Abstract

We have found that mirrors prepared upon silica glass by ultrafast pulsed laser deposition of elemental gallium show a highly reproducible and fully reversible light-induced reflectivity increase. The effect is explained as being due to nonthermal light-induced metallization of gallium at the interface.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Bennett, S. Dhanjal, P. Petropoulos, D. J. Richardson, N. I. Zheludev, and V. I. Emel’yanov, “A photonic switch based on a gigantic reversible optical nonlinearity of liquefying gallium,” Appl. Phys. Lett. 73, 1787–1789 (1998).
    [CrossRef]
  2. P. Petropoulos, H. S. Kim, D. J. Richardson, and N. I. Zheludev, “Measurement of the nonlinear optical phase response of liquefying gallium,” in Conference on Lasers and Electro-Optics, 2000 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 2000), paper cwk 42.
  3. A. V. Rode, M. Samoc, B. Luther-Davies, E. G. Gamaly, K. F. MacDonald, and N. I. Zheludev, “Dynamics of light-induced reflectivity switching in gallium films, deposited on silica by pulsed laser ablation,” Opt. Lett. (to be published) http://arXiv.org/abs/physics/0010017.
  4. V. Albanis, V. A. Fedotov, K. F. MacDonald, V. I. Emel’yanov, N. I. Zheludev, R. J. Knize, B. V. Zhdanov, and A. V. Rode, “Gigantic broadband optical nonlinearity in gallium films deposited by ultrafast laser ablation,” in Conference on Lasers and Electro-Optics/Europe 2000, Nice, France.
  5. E. G. Gamaly, A. V. Rode, and B. Luther-Davies, “Ultrafast ablation with high-pulse-rate lasers. I. Theoretical considerations,” J. Appl. Phys. 85, 4213–4221 (1999).
    [CrossRef]
  6. A. V. Rode, B. Luther-Davies, and E. G. Gamaly, “Ultrafast ablation with high-pulse-rate lasers. II. Experiments on laser deposition of amorphous carbon films,” J. Appl. Phys. 85, 4222–4230 (1999).
    [CrossRef]
  7. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985), Vol. 1.
  8. E. G. Gamaly, A. V. Rode, and B. Luther-Davies, “Laser ablation of carbon at the threshold of plasma formation,” Appl. Phys. A Suppl. 69, 121–127 (1999); http://dx.doi.org/10.1007/s003399900387 (December 22, 1999).
    [CrossRef]
  9. J. G. Dash, “Surface melting,” Contemp. Phys. 30, 89–100 (1989).
    [CrossRef]
  10. M. Bernasconi, G. L. Chiarotti, and E. Tosatti, “Ab initio calculations of structural and electronic properties of gallium solid-state phases,” Phys. Rev. B 52, 9988–9998 (1995).
    [CrossRef]
  11. N. R. Comins, “The optical properties of liquid metals,” Philos. Mag. 25, 817–831 (1972).
    [CrossRef]
  12. O. Hunderi and R. Ryberg, “Amorphous gallium—a free electron metal,” J. Phys. F 4, 2096–2102 (1974).
    [CrossRef]
  13. L. Ward, The Optical Constants of Bulk Materials and Films, 2nd ed. (Institute of Physics, Bristol, UK, 1994).
  14. R. Koffman, P. Cheyssac, and J. Richard, “Optical properties of Ga monocrystal in the 0.3–5-eV range,” Phys. Rev. B 16, 5216–5224 (1977).
    [CrossRef]
  15. R. Sh. Teshev and A. A. Shebzukhov, “Electronic characteristics and dispersion of optical constants of liquid gallium in the 0.4–2.5-μm spectral region,” Opt. Spektrosk. 65, 1178–1181 (1988).
  16. G. Fritsch and E. Luscher, “On surface melting of gallium,” Philos. Mag. A 48, 21–29 (1983).
    [CrossRef]
  17. W. J. Huisman, J. F. Peters, M. J. Zwanenberg, S. A. De Vries, T. E. Derry, D. Abernathy, and J. F. Van Der Veen, “Layering of a liquid metal in contact with a hard wall,” Nature 390, 379–381 (1997).
    [CrossRef]
  18. R. C. Weast, ed., Handbook of Chemistry and Physics, 70th ed. (CRC, Boca Raton, Fla., 1989).
  19. X. G. Gong, G. L. Chiarotti, M. Parrinello, and E. Tosatti, “α-Gallium: a metallic molecular crystal,” Phys. Rev. B 43, 14, 277–14, 280 (1991).
    [CrossRef]
  20. S. V. Demishev, T. V. Ischenko, and S. J. Blundell, “The structure of the phase transformation wave in the discrete model of a non-equilibrium phase transition,” J. Phys.: Condens. Matter 7, 9173–9184 (1995).
  21. P. Petropoulos, H. L. Offerhaus, D. J. Richardson, S. Dhanjal, and N. I. Zheludev, “Passive Q-switching of fiber lasers using a broadband liquefying gallium mirror,” Appl. Phys. Lett. 74, 3619–3621 (1999).
    [CrossRef]

1999 (3)

E. G. Gamaly, A. V. Rode, and B. Luther-Davies, “Ultrafast ablation with high-pulse-rate lasers. I. Theoretical considerations,” J. Appl. Phys. 85, 4213–4221 (1999).
[CrossRef]

A. V. Rode, B. Luther-Davies, and E. G. Gamaly, “Ultrafast ablation with high-pulse-rate lasers. II. Experiments on laser deposition of amorphous carbon films,” J. Appl. Phys. 85, 4222–4230 (1999).
[CrossRef]

P. Petropoulos, H. L. Offerhaus, D. J. Richardson, S. Dhanjal, and N. I. Zheludev, “Passive Q-switching of fiber lasers using a broadband liquefying gallium mirror,” Appl. Phys. Lett. 74, 3619–3621 (1999).
[CrossRef]

1998 (1)

P. J. Bennett, S. Dhanjal, P. Petropoulos, D. J. Richardson, N. I. Zheludev, and V. I. Emel’yanov, “A photonic switch based on a gigantic reversible optical nonlinearity of liquefying gallium,” Appl. Phys. Lett. 73, 1787–1789 (1998).
[CrossRef]

1997 (1)

W. J. Huisman, J. F. Peters, M. J. Zwanenberg, S. A. De Vries, T. E. Derry, D. Abernathy, and J. F. Van Der Veen, “Layering of a liquid metal in contact with a hard wall,” Nature 390, 379–381 (1997).
[CrossRef]

1995 (2)

S. V. Demishev, T. V. Ischenko, and S. J. Blundell, “The structure of the phase transformation wave in the discrete model of a non-equilibrium phase transition,” J. Phys.: Condens. Matter 7, 9173–9184 (1995).

M. Bernasconi, G. L. Chiarotti, and E. Tosatti, “Ab initio calculations of structural and electronic properties of gallium solid-state phases,” Phys. Rev. B 52, 9988–9998 (1995).
[CrossRef]

1991 (1)

X. G. Gong, G. L. Chiarotti, M. Parrinello, and E. Tosatti, “α-Gallium: a metallic molecular crystal,” Phys. Rev. B 43, 14, 277–14, 280 (1991).
[CrossRef]

1989 (1)

J. G. Dash, “Surface melting,” Contemp. Phys. 30, 89–100 (1989).
[CrossRef]

1988 (1)

R. Sh. Teshev and A. A. Shebzukhov, “Electronic characteristics and dispersion of optical constants of liquid gallium in the 0.4–2.5-μm spectral region,” Opt. Spektrosk. 65, 1178–1181 (1988).

1983 (1)

G. Fritsch and E. Luscher, “On surface melting of gallium,” Philos. Mag. A 48, 21–29 (1983).
[CrossRef]

1977 (1)

R. Koffman, P. Cheyssac, and J. Richard, “Optical properties of Ga monocrystal in the 0.3–5-eV range,” Phys. Rev. B 16, 5216–5224 (1977).
[CrossRef]

1974 (1)

O. Hunderi and R. Ryberg, “Amorphous gallium—a free electron metal,” J. Phys. F 4, 2096–2102 (1974).
[CrossRef]

1972 (1)

N. R. Comins, “The optical properties of liquid metals,” Philos. Mag. 25, 817–831 (1972).
[CrossRef]

Abernathy, D.

W. J. Huisman, J. F. Peters, M. J. Zwanenberg, S. A. De Vries, T. E. Derry, D. Abernathy, and J. F. Van Der Veen, “Layering of a liquid metal in contact with a hard wall,” Nature 390, 379–381 (1997).
[CrossRef]

Bennett, P. J.

P. J. Bennett, S. Dhanjal, P. Petropoulos, D. J. Richardson, N. I. Zheludev, and V. I. Emel’yanov, “A photonic switch based on a gigantic reversible optical nonlinearity of liquefying gallium,” Appl. Phys. Lett. 73, 1787–1789 (1998).
[CrossRef]

Bernasconi, M.

M. Bernasconi, G. L. Chiarotti, and E. Tosatti, “Ab initio calculations of structural and electronic properties of gallium solid-state phases,” Phys. Rev. B 52, 9988–9998 (1995).
[CrossRef]

Blundell, S. J.

S. V. Demishev, T. V. Ischenko, and S. J. Blundell, “The structure of the phase transformation wave in the discrete model of a non-equilibrium phase transition,” J. Phys.: Condens. Matter 7, 9173–9184 (1995).

Cheyssac, P.

R. Koffman, P. Cheyssac, and J. Richard, “Optical properties of Ga monocrystal in the 0.3–5-eV range,” Phys. Rev. B 16, 5216–5224 (1977).
[CrossRef]

Chiarotti, G. L.

M. Bernasconi, G. L. Chiarotti, and E. Tosatti, “Ab initio calculations of structural and electronic properties of gallium solid-state phases,” Phys. Rev. B 52, 9988–9998 (1995).
[CrossRef]

X. G. Gong, G. L. Chiarotti, M. Parrinello, and E. Tosatti, “α-Gallium: a metallic molecular crystal,” Phys. Rev. B 43, 14, 277–14, 280 (1991).
[CrossRef]

Comins, N. R.

N. R. Comins, “The optical properties of liquid metals,” Philos. Mag. 25, 817–831 (1972).
[CrossRef]

Dash, J. G.

J. G. Dash, “Surface melting,” Contemp. Phys. 30, 89–100 (1989).
[CrossRef]

Demishev, S. V.

S. V. Demishev, T. V. Ischenko, and S. J. Blundell, “The structure of the phase transformation wave in the discrete model of a non-equilibrium phase transition,” J. Phys.: Condens. Matter 7, 9173–9184 (1995).

Derry, T. E.

W. J. Huisman, J. F. Peters, M. J. Zwanenberg, S. A. De Vries, T. E. Derry, D. Abernathy, and J. F. Van Der Veen, “Layering of a liquid metal in contact with a hard wall,” Nature 390, 379–381 (1997).
[CrossRef]

Dhanjal, S.

P. Petropoulos, H. L. Offerhaus, D. J. Richardson, S. Dhanjal, and N. I. Zheludev, “Passive Q-switching of fiber lasers using a broadband liquefying gallium mirror,” Appl. Phys. Lett. 74, 3619–3621 (1999).
[CrossRef]

P. J. Bennett, S. Dhanjal, P. Petropoulos, D. J. Richardson, N. I. Zheludev, and V. I. Emel’yanov, “A photonic switch based on a gigantic reversible optical nonlinearity of liquefying gallium,” Appl. Phys. Lett. 73, 1787–1789 (1998).
[CrossRef]

Emel’yanov, V. I.

P. J. Bennett, S. Dhanjal, P. Petropoulos, D. J. Richardson, N. I. Zheludev, and V. I. Emel’yanov, “A photonic switch based on a gigantic reversible optical nonlinearity of liquefying gallium,” Appl. Phys. Lett. 73, 1787–1789 (1998).
[CrossRef]

Fritsch, G.

G. Fritsch and E. Luscher, “On surface melting of gallium,” Philos. Mag. A 48, 21–29 (1983).
[CrossRef]

Gamaly, E. G.

E. G. Gamaly, A. V. Rode, and B. Luther-Davies, “Ultrafast ablation with high-pulse-rate lasers. I. Theoretical considerations,” J. Appl. Phys. 85, 4213–4221 (1999).
[CrossRef]

A. V. Rode, B. Luther-Davies, and E. G. Gamaly, “Ultrafast ablation with high-pulse-rate lasers. II. Experiments on laser deposition of amorphous carbon films,” J. Appl. Phys. 85, 4222–4230 (1999).
[CrossRef]

Gong, X. G.

X. G. Gong, G. L. Chiarotti, M. Parrinello, and E. Tosatti, “α-Gallium: a metallic molecular crystal,” Phys. Rev. B 43, 14, 277–14, 280 (1991).
[CrossRef]

Huisman, W. J.

W. J. Huisman, J. F. Peters, M. J. Zwanenberg, S. A. De Vries, T. E. Derry, D. Abernathy, and J. F. Van Der Veen, “Layering of a liquid metal in contact with a hard wall,” Nature 390, 379–381 (1997).
[CrossRef]

Hunderi, O.

O. Hunderi and R. Ryberg, “Amorphous gallium—a free electron metal,” J. Phys. F 4, 2096–2102 (1974).
[CrossRef]

Ischenko, T. V.

S. V. Demishev, T. V. Ischenko, and S. J. Blundell, “The structure of the phase transformation wave in the discrete model of a non-equilibrium phase transition,” J. Phys.: Condens. Matter 7, 9173–9184 (1995).

Koffman, R.

R. Koffman, P. Cheyssac, and J. Richard, “Optical properties of Ga monocrystal in the 0.3–5-eV range,” Phys. Rev. B 16, 5216–5224 (1977).
[CrossRef]

Luscher, E.

G. Fritsch and E. Luscher, “On surface melting of gallium,” Philos. Mag. A 48, 21–29 (1983).
[CrossRef]

Luther-Davies, B.

A. V. Rode, B. Luther-Davies, and E. G. Gamaly, “Ultrafast ablation with high-pulse-rate lasers. II. Experiments on laser deposition of amorphous carbon films,” J. Appl. Phys. 85, 4222–4230 (1999).
[CrossRef]

E. G. Gamaly, A. V. Rode, and B. Luther-Davies, “Ultrafast ablation with high-pulse-rate lasers. I. Theoretical considerations,” J. Appl. Phys. 85, 4213–4221 (1999).
[CrossRef]

Offerhaus, H. L.

P. Petropoulos, H. L. Offerhaus, D. J. Richardson, S. Dhanjal, and N. I. Zheludev, “Passive Q-switching of fiber lasers using a broadband liquefying gallium mirror,” Appl. Phys. Lett. 74, 3619–3621 (1999).
[CrossRef]

Parrinello, M.

X. G. Gong, G. L. Chiarotti, M. Parrinello, and E. Tosatti, “α-Gallium: a metallic molecular crystal,” Phys. Rev. B 43, 14, 277–14, 280 (1991).
[CrossRef]

Peters, J. F.

W. J. Huisman, J. F. Peters, M. J. Zwanenberg, S. A. De Vries, T. E. Derry, D. Abernathy, and J. F. Van Der Veen, “Layering of a liquid metal in contact with a hard wall,” Nature 390, 379–381 (1997).
[CrossRef]

Petropoulos, P.

P. Petropoulos, H. L. Offerhaus, D. J. Richardson, S. Dhanjal, and N. I. Zheludev, “Passive Q-switching of fiber lasers using a broadband liquefying gallium mirror,” Appl. Phys. Lett. 74, 3619–3621 (1999).
[CrossRef]

P. J. Bennett, S. Dhanjal, P. Petropoulos, D. J. Richardson, N. I. Zheludev, and V. I. Emel’yanov, “A photonic switch based on a gigantic reversible optical nonlinearity of liquefying gallium,” Appl. Phys. Lett. 73, 1787–1789 (1998).
[CrossRef]

Richard, J.

R. Koffman, P. Cheyssac, and J. Richard, “Optical properties of Ga monocrystal in the 0.3–5-eV range,” Phys. Rev. B 16, 5216–5224 (1977).
[CrossRef]

Richardson, D. J.

P. Petropoulos, H. L. Offerhaus, D. J. Richardson, S. Dhanjal, and N. I. Zheludev, “Passive Q-switching of fiber lasers using a broadband liquefying gallium mirror,” Appl. Phys. Lett. 74, 3619–3621 (1999).
[CrossRef]

P. J. Bennett, S. Dhanjal, P. Petropoulos, D. J. Richardson, N. I. Zheludev, and V. I. Emel’yanov, “A photonic switch based on a gigantic reversible optical nonlinearity of liquefying gallium,” Appl. Phys. Lett. 73, 1787–1789 (1998).
[CrossRef]

Rode, A. V.

A. V. Rode, B. Luther-Davies, and E. G. Gamaly, “Ultrafast ablation with high-pulse-rate lasers. II. Experiments on laser deposition of amorphous carbon films,” J. Appl. Phys. 85, 4222–4230 (1999).
[CrossRef]

E. G. Gamaly, A. V. Rode, and B. Luther-Davies, “Ultrafast ablation with high-pulse-rate lasers. I. Theoretical considerations,” J. Appl. Phys. 85, 4213–4221 (1999).
[CrossRef]

Ryberg, R.

O. Hunderi and R. Ryberg, “Amorphous gallium—a free electron metal,” J. Phys. F 4, 2096–2102 (1974).
[CrossRef]

Shebzukhov, A. A.

R. Sh. Teshev and A. A. Shebzukhov, “Electronic characteristics and dispersion of optical constants of liquid gallium in the 0.4–2.5-μm spectral region,” Opt. Spektrosk. 65, 1178–1181 (1988).

Teshev, R. Sh.

R. Sh. Teshev and A. A. Shebzukhov, “Electronic characteristics and dispersion of optical constants of liquid gallium in the 0.4–2.5-μm spectral region,” Opt. Spektrosk. 65, 1178–1181 (1988).

Tosatti, E.

M. Bernasconi, G. L. Chiarotti, and E. Tosatti, “Ab initio calculations of structural and electronic properties of gallium solid-state phases,” Phys. Rev. B 52, 9988–9998 (1995).
[CrossRef]

X. G. Gong, G. L. Chiarotti, M. Parrinello, and E. Tosatti, “α-Gallium: a metallic molecular crystal,” Phys. Rev. B 43, 14, 277–14, 280 (1991).
[CrossRef]

Van Der Veen, J. F.

W. J. Huisman, J. F. Peters, M. J. Zwanenberg, S. A. De Vries, T. E. Derry, D. Abernathy, and J. F. Van Der Veen, “Layering of a liquid metal in contact with a hard wall,” Nature 390, 379–381 (1997).
[CrossRef]

Vries, S. A. De

W. J. Huisman, J. F. Peters, M. J. Zwanenberg, S. A. De Vries, T. E. Derry, D. Abernathy, and J. F. Van Der Veen, “Layering of a liquid metal in contact with a hard wall,” Nature 390, 379–381 (1997).
[CrossRef]

Zheludev, N. I.

P. Petropoulos, H. L. Offerhaus, D. J. Richardson, S. Dhanjal, and N. I. Zheludev, “Passive Q-switching of fiber lasers using a broadband liquefying gallium mirror,” Appl. Phys. Lett. 74, 3619–3621 (1999).
[CrossRef]

P. J. Bennett, S. Dhanjal, P. Petropoulos, D. J. Richardson, N. I. Zheludev, and V. I. Emel’yanov, “A photonic switch based on a gigantic reversible optical nonlinearity of liquefying gallium,” Appl. Phys. Lett. 73, 1787–1789 (1998).
[CrossRef]

Zwanenberg, M. J.

W. J. Huisman, J. F. Peters, M. J. Zwanenberg, S. A. De Vries, T. E. Derry, D. Abernathy, and J. F. Van Der Veen, “Layering of a liquid metal in contact with a hard wall,” Nature 390, 379–381 (1997).
[CrossRef]

Appl. Phys. Lett. (2)

P. J. Bennett, S. Dhanjal, P. Petropoulos, D. J. Richardson, N. I. Zheludev, and V. I. Emel’yanov, “A photonic switch based on a gigantic reversible optical nonlinearity of liquefying gallium,” Appl. Phys. Lett. 73, 1787–1789 (1998).
[CrossRef]

P. Petropoulos, H. L. Offerhaus, D. J. Richardson, S. Dhanjal, and N. I. Zheludev, “Passive Q-switching of fiber lasers using a broadband liquefying gallium mirror,” Appl. Phys. Lett. 74, 3619–3621 (1999).
[CrossRef]

Contemp. Phys. (1)

J. G. Dash, “Surface melting,” Contemp. Phys. 30, 89–100 (1989).
[CrossRef]

J. Appl. Phys. (2)

E. G. Gamaly, A. V. Rode, and B. Luther-Davies, “Ultrafast ablation with high-pulse-rate lasers. I. Theoretical considerations,” J. Appl. Phys. 85, 4213–4221 (1999).
[CrossRef]

A. V. Rode, B. Luther-Davies, and E. G. Gamaly, “Ultrafast ablation with high-pulse-rate lasers. II. Experiments on laser deposition of amorphous carbon films,” J. Appl. Phys. 85, 4222–4230 (1999).
[CrossRef]

J. Phys. F (1)

O. Hunderi and R. Ryberg, “Amorphous gallium—a free electron metal,” J. Phys. F 4, 2096–2102 (1974).
[CrossRef]

J. Phys.: Condens. Matter (1)

S. V. Demishev, T. V. Ischenko, and S. J. Blundell, “The structure of the phase transformation wave in the discrete model of a non-equilibrium phase transition,” J. Phys.: Condens. Matter 7, 9173–9184 (1995).

Nature (1)

W. J. Huisman, J. F. Peters, M. J. Zwanenberg, S. A. De Vries, T. E. Derry, D. Abernathy, and J. F. Van Der Veen, “Layering of a liquid metal in contact with a hard wall,” Nature 390, 379–381 (1997).
[CrossRef]

Opt. Spektrosk. (1)

R. Sh. Teshev and A. A. Shebzukhov, “Electronic characteristics and dispersion of optical constants of liquid gallium in the 0.4–2.5-μm spectral region,” Opt. Spektrosk. 65, 1178–1181 (1988).

Philos. Mag. (1)

N. R. Comins, “The optical properties of liquid metals,” Philos. Mag. 25, 817–831 (1972).
[CrossRef]

Philos. Mag. A (1)

G. Fritsch and E. Luscher, “On surface melting of gallium,” Philos. Mag. A 48, 21–29 (1983).
[CrossRef]

Phys. Rev. B (3)

R. Koffman, P. Cheyssac, and J. Richard, “Optical properties of Ga monocrystal in the 0.3–5-eV range,” Phys. Rev. B 16, 5216–5224 (1977).
[CrossRef]

M. Bernasconi, G. L. Chiarotti, and E. Tosatti, “Ab initio calculations of structural and electronic properties of gallium solid-state phases,” Phys. Rev. B 52, 9988–9998 (1995).
[CrossRef]

X. G. Gong, G. L. Chiarotti, M. Parrinello, and E. Tosatti, “α-Gallium: a metallic molecular crystal,” Phys. Rev. B 43, 14, 277–14, 280 (1991).
[CrossRef]

Other (7)

R. C. Weast, ed., Handbook of Chemistry and Physics, 70th ed. (CRC, Boca Raton, Fla., 1989).

L. Ward, The Optical Constants of Bulk Materials and Films, 2nd ed. (Institute of Physics, Bristol, UK, 1994).

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985), Vol. 1.

E. G. Gamaly, A. V. Rode, and B. Luther-Davies, “Laser ablation of carbon at the threshold of plasma formation,” Appl. Phys. A Suppl. 69, 121–127 (1999); http://dx.doi.org/10.1007/s003399900387 (December 22, 1999).
[CrossRef]

P. Petropoulos, H. S. Kim, D. J. Richardson, and N. I. Zheludev, “Measurement of the nonlinear optical phase response of liquefying gallium,” in Conference on Lasers and Electro-Optics, 2000 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 2000), paper cwk 42.

A. V. Rode, M. Samoc, B. Luther-Davies, E. G. Gamaly, K. F. MacDonald, and N. I. Zheludev, “Dynamics of light-induced reflectivity switching in gallium films, deposited on silica by pulsed laser ablation,” Opt. Lett. (to be published) http://arXiv.org/abs/physics/0010017.

V. Albanis, V. A. Fedotov, K. F. MacDonald, V. I. Emel’yanov, N. I. Zheludev, R. J. Knize, B. V. Zhdanov, and A. V. Rode, “Gigantic broadband optical nonlinearity in gallium films deposited by ultrafast laser ablation,” in Conference on Lasers and Electro-Optics/Europe 2000, Nice, France.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Gallium–glass interface reflectivity relative to increasing temperature for incident intensities of i, 220; ii, 320; iii, 950; iv, 2230; and v, 3180 W cm-2 and i*, against decreasing temperature at 220 W cm-2. (b) Magnitude of light-induced reflectivity change for intensities of vi, 320; vii, 950; viii, 2230 W cm-2 with fittings (dashed curves) derived from the light-induced metallization model. Inset, intensity dependence of fitting parameter μ.

Fig. 2
Fig. 2

Thickness of the metallic layer at the gallium–glass interface that would explain the observed dependence of reflectivity on temperature. Curves were calculated from the data presented in Fig. 1(a) by use of complex refractive indices for α (Ref. 14) and free-electron15 gallium of 2.11+3.38i and 2.22+8.64i, respectively. Fittings (dashed curves) are of the form d=d0+Δ exp[-μ(Tm-T)]. Inset, diagram of the interface structure.

Fig. 3
Fig. 3

Sample cross sections showing, at the left, structure, and, on the right, (a) lines of constant laser-induced temperature increase (in thousandths of degrees Celsius) and (b) the direction of heat flow. Temperature distributions were calculated for an average intensity I=1115 W cm-2 (2230 W cm-2 chopped with a 50% duty cycle) for the following parameters: λ=810 nm; laser spot radius at the Ga layer, =10 µm; thermostat temperature, T0=26 °C; steady-state interface reflectivity under these conditions, 0.7. Radiative losses and losses from the sides of the sample are neglected.

Metrics