horiguchi, M. Koizumi, and Y. Yoshizawa, “Hyperfine structure near the 13–1 band head in the B–X transition of 127I2,” J. Opt. Soc. Am. B 5, 2298–2304 (1988).
    [CrossRef]
  42. V. Špirko and J. Blabla, “Nuclear quadrupole coupling functions of the 1Σg+ and 3Π0u+ states of molecular iodine,” J. Mol. Spectrosc. 129, 59–71 (1988).
    [CrossRef]
  43. H. Knöckel, S. Kremser, B. Bodermann, and E. Tiemann, “High precision measurement of hyperfine structures near 790 nm of I2,” Z. Phys. D 37, 43–48 (1996).
    [CrossRef]

1999 (5)

J. L. Hall, L.-S. Ma, M. Taubman, B. Tiemann, F.-L. Hong, O. Pfister, and J. Ye, “Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
[CrossRef]

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

T. J. Quinn, “Practical realization of the definition of the metre (1997),” Metrologia 36, 211–244 (1999).
[CrossRef]

F.-L. Hong, J. Ishikawa, J. Yoda, J. Ye, L.-S. Ma, and J. L. Hall, “Frequency comparison of 127I2-stabilized Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 48, 532–536 (1999).
[CrossRef]

J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, and Ch. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. J. D 6, 63–76 (1999).

1998 (1)

F.-L. Hong, J. Ishikawa, T. H. Yoon, L.-S. Ma, J. Ye, and J. L. Hall, “A portable I2-stabilized Nd:YAG laser for wavelength standards at 532 nm and 1064 nm,” in Recent Developments in Optical Gauge Block Metrology, N. Brown and J. E. Decker, eds., Proc. SPIE 3477, 2–10 (1998).
[CrossRef]

1997 (1)

A. Razet and S. Picard, “A test of new empirical formulas for the prediction of hyperfine component frequencies in 127I2,” Metrologia 34, 181–186 (1997).
[CrossRef]

1996 (2)

A. Razet and S. Picard, “A tabulation of calculations of the hyperfine structure in 127I2,” Metrologia 33, 19–27 (1996).
[CrossRef]

H. Knöckel, S. Kremser, B. Bodermann, and E. Tiemann, “High precision measurement of hyperfine structures near 790 nm of I2,” Z. Phys. D 37, 43–48 (1996).
[CrossRef]

1995 (4)

Ch. Chardonnet, M. L. Palma, and Ch. J. Bordé, “Hyperfine interactions in the v3 band of osmium tetroxide: the elec-tric quadrupole interaction in 189OsO4,” J. Mol. Spectrosc. 170, 542–566 (1995).
[CrossRef]

P. A. Jungner, S. Swartz, M. Eickhoff, J. Ye, J. L. Hall, and S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32–0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[CrossRef]

P. Jungner, M. L. Eickhoff, S. D. Swartz, J. Ye, and J. L. Hall, “Stability and absolute frequency of molecular iodine transitions near 532 nm,” in Laser Frequency Stabilization and Noise Reduction, Y. Shevy, ed., Proc. SPIE 2378, 22–34 (1995).
[CrossRef]

M. L. Eickhoff and J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
[CrossRef]

1994 (1)

A. Arie and R. L. Byer, “The hyperfine structure of the 127I2 P(119) 35–0 transition,” Opt. Commun. 111, 253–258 (1994).
[CrossRef]

1993 (1)

1992 (1)

G. Gouédard, N. Billy, B. Girard, and J. Vigué, “Hyperfine structure measurements in the IF B–X system,” J. Phys. II 2, 813–825 (1992).

1989 (1)

J.-M. Chartier, S. Fredin-Picard, and L. Robertsson, “Frequency-stabilized 543 nm HeNe laser system: a new candidate for the realization of the meter?” Opt. Commun. 74, 87–92 (1989).
[CrossRef]

1988 (2)

M. Wakasugi, T. Horiguchi, M. Koizumi, and Y. Yoshizawa, “Hyperfine structure near the 13–1 band head in the B–X transition of 127I2,” J. Opt. Soc. Am. B 5, 2298–2304 (1988).
[CrossRef]

V. Špirko and J. Blabla, “Nuclear quadrupole coupling functions of the 1Σg+ and 3Π0u+ states of molecular iodine,” J. Mol. Spectrosc. 129, 59–71 (1988).
[CrossRef]

1985 (1)

S. Gerstenkorn and P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B–X) system,” J. Phys. (Paris) 46, 867–881 (1985).
[CrossRef]

1982 (2)

G. Camy, C. J. Bordé, and M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturation beam,” Opt. Commun. 41, 325–330 (1982), especially Refs. 6 and 7 therein.
[CrossRef]

J. H. Shirley, “Modulation transfer processes in optical heterodyne saturation spectroscopy,” Opt. Lett. 7, 537–539 (1982).
[CrossRef] [PubMed]

1981 (1)

Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, and J. Vigué, “High precision saturation spectroscopy of 127I2 with argon lasers at 5145 Å and 5017 Å. I. Main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
[CrossRef]

1980 (2)

T. W. Hänsch and B. Couillaud, “Laser frequency stabilizaion by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[CrossRef]

A. Yokozeki and J. S. Muenter, “Laser fluorescence state selected and detected molecular beam magnetic resonance in I2,” J. Chem. Phys. 72, 3796–3804 (1980).
[CrossRef]

1979 (3)

H. J. Foth and F. Spieweck, “Hyperfine Structure of the R(98), 58–1 line of 127I2 at 514.5 nm,” Chem. Phys. Lett. 65, 347–352 (1979).
[CrossRef]

P. Cérez and S. J. Bennett, “Helium–neon laser stabilized by saturated absorption in iodine at 612 nm,” Appl. Opt. 18, 1079–1083 (1979).
[CrossRef]

J. K. G. Watson, “The inversion of diatomic vibration-rotation expectation values,” J. Mol. Spectrosc. 74, 319–321 (1979).
[CrossRef]

1976 (1)

See also B. M. Landsberg, “Nuclear hyperfine splittings in B–X electronic band system of 127I2,” Chem. Phys. Lett. 43, 102–103 (1976).
[CrossRef]

1975 (2)

L. A. Hackel, K. H. Casleton, S. G. Kukolich, and S. Ezekiel, “Observation of magnetic octupole and scalar spin-spin interaction in I2 using laser spectroscopy,” Phys. Rev. Lett. 35, 568–571 (1975).
[CrossRef]

B. Couillaud and A. Ducasse, “Saturated absorption experiments using a free running cw dye laser,” Opt. Commun. 13, 398–401 (1975).
[CrossRef]

1974 (1)

P. R. Bunker and G. R. Hanes, “Nuclear spin-spin coupling in the spectrum of I2 at 6328 Å,” Chem. Phys. Lett. 28, 377–379 (1974).
[CrossRef]

1973 (2)

F. H. de Leeuw and A. Dymanus, “Magnetic properties and molecular quadrupole moment of HF and HCl by molecular-beam electric-resonance spectroscopy,” J. Mol. Spectrosc. 48, 427–445 (1973).
[CrossRef]

See also P. R. Bunker, “The breakdown of the Born–Oppenheimer approximation for a diatomic molecule: the dipole moment and nuclear quadrupole coupling constants,” J. Mol. Spectrosc. 45, 151–158 (1973).
[CrossRef]

1972 (2)

M. S. Sorem, T. W. Hänsch, and A. L. Schawlow, “Nuclear quadrupole coupling in the 1Σg+ and 3Πou+ states of molecular iodine,” Chem. Phys. Lett. 17, 300–302 (1972).
[CrossRef]

M. D. Levenson and A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A 6, 10–20 (1972).
[CrossRef]

1969 (2)

G. R. Hanes and C. E. Dahlstrom, “Iodine hyperfine structure observed in saturated absorption at 633 nm,” Appl. Phys. Lett. 14, 362–364 (1969).
[CrossRef]

M. Kroll, “Hyperfine structure in the visible molecular-iodine absorption spectrum,” Phys. Rev. Lett. 23, 631–633 (1969).
[CrossRef]

1968 (1)

R. M. Herman and S. Short, “New theoretical method for the accurate calculation of expectation values on functions of internuclear in 1Σ-state diatomic molecules,” J. Chem. Phys. 48, 1266–1272 (1968).
[CrossRef]

1954 (1)

V. Jaccarino, J. G. King, R. A. Satten, and H. H. Stroke, “Hyperfine structure of I127. Nuclear magnetic octupole moment,” Phys. Rev. 94, 1798–1616 (1954).
[CrossRef]

Arie, A.

A. Arie and R. L. Byer, “The hyperfine structure of the 127I2 P(119) 35–0 transition,” Opt. Commun. 111, 253–258 (1994).
[CrossRef]

A. Arie and R. L. Byer, “Laser heterodyne spectroscopy of 127I2 hyperfine structure near 532 nm,” J. Opt. Soc. Am. B 10, 1990–1997 (1993).
[CrossRef]

Bennett, S. J.

Billy, N.

G. Gouédard, N. Billy, B. Girard, and J. Vigué, “Hyperfine structure measurements in the IF B–X system,” J. Phys. II 2, 813–825 (1992).

Blabla, J.

V. Špirko and J. Blabla, “Nuclear quadrupole coupling functions of the 1Σg+ and 3Π0u+ states of molecular iodine,” J. Mol. Spectrosc. 129, 59–71 (1988).
[CrossRef]

Bodermann, B.

H. Knöckel, S. Kremser, B. Bodermann, and E. Tiemann, “High precision measurement of hyperfine structures near 790 nm of I2,” Z. Phys. D 37, 43–48 (1996).
[CrossRef]

Bordé, C. J.

G. Camy, C. J. Bordé, and M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturation beam,” Opt. Commun. 41, 325–330 (1982), especially Refs. 6 and 7 therein.
[CrossRef]

Bordé, Ch. J.

J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, and Ch. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. J. D 6, 63–76 (1999).

Ch. Chardonnet, M. L. Palma, and Ch. J. Bordé, “Hyperfine interactions in the v3 band of osmium tetroxide: the elec-tric quadrupole interaction in 189OsO4,” J. Mol. Spectrosc. 170, 542–566 (1995).
[CrossRef]

Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, and J. Vigué, “High precision saturation spectroscopy of 127I2 with argon lasers at 5145 Å and 5017 Å. I. Main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
[CrossRef]

Bunker, P. R.

P. R. Bunker and G. R. Hanes, “Nuclear spin-spin coupling in the spectrum of I2 at 6328 Å,” Chem. Phys. Lett. 28, 377–379 (1974).
[CrossRef]

See also P. R. Bunker, “The breakdown of the Born–Oppenheimer approximation for a diatomic molecule: the dipole moment and nuclear quadrupole coupling constants,” J. Mol. Spectrosc. 45, 151–158 (1973).
[CrossRef]

Byer, R. L.

A. Arie and R. L. Byer, “The hyperfine structure of the 127I2 P(119) 35–0 transition,” Opt. Commun. 111, 253–258 (1994).
[CrossRef]

A. Arie and R. L. Byer, “Laser heterodyne spectroscopy of 127I2 hyperfine structure near 532 nm,” J. Opt. Soc. Am. B 10, 1990–1997 (1993).
[CrossRef]

Camy, G.

G. Camy, C. J. Bordé, and M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturation beam,” Opt. Commun. 41, 325–330 (1982), especially Refs. 6 and 7 therein.
[CrossRef]

Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, and J. Vigué, “High precision saturation spectroscopy of 127I2 with argon lasers at 5145 Å and 5017 Å. I. Main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
[CrossRef]

Casleton, K. H.

L. A. Hackel, K. H. Casleton, S. G. Kukolich, and S. Ezekiel, “Observation of magnetic octupole and scalar spin-spin interaction in I2 using laser spectroscopy,” Phys. Rev. Lett. 35, 568–571 (1975).
[CrossRef]

Cérez, P.

Chardonnet, Ch.

Ch. Chardonnet, M. L. Palma, and Ch. J. Bordé, “Hyperfine interactions in the v3 band of osmium tetroxide: the elec-tric quadrupole interaction in 189OsO4,” J. Mol. Spectrosc. 170, 542–566 (1995).
[CrossRef]

Chartier, J.-M.

J.-M. Chartier, S. Fredin-Picard, and L. Robertsson, “Frequency-stabilized 543 nm HeNe laser system: a new candidate for the realization of the meter?” Opt. Commun. 74, 87–92 (1989).
[CrossRef]

Couillaud, B.

T. W. Hänsch and B. Couillaud, “Laser frequency stabilizaion by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[CrossRef]

B. Couillaud and A. Ducasse, “Saturated absorption experiments using a free running cw dye laser,” Opt. Commun. 13, 398–401 (1975).
[CrossRef]

Dahlstrom, C. E.

G. R. Hanes and C. E. Dahlstrom, “Iodine hyperfine structure observed in saturated absorption at 633 nm,” Appl. Phys. Lett. 14, 362–364 (1969).
[CrossRef]

de Leeuw, F. H.

F. H. de Leeuw and A. Dymanus, “Magnetic properties and molecular quadrupole moment of HF and HCl by molecular-beam electric-resonance spectroscopy,” J. Mol. Spectrosc. 48, 427–445 (1973).
[CrossRef]

Decomps, B.

Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, and J. Vigué, “High precision saturation spectroscopy of 127I2 with argon lasers at 5145 Å and 5017 Å. I. Main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
[CrossRef]

Descoubes, J.-P.

Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, and J. Vigué, “High precision saturation spectroscopy of 127I2 with argon lasers at 5145 Å and 5017 Å. I. Main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
[CrossRef]

du Burck, F.

J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, and Ch. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. J. D 6, 63–76 (1999).

Ducasse, A.

B. Couillaud and A. Ducasse, “Saturated absorption experiments using a free running cw dye laser,” Opt. Commun. 13, 398–401 (1975).
[CrossRef]

Ducloy, M.

G. Camy, C. J. Bordé, and M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturation beam,” Opt. Commun. 41, 325–330 (1982), especially Refs. 6 and 7 therein.
[CrossRef]

Dymanus, A.

F. H. de Leeuw and A. Dymanus, “Magnetic properties and molecular quadrupole moment of HF and HCl by molecular-beam electric-resonance spectroscopy,” J. Mol. Spectrosc. 48, 427–445 (1973).
[CrossRef]

Eickhoff, M.

P. A. Jungner, S. Swartz, M. Eickhoff, J. Ye, J. L. Hall, and S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32–0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[CrossRef]

Eickhoff, M. L.

M. L. Eickhoff and J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
[CrossRef]

P. Jungner, M. L. Eickhoff, S. D. Swartz, J. Ye, and J. L. Hall, “Stability and absolute frequency of molecular iodine transitions near 532 nm,” in Laser Frequency Stabilization and Noise Reduction, Y. Shevy, ed., Proc. SPIE 2378, 22–34 (1995).
[CrossRef]

Ezekiel, S.

L. A. Hackel, K. H. Casleton, S. G. Kukolich, and S. Ezekiel, “Observation of magnetic octupole and scalar spin-spin interaction in I2 using laser spectroscopy,” Phys. Rev. Lett. 35, 568–571 (1975).
[CrossRef]

Foth, H. J.

H. J. Foth and F. Spieweck, “Hyperfine Structure of the R(98), 58–1 line of 127I2 at 514.5 nm,” Chem. Phys. Lett. 65, 347–352 (1979).
[CrossRef]

Fredin-Picard, S.

J.-M. Chartier, S. Fredin-Picard, and L. Robertsson, “Frequency-stabilized 543 nm HeNe laser system: a new candidate for the realization of the meter?” Opt. Commun. 74, 87–92 (1989).
[CrossRef]

Gerstenkorn, S.

S. Gerstenkorn and P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B–X) system,” J. Phys. (Paris) 46, 867–881 (1985).
[CrossRef]

Girard, B.

G. Gouédard, N. Billy, B. Girard, and J. Vigué, “Hyperfine structure measurements in the IF B–X system,” J. Phys. II 2, 813–825 (1992).

Goncharov, A. N.

J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, and Ch. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. J. D 6, 63–76 (1999).

Gouédard, G.

G. Gouédard, N. Billy, B. Girard, and J. Vigué, “Hyperfine structure measurements in the IF B–X system,” J. Phys. II 2, 813–825 (1992).

Hackel, L. A.

L. A. Hackel, K. H. Casleton, S. G. Kukolich, and S. Ezekiel, “Observation of magnetic octupole and scalar spin-spin interaction in I2 using laser spectroscopy,” Phys. Rev. Lett. 35, 568–571 (1975).
[CrossRef]

Hall, J. L.

F.-L. Hong, J. Ishikawa, J. Yoda, J. Ye, L.-S. Ma, and J. L. Hall, “Frequency comparison of 127I2-stabilized Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 48, 532–536 (1999).
[CrossRef]

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

J. L. Hall, L.-S. Ma, M. Taubman, B. Tiemann, F.-L. Hong, O. Pfister, and J. Ye, “Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
[CrossRef]

F.-L. Hong, J. Ishikawa, T. H. Yoon, L.-S. Ma, J. Ye, and J. L. Hall, “A portable I2-stabilized Nd:YAG laser for wavelength standards at 532 nm and 1064 nm,” in Recent Developments in Optical Gauge Block Metrology, N. Brown and J. E. Decker, eds., Proc. SPIE 3477, 2–10 (1998).
[CrossRef]

P. Jungner, M. L. Eickhoff, S. D. Swartz, J. Ye, and J. L. Hall, “Stability and absolute frequency of molecular iodine transitions near 532 nm,” in Laser Frequency Stabilization and Noise Reduction, Y. Shevy, ed., Proc. SPIE 2378, 22–34 (1995).
[CrossRef]

M. L. Eickhoff and J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
[CrossRef]

P. A. Jungner, S. Swartz, M. Eickhoff, J. Ye, J. L. Hall, and S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32–0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[CrossRef]

Hanes, G. R.

P. R. Bunker and G. R. Hanes, “Nuclear spin-spin coupling in the spectrum of I2 at 6328 Å,” Chem. Phys. Lett. 28, 377–379 (1974).
[CrossRef]

G. R. Hanes and C. E. Dahlstrom, “Iodine hyperfine structure observed in saturated absorption at 633 nm,” Appl. Phys. Lett. 14, 362–364 (1969).
[CrossRef]

Hänsch, T. W.

T. W. Hänsch and B. Couillaud, “Laser frequency stabilizaion by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[CrossRef]

M. S. Sorem, T. W. Hänsch, and A. L. Schawlow, “Nuclear quadrupole coupling in the 1Σg+ and 3Πou+ states of molecular iodine,” Chem. Phys. Lett. 17, 300–302 (1972).
[CrossRef]

Herman, R. M.

R. M. Herman and S. Short, “New theoretical method for the accurate calculation of expectation values on functions of internuclear in 1Σ-state diatomic molecules,” J. Chem. Phys. 48, 1266–1272 (1968).
[CrossRef]

Himbert, M.

J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, and Ch. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. J. D 6, 63–76 (1999).

Hong, F.-L.

F.-L. Hong, J. Ishikawa, J. Yoda, J. Ye, L.-S. Ma, and J. L. Hall, “Frequency comparison of 127I2-stabilized Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 48, 532–536 (1999).
[CrossRef]

J. L. Hall, L.-S. Ma, M. Taubman, B. Tiemann, F.-L. Hong, O. Pfister, and J. Ye, “Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
[CrossRef]

F.-L. Hong, J. Ishikawa, T. H. Yoon, L.-S. Ma, J. Ye, and J. L. Hall, “A portable I2-stabilized Nd:YAG laser for wavelength standards at 532 nm and 1064 nm,” in Recent Developments in Optical Gauge Block Metrology, N. Brown and J. E. Decker, eds., Proc. SPIE 3477, 2–10 (1998).
[CrossRef]

Horiguchi, T.

Ishikawa, J.

F.-L. Hong, J. Ishikawa, J. Yoda, J. Ye, L.-S. Ma, and J. L. Hall, “Frequency comparison of 127I2-stabilized Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 48, 532–536 (1999).
[CrossRef]

F.-L. Hong, J. Ishikawa, T. H. Yoon, L.-S. Ma, J. Ye, and J. L. Hall, “A portable I2-stabilized Nd:YAG laser for wavelength standards at 532 nm and 1064 nm,” in Recent Developments in Optical Gauge Block Metrology, N. Brown and J. E. Decker, eds., Proc. SPIE 3477, 2–10 (1998).
[CrossRef]

Jaccarino, V.

V. Jaccarino, J. G. King, R. A. Satten, and H. H. Stroke, “Hyperfine structure of I127. Nuclear magnetic octupole moment,” Phys. Rev. 94, 1798–1616 (1954).
[CrossRef]

Jungner, P.

P. Jungner, M. L. Eickhoff, S. D. Swartz, J. Ye, and J. L. Hall, “Stability and absolute frequency of molecular iodine transitions near 532 nm,” in Laser Frequency Stabilization and Noise Reduction, Y. Shevy, ed., Proc. SPIE 2378, 22–34 (1995).
[CrossRef]

Jungner, P. A.

P. A. Jungner, S. Swartz, M. Eickhoff, J. Ye, J. L. Hall, and S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32–0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[CrossRef]

King, J. G.

V. Jaccarino, J. G. King, R. A. Satten, and H. H. Stroke, “Hyperfine structure of I127. Nuclear magnetic octupole moment,” Phys. Rev. 94, 1798–1616 (1954).
[CrossRef]

Knöckel, H.

H. Knöckel, S. Kremser, B. Bodermann, and E. Tiemann, “High precision measurement of hyperfine structures near 790 nm of I2,” Z. Phys. D 37, 43–48 (1996).
[CrossRef]

Koizumi, M.

Kremser, S.

H. Knöckel, S. Kremser, B. Bodermann, and E. Tiemann, “High precision measurement of hyperfine structures near 790 nm of I2,” Z. Phys. D 37, 43–48 (1996).
[CrossRef]

Kroll, M.

M. Kroll, “Hyperfine structure in the visible molecular-iodine absorption spectrum,” Phys. Rev. Lett. 23, 631–633 (1969).
[CrossRef]

Kukolich, S. G.

L. A. Hackel, K. H. Casleton, S. G. Kukolich, and S. Ezekiel, “Observation of magnetic octupole and scalar spin-spin interaction in I2 using laser spectroscopy,” Phys. Rev. Lett. 35, 568–571 (1975).
[CrossRef]

Landsberg, B. M.

See also B. M. Landsberg, “Nuclear hyperfine splittings in B–X electronic band system of 127I2,” Chem. Phys. Lett. 43, 102–103 (1976).
[CrossRef]

Levenson, M. D.

M. D. Levenson and A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A 6, 10–20 (1972).
[CrossRef]

Luc, P.

S. Gerstenkorn and P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B–X) system,” J. Phys. (Paris) 46, 867–881 (1985).
[CrossRef]

Ma, L.-S.

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

F.-L. Hong, J. Ishikawa, J. Yoda, J. Ye, L.-S. Ma, and J. L. Hall, “Frequency comparison of 127I2-stabilized Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 48, 532–536 (1999).
[CrossRef]

J. L. Hall, L.-S. Ma, M. Taubman, B. Tiemann, F.-L. Hong, O. Pfister, and J. Ye, “Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
[CrossRef]

F.-L. Hong, J. Ishikawa, T. H. Yoon, L.-S. Ma, J. Ye, and J. L. Hall, “A portable I2-stabilized Nd:YAG laser for wavelength standards at 532 nm and 1064 nm,” in Recent Developments in Optical Gauge Block Metrology, N. Brown and J. E. Decker, eds., Proc. SPIE 3477, 2–10 (1998).
[CrossRef]

Mercier, B.

J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, and Ch. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. J. D 6, 63–76 (1999).

Muenter, J. S.

A. Yokozeki and J. S. Muenter, “Laser fluorescence state selected and detected molecular beam magnetic resonance in I2,” J. Chem. Phys. 72, 3796–3804 (1980).
[CrossRef]

Palma, M. L.

Ch. Chardonnet, M. L. Palma, and Ch. J. Bordé, “Hyperfine interactions in the v3 band of osmium tetroxide: the elec-tric quadrupole interaction in 189OsO4,” J. Mol. Spectrosc. 170, 542–566 (1995).
[CrossRef]

Pfister, O.

J. L. Hall, L.-S. Ma, M. Taubman, B. Tiemann, F.-L. Hong, O. Pfister, and J. Ye, “Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
[CrossRef]

Picard, S.

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

A. Razet and S. Picard, “A test of new empirical formulas for the prediction of hyperfine component frequencies in 127I2,” Metrologia 34, 181–186 (1997).
[CrossRef]

A. Razet and S. Picard, “A tabulation of calculations of the hyperfine structure in 127I2,” Metrologia 33, 19–27 (1996).
[CrossRef]

Quinn, T. J.

T. J. Quinn, “Practical realization of the definition of the metre (1997),” Metrologia 36, 211–244 (1999).
[CrossRef]

Razet, A.

A. Razet and S. Picard, “A test of new empirical formulas for the prediction of hyperfine component frequencies in 127I2,” Metrologia 34, 181–186 (1997).
[CrossRef]

A. Razet and S. Picard, “A tabulation of calculations of the hyperfine structure in 127I2,” Metrologia 33, 19–27 (1996).
[CrossRef]

Robertsson, L.

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

J.-M. Chartier, S. Fredin-Picard, and L. Robertsson, “Frequency-stabilized 543 nm HeNe laser system: a new candidate for the realization of the meter?” Opt. Commun. 74, 87–92 (1989).
[CrossRef]

Satten, R. A.

V. Jaccarino, J. G. King, R. A. Satten, and H. H. Stroke, “Hyperfine structure of I127. Nuclear magnetic octupole moment,” Phys. Rev. 94, 1798–1616 (1954).
[CrossRef]

Schawlow, A. L.

M. S. Sorem, T. W. Hänsch, and A. L. Schawlow, “Nuclear quadrupole coupling in the 1Σg+ and 3Πou+ states of molecular iodine,” Chem. Phys. Lett. 17, 300–302 (1972).
[CrossRef]

M. D. Levenson and A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A 6, 10–20 (1972).
[CrossRef]

Shirley, J. H.

Short, S.

R. M. Herman and S. Short, “New theoretical method for the accurate calculation of expectation values on functions of internuclear in 1Σ-state diatomic molecules,” J. Chem. Phys. 48, 1266–1272 (1968).
[CrossRef]

Sorem, M. S.

M. S. Sorem, T. W. Hänsch, and A. L. Schawlow, “Nuclear quadrupole coupling in the 1Σg+ and 3Πou+ states of molecular iodine,” Chem. Phys. Lett. 17, 300–302 (1972).
[CrossRef]

Spieweck, F.

H. J. Foth and F. Spieweck, “Hyperfine Structure of the R(98), 58–1 line of 127I2 at 514.5 nm,” Chem. Phys. Lett. 65, 347–352 (1979).
[CrossRef]

Špirko, V.

V. Špirko and J. Blabla, “Nuclear quadrupole coupling functions of the 1Σg+ and 3Π0u+ states of molecular iodine,” J. Mol. Spectrosc. 129, 59–71 (1988).
[CrossRef]

Stroke, H. H.

V. Jaccarino, J. G. King, R. A. Satten, and H. H. Stroke, “Hyperfine structure of I127. Nuclear magnetic octupole moment,” Phys. Rev. 94, 1798–1616 (1954).
[CrossRef]

Swartz, S.

P. A. Jungner, S. Swartz, M. Eickhoff, J. Ye, J. L. Hall, and S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32–0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[CrossRef]

Swartz, S. D.

P. Jungner, M. L. Eickhoff, S. D. Swartz, J. Ye, and J. L. Hall, “Stability and absolute frequency of molecular iodine transitions near 532 nm,” in Laser Frequency Stabilization and Noise Reduction, Y. Shevy, ed., Proc. SPIE 2378, 22–34 (1995).
[CrossRef]

Taubman, M.

J. L. Hall, L.-S. Ma, M. Taubman, B. Tiemann, F.-L. Hong, O. Pfister, and J. Ye, “Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
[CrossRef]

Tiemann, B.

J. L. Hall, L.-S. Ma, M. Taubman, B. Tiemann, F.-L. Hong, O. Pfister, and J. Ye, “Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
[CrossRef]

Tiemann, E.

H. Knöckel, S. Kremser, B. Bodermann, and E. Tiemann, “High precision measurement of hyperfine structures near 790 nm of I2,” Z. Phys. D 37, 43–48 (1996).
[CrossRef]

Vigué, J.

G. Gouédard, N. Billy, B. Girard, and J. Vigué, “Hyperfine structure measurements in the IF B–X system,” J. Phys. II 2, 813–825 (1992).

Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, and J. Vigué, “High precision saturation spectroscopy of 127I2 with argon lasers at 5145 Å and 5017 Å. I. Main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
[CrossRef]

Wakasugi, M.

Wallerand, J.-P.

J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, and Ch. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. J. D 6, 63–76 (1999).

Waltman, S.

P. A. Jungner, S. Swartz, M. Eickhoff, J. Ye, J. L. Hall, and S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32–0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[CrossRef]

Watson, J. K. G.

J. K. G. Watson, “The inversion of diatomic vibration-rotation expectation values,” J. Mol. Spectrosc. 74, 319–321 (1979).
[CrossRef]

Ye, J.

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

F.-L. Hong, J. Ishikawa, J. Yoda, J. Ye, L.-S. Ma, and J. L. Hall, “Frequency comparison of 127I2-stabilized Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 48, 532–536 (1999).
[CrossRef]

J. L. Hall, L.-S. Ma, M. Taubman, B. Tiemann, F.-L. Hong, O. Pfister, and J. Ye, “Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
[CrossRef]

F.-L. Hong, J. Ishikawa, T. H. Yoon, L.-S. Ma, J. Ye, and J. L. Hall, “A portable I2-stabilized Nd:YAG laser for wavelength standards at 532 nm and 1064 nm,” in Recent Developments in Optical Gauge Block Metrology, N. Brown and J. E. Decker, eds., Proc. SPIE 3477, 2–10 (1998).
[CrossRef]

P. Jungner, M. L. Eickhoff, S. D. Swartz, J. Ye, and J. L. Hall, “Stability and absolute frequency of molecular iodine transitions near 532 nm,” in Laser Frequency Stabilization and Noise Reduction, Y. Shevy, ed., Proc. SPIE 2378, 22–34 (1995).
[CrossRef]

P. A. Jungner, S. Swartz, M. Eickhoff, J. Ye, J. L. Hall, and S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32–0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[CrossRef]

Yoda, J.

F.-L. Hong, J. Ishikawa, J. Yoda, J. Ye, L.-S. Ma, and J. L. Hall, “Frequency comparison of 127I2-stabilized Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 48, 532–536 (1999).
[CrossRef]

Yokozeki, A.

A. Yokozeki and J. S. Muenter, “Laser fluorescence state selected and detected molecular beam magnetic resonance in I2,” J. Chem. Phys. 72, 3796–3804 (1980).
[CrossRef]

Yoon, T. H.

F.-L. Hong, J. Ishikawa, T. H. Yoon, L.-S. Ma, J. Ye, and J. L. Hall, “A portable I2-stabilized Nd:YAG laser for wavelength standards at 532 nm and 1064 nm,” in Recent Developments in Optical Gauge Block Metrology, N. Brown and J. E. Decker, eds., Proc. SPIE 3477, 2–10 (1998).
[CrossRef]

Yoshizawa, Y.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

G. R. Hanes and C. E. Dahlstrom, “Iodine hyperfine structure observed in saturated absorption at 633 nm,” Appl. Phys. Lett. 14, 362–364 (1969).
[CrossRef]

Chem. Phys. Lett. (4)

H. J. Foth and F. Spieweck, “Hyperfine Structure of the R(98), 58–1 line of 127I2 at 514.5 nm,” Chem. Phys. Lett. 65, 347–352 (1979).
[CrossRef]

M. S. Sorem, T. W. Hänsch, and A. L. Schawlow, “Nuclear quadrupole coupling in the 1Σg+ and 3Πou+ states of molecular iodine,” Chem. Phys. Lett. 17, 300–302 (1972).
[CrossRef]

P. R. Bunker and G. R. Hanes, “Nuclear spin-spin coupling in the spectrum of I2 at 6328 Å,” Chem. Phys. Lett. 28, 377–379 (1974).
[CrossRef]

See also B. M. Landsberg, “Nuclear hyperfine splittings in B–X electronic band system of 127I2,” Chem. Phys. Lett. 43, 102–103 (1976).
[CrossRef]

Eur. Phys. J. D (1)

J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, and Ch. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. J. D 6, 63–76 (1999).

IEEE Trans. Instrum. Meas. (5)

F.-L. Hong, J. Ishikawa, J. Yoda, J. Ye, L.-S. Ma, and J. L. Hall, “Frequency comparison of 127I2-stabilized Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 48, 532–536 (1999).
[CrossRef]

M. L. Eickhoff and J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
[CrossRef]

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

P. A. Jungner, S. Swartz, M. Eickhoff, J. Ye, J. L. Hall, and S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32–0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[CrossRef]

J. L. Hall, L.-S. Ma, M. Taubman, B. Tiemann, F.-L. Hong, O. Pfister, and J. Ye, “Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
[CrossRef]

J. Chem. Phys. (2)

A. Yokozeki and J. S. Muenter, “Laser fluorescence state selected and detected molecular beam magnetic resonance in I2,” J. Chem. Phys. 72, 3796–3804 (1980).
[CrossRef]

R. M. Herman and S. Short, “New theoretical method for the accurate calculation of expectation values on functions of internuclear in 1Σ-state diatomic molecules,” J. Chem. Phys. 48, 1266–1272 (1968).
[CrossRef]

J. Mol. Spectrosc. (5)

F. H. de Leeuw and A. Dymanus, “Magnetic properties and molecular quadrupole moment of HF and HCl by molecular-beam electric-resonance spectroscopy,” J. Mol. Spectrosc. 48, 427–445 (1973).
[CrossRef]

J. K. G. Watson, “The inversion of diatomic vibration-rotation expectation values,” J. Mol. Spectrosc. 74, 319–321 (1979).
[CrossRef]

See also P. R. Bunker, “The breakdown of the Born–Oppenheimer approximation for a diatomic molecule: the dipole moment and nuclear quadrupole coupling constants,” J. Mol. Spectrosc. 45, 151–158 (1973).
[CrossRef]

Ch. Chardonnet, M. L. Palma, and Ch. J. Bordé, “Hyperfine interactions in the v3 band of osmium tetroxide: the elec-tric quadrupole interaction in 189OsO4,” J. Mol. Spectrosc. 170, 542–566 (1995).
[CrossRef]

V. Špirko and J. Blabla, “Nuclear quadrupole coupling functions of the 1Σg+ and 3Π0u+ states of molecular iodine,” J. Mol. Spectrosc. 129, 59–71 (1988).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. (Paris) (2)

Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, and J. Vigué, “High precision saturation spectroscopy of 127I2 with argon lasers at 5145 Å and 5017 Å. I. Main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
[CrossRef]

S. Gerstenkorn and P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B–X) system,” J. Phys. (Paris) 46, 867–881 (1985).
[CrossRef]

J. Phys. II (1)

G. Gouédard, N. Billy, B. Girard, and J. Vigué, “Hyperfine structure measurements in the IF B–X system,” J. Phys. II 2, 813–825 (1992).

Metrologia (3)

A. Razet and S. Picard, “A test of new empirical formulas for the prediction of hyperfine component frequencies in 127I2,” Metrologia 34, 181–186 (1997).
[CrossRef]

A. Razet and S. Picard, “A tabulation of calculations of the hyperfine structure in 127I2,” Metrologia 33, 19–27 (1996).
[CrossRef]

T. J. Quinn, “Practical realization of the definition of the metre (1997),” Metrologia 36, 211–244 (1999).
[CrossRef]

Opt. Commun. (5)

A. Arie and R. L. Byer, “The hyperfine structure of the 127I2 P(119) 35–0 transition,” Opt. Commun. 111, 253–258 (1994).
[CrossRef]

J.-M. Chartier, S. Fredin-Picard, and L. Robertsson, “Frequency-stabilized 543 nm HeNe laser system: a new candidate for the realization of the meter?” Opt. Commun. 74, 87–92 (1989).
[CrossRef]

B. Couillaud and A. Ducasse, “Saturated absorption experiments using a free running cw dye laser,” Opt. Commun. 13, 398–401 (1975).
[CrossRef]

T. W. Hänsch and B. Couillaud, “Laser frequency stabilizaion by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[CrossRef]

G. Camy, C. J. Bordé, and M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturation beam,” Opt. Commun. 41, 325–330 (1982), especially Refs. 6 and 7 therein.
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (1)

V. Jaccarino, J. G. King, R. A. Satten, and H. H. Stroke, “Hyperfine structure of I127. Nuclear magnetic octupole moment,” Phys. Rev. 94, 1798–1616 (1954).
[CrossRef]

Phys. Rev. A (1)

M. D. Levenson and A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A 6, 10–20 (1972).
[CrossRef]

Phys. Rev. Lett. (2)

L. A. Hackel, K. H. Casleton, S. G. Kukolich, and S. Ezekiel, “Observation of magnetic octupole and scalar spin-spin interaction in I2 using laser spectroscopy,” Phys. Rev. Lett. 35, 568–571 (1975).
[CrossRef]

M. Kroll, “Hyperfine structure in the visible molecular-iodine absorption spectrum,” Phys. Rev. Lett. 23, 631–633 (1969).
[CrossRef]

Proc. SPIE (2)

P. Jungner, M. L. Eickhoff, S. D. Swartz, J. Ye, and J. L. Hall, “Stability and absolute frequency of molecular iodine transitions near 532 nm,” in Laser Frequency Stabilization and Noise Reduction, Y. Shevy, ed., Proc. SPIE 2378, 22–34 (1995).
[CrossRef]

F.-L. Hong, J. Ishikawa, T. H. Yoon, L.-S. Ma, J. Ye, and J. L. Hall, “A portable I2-stabilized Nd:YAG laser for wavelength standards at 532 nm and 1064 nm,” in Recent Developments in Optical Gauge Block Metrology, N. Brown and J. E. Decker, eds., Proc. SPIE 3477, 2–10 (1998).
[CrossRef]

Z. Phys. D (1)

H. Knöckel, S. Kremser, B. Bodermann, and E. Tiemann, “High precision measurement of hyperfine structures near 790 nm of I2,” Z. Phys. D 37, 43–48 (1996).
[CrossRef]

Other (3)

(Personal communication of Ch. J. Bordé with J. L. Hall, 1998.)

L. S. Ma, J. H. Shirley, L. Hollberg, and J. L. Hall, “Modulation transfer spectroscopy for stabilizing lasers,” U.S. patent 4, 590, 597 (May 26, 1986).

Ch. J. Bordé, G. Camy, N. and B. Decomps, “Measurement of the recoil shift of saturation resonances of 127I2 at 5145 Å: a test of accuracy for high-resolution spectroscopy,” Phys. Rev. A 20, 254–268 (1979).J. Bordeé and Ch. J. Bordé, “Intensities of hyperfine components in saturation spectroscopy,” J. Mol. Spectrosc. 78, 353–378 (1979).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Diagram of the experimental setup: D, detector; other-abbreviations defined in text.

Fig. 2
Fig. 2

Observed main hyperfine component a10 of the R(56)32-0 transition and the crossover lines nearby. The crossover lines are numbered in series as -1, -2, -3,… if the frequency is lower than that of the a10 component and as 1, 2,… if the frequency is higher than that of a10. Crossover line 2, numbered c9a, is included in the calculation.

Fig. 3
Fig. 3

Ground-state electric quadrupole hyperfine constant eQq as a function of rotational quantum number J. Filled circles, eQq values calculated from the observed hyperfine splittings. Solid curve, the fitting result for both J(J+1) and J2(J+1)2 terms. The eQq values of P(13)43-0 and R(15)43-0 transitions are taken from Ref. 21.

Tables (4)

Tables Icon

Table 1 Observed and Calculated Hyperfine Components of R(56)32-0a

Tables Icon

Table 2 Observed and Calculated Hyperfine Components of P(54)32-0a

Tables Icon

Table 3 Fitted Hyperfine Constants

Tables Icon

Table 4 Calculated Electric Quadrupole Hyperfine Constants of the B state (v=32)

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

Hhfs=eQq×HEQ+C×HSR+d×HTSS+δ×HSSS,
Δ(eQq)=eQq-eQq,
ΔC=C-C,
Δd=d-d,
Δδ=δ-δ.
Hhfs=eQq×HEQ+C×HSR+d×HTSS+δ×HSSS.
JIF|HR|JIF=BJ(J+1)-DJ2(J+1)2+HJ3(J+1)3,
eQq=eQq0+αJ(J+1)+βJ2(J+1)2,
eQq0=-2452.556(2) MHz,
α=-0.164(5) kHz,
β=-0.005(2) Hz.
E(J)=BJ(J+1).
E(J)=BJ(J+1)-DJ2(J+1)2.
E(J)=BJ(J+1),
B=B-DJ(J+1)
re=h4π2BM1/2,
Δre/re=½(D/B)J(J+1),
XvJ=Xe+XeξvJ+(1/2)Xeξ2vJ+,
ξnvJ=ljZlj(n)[v+(1/2)]l[J(J+1)]j,
XvJ=Xe+Beωe v+12(Xe-3a1Xe)+v+122Beωe2×Xe(-15a3+39a1a2-452a13)+12Xe(15a12-6a2)-156Xea1+14Xe+4Beωe2XeJ(J+1),
eQq=eQq0+4(Be/ωe)2J(J+1)(eQq)+.
2Beωe3[3(8+9a1+9a12-8a2)Xe
-3(1+3a1)Xe+2Xe]v+12J(J+1).

Metrics