Abstract

For the very first time to our knowledge, guided waves at 854 nm are observed in a BaTiO3:Rh waveguide fabricated by the technique of ion-beam implantation. The photorefractive interaction between two guided modes is demonstrated and characterized. The experiments revealed that the gain direction is reversed in the guiding layer in comparison with that in the bulk. A maximum gain of 24 cm-1 is achieved.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Laeri, T. Tschudi, and J. Albers, “Coherent cw image amplifier and oscillator using two-wave interaction in a BaTiO3 crystal,” Opt. Commun. 47, 387 (1983).
    [CrossRef]
  2. A. Yariv and D. M. Pepper, “Amplified reflection, phase conjugation, and oscillation in degenerate four-wave mixing,” Opt. Lett. 1, 16–18 (1977).
    [CrossRef] [PubMed]
  3. P. Mathey, P. Jullien, B. Mazué, and D. Rytz, “Dynamics of novelty filtering and edge enhancement in cobalt-doped barium titanate,” J. Opt. Soc. Am. B 15, 1353–1361 (1998).
    [CrossRef]
  4. G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in blue BaTiO3,” Opt. Commun. 101, 60 (1993).
    [CrossRef]
  5. B. A. Wechsler, M. B. Klein, C. C. Nelson, and R. N. Schwartz, “Spectroscopic and photorefractive properties of infrared sensitive rhodium doped barium titanate,” Opt. Lett. 19, 536–538 (1994).
    [CrossRef] [PubMed]
  6. A. Brignon, J. P. Huignard, M. H. Garrett, and I. Mnushkina, “Self-pumped phase conjugation in rhodium-doped BaTiO3 with 1.06-μm nanosecond pulses,” Opt. Lett. 22, 215–218 (1997).
    [CrossRef] [PubMed]
  7. P. Mathey, P. Jullien, and D. Rytz, “Efficient contour generation and tracking of moving object with a rhodium-doped BaTiO3 crystal working in the near-infrared,” Appl. Phys. Lett. 73, 3327–3329 (1998).
    [CrossRef]
  8. M. Zha, D. Fluck, P. Günter, M. Fleuster, and Ch. Buchal, “Two-wave mixing in photorefractive ion-implanted KNbO3 planar waveguides at visible and near-infrared wavelengths,” Opt. Lett. 18, 577–579 (1993).
    [CrossRef]
  9. S. Brülisauer, D. Fluck, P. Günter, L. Beckers, and Ch. Buchal, “Photorefractive effect in proton-implanted Fe-doped KNbO3 waveguides at telecommunication wavelengths,” J. Opt. Soc. Am. B 13, 2544–2548 (1996).
    [CrossRef]
  10. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University, Cambridge, UK, 1994).
  11. A. Dazzi, P. Mathey, P. Lompré, and P. Jullien, “Energy leaks through the optical barrier created by H+ implantation in BaTiO3 and LiNbO3 waveguides,” Opt. Commun. 149, 135–142 (1998).
    [CrossRef]
  12. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).
  13. Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).
    [CrossRef]
  14. L. Holtmann, “A model for the nonlinear photoconductivity of BaTiO3,” Phys. Status Solidi A 113, K89–K93 (1989).
    [CrossRef]
  15. G. A. Brost, R. A. Motes, and J. R. Rotge, “Intensity-dependent absorption and photorefractive effects in barium titanate,” J. Opt. Soc. Am. B 5, 1879–1885 (1988).
    [CrossRef]
  16. K. E. Younden, S. W. James, R. W. Eason, P. J. Chandler, L. Zhang, and P. D. Townsend, “Photorefractive planar waveguides in BaTiO3 fabricated by ion-beam implantation,” Opt. Lett. 17, 1509–1511 (1992).
    [CrossRef]
  17. P. Mathey, A. Dazzi, P. Lompré, P. Jullien, P. Moretti, and D. Rytz, “Giant two wave mixing in a photorefractive pla-nar waveguide fabricated with He+ implanted BaTiO3,” in Nonlinear Guided Waves and their Applications, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 437–439.
  18. A. Dazzi, P. Mathey, P. Lompré, P. Jullien, P. Moretti, and D. Rytz, “High performance of two wave mixing in a BaTiO3 waveguide realized by He+ implantation,” J. Opt. Soc. Am. B 16, 1915–1920 (1999).
    [CrossRef]

1999

1998

A. Dazzi, P. Mathey, P. Lompré, and P. Jullien, “Energy leaks through the optical barrier created by H+ implantation in BaTiO3 and LiNbO3 waveguides,” Opt. Commun. 149, 135–142 (1998).
[CrossRef]

P. Mathey, P. Jullien, B. Mazué, and D. Rytz, “Dynamics of novelty filtering and edge enhancement in cobalt-doped barium titanate,” J. Opt. Soc. Am. B 15, 1353–1361 (1998).
[CrossRef]

P. Mathey, P. Jullien, and D. Rytz, “Efficient contour generation and tracking of moving object with a rhodium-doped BaTiO3 crystal working in the near-infrared,” Appl. Phys. Lett. 73, 3327–3329 (1998).
[CrossRef]

1997

1996

1994

1993

M. Zha, D. Fluck, P. Günter, M. Fleuster, and Ch. Buchal, “Two-wave mixing in photorefractive ion-implanted KNbO3 planar waveguides at visible and near-infrared wavelengths,” Opt. Lett. 18, 577–579 (1993).
[CrossRef]

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in blue BaTiO3,” Opt. Commun. 101, 60 (1993).
[CrossRef]

1992

1989

L. Holtmann, “A model for the nonlinear photoconductivity of BaTiO3,” Phys. Status Solidi A 113, K89–K93 (1989).
[CrossRef]

1988

1986

Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).
[CrossRef]

1983

F. Laeri, T. Tschudi, and J. Albers, “Coherent cw image amplifier and oscillator using two-wave interaction in a BaTiO3 crystal,” Opt. Commun. 47, 387 (1983).
[CrossRef]

1977

Albers, J.

F. Laeri, T. Tschudi, and J. Albers, “Coherent cw image amplifier and oscillator using two-wave interaction in a BaTiO3 crystal,” Opt. Commun. 47, 387 (1983).
[CrossRef]

Beckers, L.

Brignon, A.

Brost, G. A.

Brülisauer, S.

Buchal, Ch.

Chandler, P. J.

Dazzi, A.

A. Dazzi, P. Mathey, P. Lompré, P. Jullien, P. Moretti, and D. Rytz, “High performance of two wave mixing in a BaTiO3 waveguide realized by He+ implantation,” J. Opt. Soc. Am. B 16, 1915–1920 (1999).
[CrossRef]

A. Dazzi, P. Mathey, P. Lompré, and P. Jullien, “Energy leaks through the optical barrier created by H+ implantation in BaTiO3 and LiNbO3 waveguides,” Opt. Commun. 149, 135–142 (1998).
[CrossRef]

Eason, R. W.

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in blue BaTiO3,” Opt. Commun. 101, 60 (1993).
[CrossRef]

K. E. Younden, S. W. James, R. W. Eason, P. J. Chandler, L. Zhang, and P. D. Townsend, “Photorefractive planar waveguides in BaTiO3 fabricated by ion-beam implantation,” Opt. Lett. 17, 1509–1511 (1992).
[CrossRef]

Fainman, Y.

Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).
[CrossRef]

Fleuster, M.

Fluck, D.

Garrett, M. H.

A. Brignon, J. P. Huignard, M. H. Garrett, and I. Mnushkina, “Self-pumped phase conjugation in rhodium-doped BaTiO3 with 1.06-μm nanosecond pulses,” Opt. Lett. 22, 215–218 (1997).
[CrossRef] [PubMed]

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in blue BaTiO3,” Opt. Commun. 101, 60 (1993).
[CrossRef]

Günter, P.

Holtmann, L.

L. Holtmann, “A model for the nonlinear photoconductivity of BaTiO3,” Phys. Status Solidi A 113, K89–K93 (1989).
[CrossRef]

Hribek, P.

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in blue BaTiO3,” Opt. Commun. 101, 60 (1993).
[CrossRef]

Huignard, J. P.

James, S. W.

Jullien, P.

A. Dazzi, P. Mathey, P. Lompré, P. Jullien, P. Moretti, and D. Rytz, “High performance of two wave mixing in a BaTiO3 waveguide realized by He+ implantation,” J. Opt. Soc. Am. B 16, 1915–1920 (1999).
[CrossRef]

A. Dazzi, P. Mathey, P. Lompré, and P. Jullien, “Energy leaks through the optical barrier created by H+ implantation in BaTiO3 and LiNbO3 waveguides,” Opt. Commun. 149, 135–142 (1998).
[CrossRef]

P. Mathey, P. Jullien, and D. Rytz, “Efficient contour generation and tracking of moving object with a rhodium-doped BaTiO3 crystal working in the near-infrared,” Appl. Phys. Lett. 73, 3327–3329 (1998).
[CrossRef]

P. Mathey, P. Jullien, B. Mazué, and D. Rytz, “Dynamics of novelty filtering and edge enhancement in cobalt-doped barium titanate,” J. Opt. Soc. Am. B 15, 1353–1361 (1998).
[CrossRef]

Klancnik, E.

Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).
[CrossRef]

Klein, M. B.

Laeri, F.

F. Laeri, T. Tschudi, and J. Albers, “Coherent cw image amplifier and oscillator using two-wave interaction in a BaTiO3 crystal,” Opt. Commun. 47, 387 (1983).
[CrossRef]

Lee, S. H.

Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).
[CrossRef]

Lompré, P.

A. Dazzi, P. Mathey, P. Lompré, P. Jullien, P. Moretti, and D. Rytz, “High performance of two wave mixing in a BaTiO3 waveguide realized by He+ implantation,” J. Opt. Soc. Am. B 16, 1915–1920 (1999).
[CrossRef]

A. Dazzi, P. Mathey, P. Lompré, and P. Jullien, “Energy leaks through the optical barrier created by H+ implantation in BaTiO3 and LiNbO3 waveguides,” Opt. Commun. 149, 135–142 (1998).
[CrossRef]

Mathey, P.

A. Dazzi, P. Mathey, P. Lompré, P. Jullien, P. Moretti, and D. Rytz, “High performance of two wave mixing in a BaTiO3 waveguide realized by He+ implantation,” J. Opt. Soc. Am. B 16, 1915–1920 (1999).
[CrossRef]

P. Mathey, P. Jullien, B. Mazué, and D. Rytz, “Dynamics of novelty filtering and edge enhancement in cobalt-doped barium titanate,” J. Opt. Soc. Am. B 15, 1353–1361 (1998).
[CrossRef]

P. Mathey, P. Jullien, and D. Rytz, “Efficient contour generation and tracking of moving object with a rhodium-doped BaTiO3 crystal working in the near-infrared,” Appl. Phys. Lett. 73, 3327–3329 (1998).
[CrossRef]

A. Dazzi, P. Mathey, P. Lompré, and P. Jullien, “Energy leaks through the optical barrier created by H+ implantation in BaTiO3 and LiNbO3 waveguides,” Opt. Commun. 149, 135–142 (1998).
[CrossRef]

Mazué, B.

Mnushkina, I.

Moretti, P.

Motes, R. A.

Nelson, C. C.

Pepper, D. M.

Ross, G. W.

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in blue BaTiO3,” Opt. Commun. 101, 60 (1993).
[CrossRef]

Rotge, J. R.

Rytz, D.

A. Dazzi, P. Mathey, P. Lompré, P. Jullien, P. Moretti, and D. Rytz, “High performance of two wave mixing in a BaTiO3 waveguide realized by He+ implantation,” J. Opt. Soc. Am. B 16, 1915–1920 (1999).
[CrossRef]

P. Mathey, P. Jullien, B. Mazué, and D. Rytz, “Dynamics of novelty filtering and edge enhancement in cobalt-doped barium titanate,” J. Opt. Soc. Am. B 15, 1353–1361 (1998).
[CrossRef]

P. Mathey, P. Jullien, and D. Rytz, “Efficient contour generation and tracking of moving object with a rhodium-doped BaTiO3 crystal working in the near-infrared,” Appl. Phys. Lett. 73, 3327–3329 (1998).
[CrossRef]

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in blue BaTiO3,” Opt. Commun. 101, 60 (1993).
[CrossRef]

Schwartz, R. N.

Townsend, P. D.

Tschudi, T.

F. Laeri, T. Tschudi, and J. Albers, “Coherent cw image amplifier and oscillator using two-wave interaction in a BaTiO3 crystal,” Opt. Commun. 47, 387 (1983).
[CrossRef]

Wechsler, B. A.

Yariv, A.

Younden, K. E.

Zha, M.

Zhang, L.

Appl. Phys. Lett.

P. Mathey, P. Jullien, and D. Rytz, “Efficient contour generation and tracking of moving object with a rhodium-doped BaTiO3 crystal working in the near-infrared,” Appl. Phys. Lett. 73, 3327–3329 (1998).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

A. Dazzi, P. Mathey, P. Lompré, and P. Jullien, “Energy leaks through the optical barrier created by H+ implantation in BaTiO3 and LiNbO3 waveguides,” Opt. Commun. 149, 135–142 (1998).
[CrossRef]

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in blue BaTiO3,” Opt. Commun. 101, 60 (1993).
[CrossRef]

F. Laeri, T. Tschudi, and J. Albers, “Coherent cw image amplifier and oscillator using two-wave interaction in a BaTiO3 crystal,” Opt. Commun. 47, 387 (1983).
[CrossRef]

Opt. Eng.

Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).
[CrossRef]

Opt. Lett.

Phys. Status Solidi A

L. Holtmann, “A model for the nonlinear photoconductivity of BaTiO3,” Phys. Status Solidi A 113, K89–K93 (1989).
[CrossRef]

Other

P. Mathey, A. Dazzi, P. Lompré, P. Jullien, P. Moretti, and D. Rytz, “Giant two wave mixing in a photorefractive pla-nar waveguide fabricated with He+ implanted BaTiO3,” in Nonlinear Guided Waves and their Applications, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 437–439.

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University, Cambridge, UK, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

m-line spectra at 854 nm in the BaTiO3:Rh waveguide for propagation of (a) TE-polarized light along the c axis and (b) TE ordinary-polarized light perpendicular to the c axis. θ is the incident angle of the laser beam on the input-coupling prism.

Fig. 2
Fig. 2

Top view of the relative arrangement of the waveguide and the input prism that injects two modes (pump beam and probe beam). c is the optical axis of the guide, n is the normal of the entrance face of the prism, and ±θ are the incident angles of the beams on the prism.

Fig. 3
Fig. 3

Photorefractive gain Γ versus the ratio r of the pump–probe intensities. The total injected intensity is kept constant (104 W/cm2). The straight lines that join the experimental points are guides for the eyes.

Fig. 4
Fig. 4

Response time τ versus the light intensity inside the waveguide (filled diamonds) and inside the bulk crystal (filled squares). The straight lines are numerical adjustments of the experimental data according to power laws I-x. The ratio r is fixed at r300.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

γ=OutputprobeintensitywithpumpONOutputprobeintensitywithpumpOFF.
γ=1+r1+r[exp(-ΓLeff)],
Γ=2πnλ Escreffcos ϕ.

Metrics