Abstract

We have performed measurements and calculations of the efficiency of terahertz (THz) detection in ZnTe as functions of the angle between the THz polarization and the crystal (001) axis of the angle between the THz polarization and the probe-beam polarization. We find that, for angles of 0° and 90° between the probe and THz polarization, the THz detection process is most efficient, whereas the commonly used angle of 45° gives less than optimal results. In addition, we show how the polarization direction of a THz beam can be found if the direction of the crystal (001) axis is known. Our results are valid for ZnTe and other zinc-blende crystals such as GaP.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
    [CrossRef]
  2. T.-I. Jeon and D. R. Grischkowsky, “Observation of a Cole-Davidson type complex conductivity in the limit of very low carrier densities in doped silicon,” Appl. Phys. Lett. 72, 2259–2261 (1998).
    [CrossRef]
  3. M. van Exter and D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684–1691 (1990).
    [CrossRef]
  4. R. A. Cheville and D. Grischkowsky, “Time-domain terahertz impulse ranging studies,” Appl. Phys. Lett. 67, 1960–1962 (1995).
    [CrossRef]
  5. D.-M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
    [CrossRef]
  6. S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
    [CrossRef]
  7. D. You, R. R. Jones, P. H. Bucksbaum, and D. R. Dykaar, “Generation of high-power sub-single-cycle 500-fs electromagnetic pulses,” Opt. Lett. 18, 290–292 (1993).
    [CrossRef] [PubMed]
  8. M. Joffre, A. Bonvalet, A. Migus, and J.-L. Martin, “Femtosecond diffracting Fourier-transform infrared interferometer,” Opt. Lett. 21, 964–966 (1996).
    [CrossRef] [PubMed]
  9. Q. Wu and X.-C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68, 1604–1606 (1996).
    [CrossRef]
  10. Q. Wu, M. Litz, and X.-C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68, 2924–2926 (1996).
    [CrossRef]
  11. Q. Wu and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70, 1784–1786 (1997).
    [CrossRef]
  12. P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, R3052–3054 (1996).
    [CrossRef]
  13. A. Leitensdorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Femtosecond charge transport in polar semiconductors,” Phys. Rev. Lett. 82, 5140–5143 (1999).
    [CrossRef]
  14. D. You and P. H. Bucksbaum, “Propagation of half-cycle far-infrared pulses,” J. Opt. Soc. Am. B 14, 1651–1655 (1997).
    [CrossRef]
  15. S.-G. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35, 1257–1267 (1999).
    [CrossRef]
  16. A. Yariv, Quantum Electronics, 2nd ed. (Wiley, New York, 1975).

1999 (2)

A. Leitensdorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Femtosecond charge transport in polar semiconductors,” Phys. Rev. Lett. 82, 5140–5143 (1999).
[CrossRef]

S.-G. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35, 1257–1267 (1999).
[CrossRef]

1998 (2)

T.-I. Jeon and D. R. Grischkowsky, “Observation of a Cole-Davidson type complex conductivity in the limit of very low carrier densities in doped silicon,” Appl. Phys. Lett. 72, 2259–2261 (1998).
[CrossRef]

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[CrossRef]

1997 (2)

D. You and P. H. Bucksbaum, “Propagation of half-cycle far-infrared pulses,” J. Opt. Soc. Am. B 14, 1651–1655 (1997).
[CrossRef]

Q. Wu and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70, 1784–1786 (1997).
[CrossRef]

1996 (5)

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, R3052–3054 (1996).
[CrossRef]

D.-M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

M. Joffre, A. Bonvalet, A. Migus, and J.-L. Martin, “Femtosecond diffracting Fourier-transform infrared interferometer,” Opt. Lett. 21, 964–966 (1996).
[CrossRef] [PubMed]

Q. Wu and X.-C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68, 1604–1606 (1996).
[CrossRef]

Q. Wu, M. Litz, and X.-C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68, 2924–2926 (1996).
[CrossRef]

1995 (1)

R. A. Cheville and D. Grischkowsky, “Time-domain terahertz impulse ranging studies,” Appl. Phys. Lett. 67, 1960–1962 (1995).
[CrossRef]

1993 (1)

1990 (2)

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
[CrossRef]

M. van Exter and D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684–1691 (1990).
[CrossRef]

Bonvalet, A.

Brener, I.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[CrossRef]

Bucksbaum, P. H.

Cheville, R. A.

R. A. Cheville and D. Grischkowsky, “Time-domain terahertz impulse ranging studies,” Appl. Phys. Lett. 67, 1960–1962 (1995).
[CrossRef]

Dykaar, D. R.

Fattinger, Ch.

Grischkowsky, D.

Grischkowsky, D. R.

T.-I. Jeon and D. R. Grischkowsky, “Observation of a Cole-Davidson type complex conductivity in the limit of very low carrier densities in doped silicon,” Appl. Phys. Lett. 72, 2259–2261 (1998).
[CrossRef]

M. van Exter and D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684–1691 (1990).
[CrossRef]

Helm, H.

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, R3052–3054 (1996).
[CrossRef]

Hunsche, S.

A. Leitensdorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Femtosecond charge transport in polar semiconductors,” Phys. Rev. Lett. 82, 5140–5143 (1999).
[CrossRef]

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[CrossRef]

Jacobsen, R. H.

D.-M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

Jeon, T.-I.

T.-I. Jeon and D. R. Grischkowsky, “Observation of a Cole-Davidson type complex conductivity in the limit of very low carrier densities in doped silicon,” Appl. Phys. Lett. 72, 2259–2261 (1998).
[CrossRef]

Joffre, M.

Jones, R. R.

Keiding, S.

Keiding, S. R.

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, R3052–3054 (1996).
[CrossRef]

Knox, W. H.

A. Leitensdorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Femtosecond charge transport in polar semiconductors,” Phys. Rev. Lett. 82, 5140–5143 (1999).
[CrossRef]

Koch, M.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[CrossRef]

Leitensdorfer, A.

A. Leitensdorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Femtosecond charge transport in polar semiconductors,” Phys. Rev. Lett. 82, 5140–5143 (1999).
[CrossRef]

Litz, M.

Q. Wu, M. Litz, and X.-C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68, 2924–2926 (1996).
[CrossRef]

Martin, J.-L.

Melloch, M. R.

S.-G. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35, 1257–1267 (1999).
[CrossRef]

Migus, A.

Mittleman, D.-M.

D.-M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

Nuss, M. C.

A. Leitensdorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Femtosecond charge transport in polar semiconductors,” Phys. Rev. Lett. 82, 5140–5143 (1999).
[CrossRef]

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[CrossRef]

D.-M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

Park, S.-G.

S.-G. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35, 1257–1267 (1999).
[CrossRef]

Schall, M.

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, R3052–3054 (1996).
[CrossRef]

Schyja, V.

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, R3052–3054 (1996).
[CrossRef]

Shah, J.

A. Leitensdorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Femtosecond charge transport in polar semiconductors,” Phys. Rev. Lett. 82, 5140–5143 (1999).
[CrossRef]

Siders, C. W.

S.-G. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35, 1257–1267 (1999).
[CrossRef]

Siders, J. L. W.

S.-G. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35, 1257–1267 (1999).
[CrossRef]

Taylor, A. J.

S.-G. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35, 1257–1267 (1999).
[CrossRef]

Uhd Jepsen, P.

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, R3052–3054 (1996).
[CrossRef]

van Exter, M.

M. van Exter and D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684–1691 (1990).
[CrossRef]

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
[CrossRef]

Weiner, A. M.

S.-G. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35, 1257–1267 (1999).
[CrossRef]

Winnewisser, C.

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, R3052–3054 (1996).
[CrossRef]

Wu, Q.

Q. Wu and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70, 1784–1786 (1997).
[CrossRef]

Q. Wu, M. Litz, and X.-C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68, 2924–2926 (1996).
[CrossRef]

Q. Wu and X.-C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68, 1604–1606 (1996).
[CrossRef]

You, D.

Zhang, X.-C.

Q. Wu and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70, 1784–1786 (1997).
[CrossRef]

Q. Wu and X.-C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68, 1604–1606 (1996).
[CrossRef]

Q. Wu, M. Litz, and X.-C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68, 2924–2926 (1996).
[CrossRef]

Appl. Phys. Lett. (5)

R. A. Cheville and D. Grischkowsky, “Time-domain terahertz impulse ranging studies,” Appl. Phys. Lett. 67, 1960–1962 (1995).
[CrossRef]

Q. Wu and X.-C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68, 1604–1606 (1996).
[CrossRef]

Q. Wu, M. Litz, and X.-C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68, 2924–2926 (1996).
[CrossRef]

Q. Wu and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70, 1784–1786 (1997).
[CrossRef]

T.-I. Jeon and D. R. Grischkowsky, “Observation of a Cole-Davidson type complex conductivity in the limit of very low carrier densities in doped silicon,” Appl. Phys. Lett. 72, 2259–2261 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

S.-G. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron. 35, 1257–1267 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D.-M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

M. van Exter and D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684–1691 (1990).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. E (1)

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, R3052–3054 (1996).
[CrossRef]

Phys. Rev. Lett. (1)

A. Leitensdorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Femtosecond charge transport in polar semiconductors,” Phys. Rev. Lett. 82, 5140–5143 (1999).
[CrossRef]

Other (1)

A. Yariv, Quantum Electronics, 2nd ed. (Wiley, New York, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Experimental setup for detection of the electric field of THz pulses. Both the THz beam and the probe beam are focused on a ZnTe crystal. After the crystal, the probe beam passes through a quarter-wave plate and a polarizing beam splitter (PBS). A differential detector (consisting of photodiodes D1 and D2) measures the difference D1-D2, which is proportional to the THz electric field. (b) Angles of the THz and probe-beam polarization directions with respect to the crystal z axis. kTHz and kp give the propagation directions of the THz and the probe beam, respectively. x corresponds to the (100) axis, y to the (010) axis, and z to the (001) axis.

Fig. 2
Fig. 2

Measured THz electric field generated by illumination of the area between biased electrodes on a GaAs wafer. The measurement is a 17-min average over 1000 temporal scans. A blowup of the first 0.3 ps (inset) shows that the signal-to-noise ratio obtained in this measurement is approximately 1000.

Fig. 3
Fig. 3

Measured dependence on the crystal’s azimuthal angle α of the detected THz electric field for three different fixed angles between the probe-beam polarization and the THz polarization.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

x2/n2+y2/n2+z2/n2+2ETHz,1r41yz
+2ETHz,2r41xz+2ETHz,3r41xy=1,
x=12 2x-12 2y,
y=12 2x+12 2y,
z=z.
x21n2+ETHz,3r41+y21n2-ETHz,3r41+z2n2+22ETHz,1r41yz=1.
x=x,
y=y cos θ-z sin θ,
z=y sin θ+z cos θ.
x21n2+ETHzr41 cos α+y21n2-ETHzr41[cos α sin2 θ+cos(α+2θ)]+z21n2-ETHzr41[cos α cos2 θ-cos(α+2θ)]
=1,
2θ=-arctan(2 tan α)-nπ,
n-12πα<n+12π,n=0,1 ,
ny(α)n+n32ETHzr41[cos α sin2 θ+cos(α+2θ)],
nz(α)n+n32ETHzr41[cos α cos2 θ-cos(α+2θ)],
ΔI(α, φ)=Ip sin[2(φ-θ)]sinωc[ny(α)-nz(α)]L,
ΔI(α, φ)=Ip ωn3ETHzr41L2c(cos α sin 2φ+2 sin α cos 2φ).

Metrics