Abstract

We report an experimental investigation to map out the spectral dependence of excited-state absorption in a Pt:ethynyl complex. The cross section for triplet state absorption (T1T*), σT, was found to peak with a value of σT2.2×10-16 cm2 at 600 nm. The shape of this absorption peak was found to be the same for excitation at 355 and 532 nm, further supporting our interpretation of the electronic properties of the molecule. Broadband limiting against visible, nanosecond pulses was observed in an optical limiting test-bed.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. The term “in-band” refers to the operating waveband of the sensor. In the case of human eyes this is the visible (~400–~700 nm).
  2. S. Guha, K. Kang, P. Porter, J. F. Roach, D. E. Remy, F. J. Aranda, and D. V. Rao, “Third-order optical nonlinearities of metallotetrabenzoporphyrins and a platinum poly-yne,” Opt. Lett. 17, 264–266 (1992).
    [CrossRef] [PubMed]
  3. J. W. Perry, L. R. Khundkar, D. R. Coulter, D. Alvarez, S. R. Marder, T. H. Wei, M. J. Sence, E. W. Van Stryland, and D. J. Hagan, Organic Molecules for Nonlinear Optics and Photonics, Vol. 194 of NATO ASI Series E, Applied Sciences (Kluwer Academic, Dordrecht, The Netherlands, 1991), pp. 369–382.
  4. H. F. Wittmann, K. Fuhrmann, R. H. Friend, M. S. Khan, and J. Lewis, Synth. Met. 55, 56–59 (1993).
    [CrossRef]
  5. T. J. McKay, J. A. Bolger, J. Staromlynska, and J. R. Davy, “Linear and nonlinear properties of Pt:ethyny,” J. Chem. Phys. 108, 5537–5541 (1998).
    [CrossRef]
  6. J. Staromlynska, T. J. McKay, J. R. Davy, and J. Bolger, “Bis((4-phenylethynyl)phenyl)ethynyl)bis(tributylphosphine) platinum (II): a promising material for broadband optical limiting in the visible,” May 3–8, 1998, Moscone Center, San Francisco, Calif., 1998.
  7. J. Staromlynska, T. J. McKay, J. A. Bolger, and J. R. Davy, “Evidence for broadband optical limiting in a Pt: Ethynyl compound,” J. Opt. Soc. Am. B 15, 1731–1736 (1998).
    [CrossRef]
  8. T. J. McKay, J. Staromlynska, P. Wilson, and J. Davy, “Nonlinear luminescence in a Pt:ethynyl compound,” J. Appl. Phys. 85, 1337–1341 (1999).
    [CrossRef]
  9. R. C. Hollins, “Optical limiters: spatial, temporal and spectral effects,” Nonlinear Opt. 21, 49–62 (1999).
  10. D. B. James and K. J. McEwan, “Bubble and refractive processes in carbon suspensions,” Nonlinear Opt. 21, 377–390 (1999).
  11. D. Vincent, “High-performance optical limiter based on fine carbon particles suspended in an organic solvent,” Nonlin. Opt. 21, 413–422 (1999).
  12. It should be noted that OPO clamping levels are an overestimate owing to the much poorer beam quality associated with the laser (M2>2).

1999 (4)

T. J. McKay, J. Staromlynska, P. Wilson, and J. Davy, “Nonlinear luminescence in a Pt:ethynyl compound,” J. Appl. Phys. 85, 1337–1341 (1999).
[CrossRef]

R. C. Hollins, “Optical limiters: spatial, temporal and spectral effects,” Nonlinear Opt. 21, 49–62 (1999).

D. B. James and K. J. McEwan, “Bubble and refractive processes in carbon suspensions,” Nonlinear Opt. 21, 377–390 (1999).

D. Vincent, “High-performance optical limiter based on fine carbon particles suspended in an organic solvent,” Nonlin. Opt. 21, 413–422 (1999).

1998 (2)

T. J. McKay, J. A. Bolger, J. Staromlynska, and J. R. Davy, “Linear and nonlinear properties of Pt:ethyny,” J. Chem. Phys. 108, 5537–5541 (1998).
[CrossRef]

J. Staromlynska, T. J. McKay, J. A. Bolger, and J. R. Davy, “Evidence for broadband optical limiting in a Pt: Ethynyl compound,” J. Opt. Soc. Am. B 15, 1731–1736 (1998).
[CrossRef]

1993 (1)

H. F. Wittmann, K. Fuhrmann, R. H. Friend, M. S. Khan, and J. Lewis, Synth. Met. 55, 56–59 (1993).
[CrossRef]

1992 (1)

Aranda, F. J.

Bolger, J. A.

T. J. McKay, J. A. Bolger, J. Staromlynska, and J. R. Davy, “Linear and nonlinear properties of Pt:ethyny,” J. Chem. Phys. 108, 5537–5541 (1998).
[CrossRef]

J. Staromlynska, T. J. McKay, J. A. Bolger, and J. R. Davy, “Evidence for broadband optical limiting in a Pt: Ethynyl compound,” J. Opt. Soc. Am. B 15, 1731–1736 (1998).
[CrossRef]

Davy, J.

T. J. McKay, J. Staromlynska, P. Wilson, and J. Davy, “Nonlinear luminescence in a Pt:ethynyl compound,” J. Appl. Phys. 85, 1337–1341 (1999).
[CrossRef]

Davy, J. R.

J. Staromlynska, T. J. McKay, J. A. Bolger, and J. R. Davy, “Evidence for broadband optical limiting in a Pt: Ethynyl compound,” J. Opt. Soc. Am. B 15, 1731–1736 (1998).
[CrossRef]

T. J. McKay, J. A. Bolger, J. Staromlynska, and J. R. Davy, “Linear and nonlinear properties of Pt:ethyny,” J. Chem. Phys. 108, 5537–5541 (1998).
[CrossRef]

Friend, R. H.

H. F. Wittmann, K. Fuhrmann, R. H. Friend, M. S. Khan, and J. Lewis, Synth. Met. 55, 56–59 (1993).
[CrossRef]

Fuhrmann, K.

H. F. Wittmann, K. Fuhrmann, R. H. Friend, M. S. Khan, and J. Lewis, Synth. Met. 55, 56–59 (1993).
[CrossRef]

Guha, S.

Hollins, R. C.

R. C. Hollins, “Optical limiters: spatial, temporal and spectral effects,” Nonlinear Opt. 21, 49–62 (1999).

James, D. B.

D. B. James and K. J. McEwan, “Bubble and refractive processes in carbon suspensions,” Nonlinear Opt. 21, 377–390 (1999).

Kang, K.

Khan, M. S.

H. F. Wittmann, K. Fuhrmann, R. H. Friend, M. S. Khan, and J. Lewis, Synth. Met. 55, 56–59 (1993).
[CrossRef]

Lewis, J.

H. F. Wittmann, K. Fuhrmann, R. H. Friend, M. S. Khan, and J. Lewis, Synth. Met. 55, 56–59 (1993).
[CrossRef]

McEwan, K. J.

D. B. James and K. J. McEwan, “Bubble and refractive processes in carbon suspensions,” Nonlinear Opt. 21, 377–390 (1999).

McKay, T. J.

T. J. McKay, J. Staromlynska, P. Wilson, and J. Davy, “Nonlinear luminescence in a Pt:ethynyl compound,” J. Appl. Phys. 85, 1337–1341 (1999).
[CrossRef]

J. Staromlynska, T. J. McKay, J. A. Bolger, and J. R. Davy, “Evidence for broadband optical limiting in a Pt: Ethynyl compound,” J. Opt. Soc. Am. B 15, 1731–1736 (1998).
[CrossRef]

T. J. McKay, J. A. Bolger, J. Staromlynska, and J. R. Davy, “Linear and nonlinear properties of Pt:ethyny,” J. Chem. Phys. 108, 5537–5541 (1998).
[CrossRef]

Porter, P.

Rao, D. V.

Remy, D. E.

Roach, J. F.

Staromlynska, J.

T. J. McKay, J. Staromlynska, P. Wilson, and J. Davy, “Nonlinear luminescence in a Pt:ethynyl compound,” J. Appl. Phys. 85, 1337–1341 (1999).
[CrossRef]

J. Staromlynska, T. J. McKay, J. A. Bolger, and J. R. Davy, “Evidence for broadband optical limiting in a Pt: Ethynyl compound,” J. Opt. Soc. Am. B 15, 1731–1736 (1998).
[CrossRef]

T. J. McKay, J. A. Bolger, J. Staromlynska, and J. R. Davy, “Linear and nonlinear properties of Pt:ethyny,” J. Chem. Phys. 108, 5537–5541 (1998).
[CrossRef]

Vincent, D.

D. Vincent, “High-performance optical limiter based on fine carbon particles suspended in an organic solvent,” Nonlin. Opt. 21, 413–422 (1999).

Wilson, P.

T. J. McKay, J. Staromlynska, P. Wilson, and J. Davy, “Nonlinear luminescence in a Pt:ethynyl compound,” J. Appl. Phys. 85, 1337–1341 (1999).
[CrossRef]

Wittmann, H. F.

H. F. Wittmann, K. Fuhrmann, R. H. Friend, M. S. Khan, and J. Lewis, Synth. Met. 55, 56–59 (1993).
[CrossRef]

J. Appl. Phys. (1)

T. J. McKay, J. Staromlynska, P. Wilson, and J. Davy, “Nonlinear luminescence in a Pt:ethynyl compound,” J. Appl. Phys. 85, 1337–1341 (1999).
[CrossRef]

J. Chem. Phys. (1)

T. J. McKay, J. A. Bolger, J. Staromlynska, and J. R. Davy, “Linear and nonlinear properties of Pt:ethyny,” J. Chem. Phys. 108, 5537–5541 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nonlin. Opt. (1)

D. Vincent, “High-performance optical limiter based on fine carbon particles suspended in an organic solvent,” Nonlin. Opt. 21, 413–422 (1999).

Nonlinear Opt. (2)

R. C. Hollins, “Optical limiters: spatial, temporal and spectral effects,” Nonlinear Opt. 21, 49–62 (1999).

D. B. James and K. J. McEwan, “Bubble and refractive processes in carbon suspensions,” Nonlinear Opt. 21, 377–390 (1999).

Opt. Lett. (1)

Synth. Met. (1)

H. F. Wittmann, K. Fuhrmann, R. H. Friend, M. S. Khan, and J. Lewis, Synth. Met. 55, 56–59 (1993).
[CrossRef]

Other (4)

The term “in-band” refers to the operating waveband of the sensor. In the case of human eyes this is the visible (~400–~700 nm).

J. W. Perry, L. R. Khundkar, D. R. Coulter, D. Alvarez, S. R. Marder, T. H. Wei, M. J. Sence, E. W. Van Stryland, and D. J. Hagan, Organic Molecules for Nonlinear Optics and Photonics, Vol. 194 of NATO ASI Series E, Applied Sciences (Kluwer Academic, Dordrecht, The Netherlands, 1991), pp. 369–382.

J. Staromlynska, T. J. McKay, J. R. Davy, and J. Bolger, “Bis((4-phenylethynyl)phenyl)ethynyl)bis(tributylphosphine) platinum (II): a promising material for broadband optical limiting in the visible,” May 3–8, 1998, Moscone Center, San Francisco, Calif., 1998.

It should be noted that OPO clamping levels are an overestimate owing to the much poorer beam quality associated with the laser (M2>2).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Four-level energy diagram describing the dynamics of Pt:ethynyl for excitation in three wavelength regions.

Fig. 2
Fig. 2

Schematic diagram of the excite–probe experiment.

Fig. 3
Fig. 3

Differential transmittance measurements of Pt:ethynyl for excitation at 532 nm (0.05 J/cm2) and probing at 600 nm (0.001 J/cm2). Linear transmittance TLIN is the probe transmittance in the absence of the pump pulse; ΔT=T-TLIN is the change in probe transmittance that is due to the presence of the pump pulse.

Fig. 4
Fig. 4

Differential transmittance measurements of Pt:ethynyl (open triangles) as a function of probe wavelength for excitation at 532 nm with 25-ps pulses (0.05 J/cm2). Also shown is the linear transmittance of the sample measured by the Cary 5E spectrophotometer (solid curve) and from the probe beam with the pump beam blocked (filled circles).

Fig. 5
Fig. 5

Excited triplet-state absorption cross section σT of Pt: ethynyl as a function of wavelength (symbols). Solid curve, ratio of the cross sections, σT/σG, as a function of wavelength.

Fig. 6
Fig. 6

Excited-triplet state absorption cross section σT of Pt: ethynyl obtained by exciting at 355 nm and probing with 420–800-nm wavelengths (filled symbols). Cross section σT obtained from excitation at 532 nm is also shown (open circles).

Fig. 7
Fig. 7

Optical arrangement used for limiting measurements: M’s mirrors; s, sample; other abbreviations defined in text.

Fig. 8
Fig. 8

Energy transmitted by the 532-nm test bed as a function of input energy for a 0.08-M Pt:ethynyl solution. Solid lines, the two states of the limiter, the low-energy linear regime and the clamped state.

Fig. 9
Fig. 9

Clamping level as a function of wavelength for a 0.08-M Pt:ethynyl solution in the OPO test bed.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ΔTTLIN=exp(-αTL)-1,
σT=αT/NT,
σT=LnΔTTLIN+1NTL,
NT=nphotons[1-exp(-α·L)]/VInteraction,

Metrics