Abstract

The second-order nonlinear-optical coefficients of CsLiB6O10 have been absolutely determined for visible-to-ultraviolet second-harmonic wavelengths. The measurements were made by use of the wedge technique at the fundamental wavelengths of 0.532, 0.852, and 1.064 µm. The following values were obtained: d36=0.92 pm/V at 0.532 µm, d36=0.83 pm/V and d14=0.69 pm/V at 0.852 µm, and d36=0.74 pm/V at 1.064 µm.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, and S. Nakai, “New nonlinear optical crystal: cesium lithium borate,” Appl. Phys. Lett. 67, 1818–1820 (1995).
    [CrossRef]
  2. R. I. Trickett, M. J. Withford, and D. J. W. Brown, “4.7-W, 255-nm source based on second-harmonic generation of a copper-vapor laser in cesium lithium borate,” Opt. Lett. 23, 189–191 (1998).
    [CrossRef]
  3. J. Sakuma, A. Finch, Y. Ohsako, K. Deki, M. Yoshino, M. Horiguchi, T. Yokota, Y. Mori, and T. Sasaki, “All-solid-state, 1-W, 5-kHz laser source below 200 nm,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 89–92.
  4. T. Kojima, S. Konno, S. Fujikawa, K. Yasui, K. Yoshizawa, Y. Mori, T. Sasaki, M. Tanaka, and Y. Okada, “20-W ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser,” Opt. Lett. 25, 58–60 (2000).
    [CrossRef]
  5. G. C. Bhar, P. Kumbhakar, U. Chatterjee, A. M. Rudra, and A. Nagahori, “Widely tunable deep ultraviolet generation in CLBO,” Opt. Commun. 176, 199–205 (2000).
    [CrossRef]
  6. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
    [CrossRef]
  7. R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964).
    [CrossRef]
  8. I. Shoji, H. Nakamura, K. Ohdaira, T. Kondo, R. Ito, T. Okamoto, K. Tatsuki, and S. Kubota, “Absolute measurement of second-order nonlinear-optical coefficients of β-BaB2O4 for visible to ultraviolet second-harmonic wavelengths,” J. Opt. Soc. Am. B 16, 620–624 (1999).
    [CrossRef]
  9. T. Kamimura, M. Yoshimura, Y. Mori, T. Sasaki, and K. Yoshida, “Effect of RF plasma etching on surface damage in CsLiB6O10 crystal,” Jpn. J. Appl. Phys., Part 2 38, L181–L183 (1999).
    [CrossRef]
  10. Y. K. Yap, K. Deki, N. Kitatochi, Y. Mori, and T. Sasaki, “Alleviation of thermally induced phase mismatch in CsLiB6O10 crystal by means of temperature-profile compensation,” Opt. Lett. 23, 1016–1018 (1998).
    [CrossRef]
  11. N. Umemura, K. Yoshida, T. Kamimura, Y. Mori, T. Sasaki, and K. Kato, “New data on the phase-matching properties of CsLiB6O10,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 715–719.
  12. N. Umemura and K. Kato, “Ultraviolet generation tunable to 0.185 µm in CsLiB6O10,” Appl. Opt. 36, 6794–6796 (1997).
    [CrossRef]

2000 (2)

1999 (2)

1998 (2)

1997 (2)

1995 (1)

Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, and S. Nakai, “New nonlinear optical crystal: cesium lithium borate,” Appl. Phys. Lett. 67, 1818–1820 (1995).
[CrossRef]

1964 (1)

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964).
[CrossRef]

Bhar, G. C.

G. C. Bhar, P. Kumbhakar, U. Chatterjee, A. M. Rudra, and A. Nagahori, “Widely tunable deep ultraviolet generation in CLBO,” Opt. Commun. 176, 199–205 (2000).
[CrossRef]

Brown, D. J. W.

Chatterjee, U.

G. C. Bhar, P. Kumbhakar, U. Chatterjee, A. M. Rudra, and A. Nagahori, “Widely tunable deep ultraviolet generation in CLBO,” Opt. Commun. 176, 199–205 (2000).
[CrossRef]

Deki, K.

Y. K. Yap, K. Deki, N. Kitatochi, Y. Mori, and T. Sasaki, “Alleviation of thermally induced phase mismatch in CsLiB6O10 crystal by means of temperature-profile compensation,” Opt. Lett. 23, 1016–1018 (1998).
[CrossRef]

J. Sakuma, A. Finch, Y. Ohsako, K. Deki, M. Yoshino, M. Horiguchi, T. Yokota, Y. Mori, and T. Sasaki, “All-solid-state, 1-W, 5-kHz laser source below 200 nm,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 89–92.

Finch, A.

J. Sakuma, A. Finch, Y. Ohsako, K. Deki, M. Yoshino, M. Horiguchi, T. Yokota, Y. Mori, and T. Sasaki, “All-solid-state, 1-W, 5-kHz laser source below 200 nm,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 89–92.

Fujikawa, S.

Horiguchi, M.

J. Sakuma, A. Finch, Y. Ohsako, K. Deki, M. Yoshino, M. Horiguchi, T. Yokota, Y. Mori, and T. Sasaki, “All-solid-state, 1-W, 5-kHz laser source below 200 nm,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 89–92.

Ito, R.

Kamimura, T.

T. Kamimura, M. Yoshimura, Y. Mori, T. Sasaki, and K. Yoshida, “Effect of RF plasma etching on surface damage in CsLiB6O10 crystal,” Jpn. J. Appl. Phys., Part 2 38, L181–L183 (1999).
[CrossRef]

N. Umemura, K. Yoshida, T. Kamimura, Y. Mori, T. Sasaki, and K. Kato, “New data on the phase-matching properties of CsLiB6O10,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 715–719.

Kato, K.

N. Umemura and K. Kato, “Ultraviolet generation tunable to 0.185 µm in CsLiB6O10,” Appl. Opt. 36, 6794–6796 (1997).
[CrossRef]

N. Umemura, K. Yoshida, T. Kamimura, Y. Mori, T. Sasaki, and K. Kato, “New data on the phase-matching properties of CsLiB6O10,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 715–719.

Kitamoto, A.

Kitatochi, N.

Kojima, T.

Kondo, T.

Konno, S.

Kubota, S.

Kumbhakar, P.

G. C. Bhar, P. Kumbhakar, U. Chatterjee, A. M. Rudra, and A. Nagahori, “Widely tunable deep ultraviolet generation in CLBO,” Opt. Commun. 176, 199–205 (2000).
[CrossRef]

Kuroda, I.

Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, and S. Nakai, “New nonlinear optical crystal: cesium lithium borate,” Appl. Phys. Lett. 67, 1818–1820 (1995).
[CrossRef]

Miller, R. C.

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964).
[CrossRef]

Mori, Y.

T. Kojima, S. Konno, S. Fujikawa, K. Yasui, K. Yoshizawa, Y. Mori, T. Sasaki, M. Tanaka, and Y. Okada, “20-W ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser,” Opt. Lett. 25, 58–60 (2000).
[CrossRef]

T. Kamimura, M. Yoshimura, Y. Mori, T. Sasaki, and K. Yoshida, “Effect of RF plasma etching on surface damage in CsLiB6O10 crystal,” Jpn. J. Appl. Phys., Part 2 38, L181–L183 (1999).
[CrossRef]

Y. K. Yap, K. Deki, N. Kitatochi, Y. Mori, and T. Sasaki, “Alleviation of thermally induced phase mismatch in CsLiB6O10 crystal by means of temperature-profile compensation,” Opt. Lett. 23, 1016–1018 (1998).
[CrossRef]

Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, and S. Nakai, “New nonlinear optical crystal: cesium lithium borate,” Appl. Phys. Lett. 67, 1818–1820 (1995).
[CrossRef]

J. Sakuma, A. Finch, Y. Ohsako, K. Deki, M. Yoshino, M. Horiguchi, T. Yokota, Y. Mori, and T. Sasaki, “All-solid-state, 1-W, 5-kHz laser source below 200 nm,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 89–92.

N. Umemura, K. Yoshida, T. Kamimura, Y. Mori, T. Sasaki, and K. Kato, “New data on the phase-matching properties of CsLiB6O10,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 715–719.

Nagahori, A.

G. C. Bhar, P. Kumbhakar, U. Chatterjee, A. M. Rudra, and A. Nagahori, “Widely tunable deep ultraviolet generation in CLBO,” Opt. Commun. 176, 199–205 (2000).
[CrossRef]

Nakai, S.

Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, and S. Nakai, “New nonlinear optical crystal: cesium lithium borate,” Appl. Phys. Lett. 67, 1818–1820 (1995).
[CrossRef]

Nakajima, S.

Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, and S. Nakai, “New nonlinear optical crystal: cesium lithium borate,” Appl. Phys. Lett. 67, 1818–1820 (1995).
[CrossRef]

Nakamura, H.

Ohdaira, K.

Ohsako, Y.

J. Sakuma, A. Finch, Y. Ohsako, K. Deki, M. Yoshino, M. Horiguchi, T. Yokota, Y. Mori, and T. Sasaki, “All-solid-state, 1-W, 5-kHz laser source below 200 nm,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 89–92.

Okada, Y.

Okamoto, T.

Rudra, A. M.

G. C. Bhar, P. Kumbhakar, U. Chatterjee, A. M. Rudra, and A. Nagahori, “Widely tunable deep ultraviolet generation in CLBO,” Opt. Commun. 176, 199–205 (2000).
[CrossRef]

Sakuma, J.

J. Sakuma, A. Finch, Y. Ohsako, K. Deki, M. Yoshino, M. Horiguchi, T. Yokota, Y. Mori, and T. Sasaki, “All-solid-state, 1-W, 5-kHz laser source below 200 nm,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 89–92.

Sasaki, T.

T. Kojima, S. Konno, S. Fujikawa, K. Yasui, K. Yoshizawa, Y. Mori, T. Sasaki, M. Tanaka, and Y. Okada, “20-W ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser,” Opt. Lett. 25, 58–60 (2000).
[CrossRef]

T. Kamimura, M. Yoshimura, Y. Mori, T. Sasaki, and K. Yoshida, “Effect of RF plasma etching on surface damage in CsLiB6O10 crystal,” Jpn. J. Appl. Phys., Part 2 38, L181–L183 (1999).
[CrossRef]

Y. K. Yap, K. Deki, N. Kitatochi, Y. Mori, and T. Sasaki, “Alleviation of thermally induced phase mismatch in CsLiB6O10 crystal by means of temperature-profile compensation,” Opt. Lett. 23, 1016–1018 (1998).
[CrossRef]

Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, and S. Nakai, “New nonlinear optical crystal: cesium lithium borate,” Appl. Phys. Lett. 67, 1818–1820 (1995).
[CrossRef]

J. Sakuma, A. Finch, Y. Ohsako, K. Deki, M. Yoshino, M. Horiguchi, T. Yokota, Y. Mori, and T. Sasaki, “All-solid-state, 1-W, 5-kHz laser source below 200 nm,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 89–92.

N. Umemura, K. Yoshida, T. Kamimura, Y. Mori, T. Sasaki, and K. Kato, “New data on the phase-matching properties of CsLiB6O10,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 715–719.

Shirane, M.

Shoji, I.

Tanaka, M.

Tatsuki, K.

Trickett, R. I.

Umemura, N.

N. Umemura and K. Kato, “Ultraviolet generation tunable to 0.185 µm in CsLiB6O10,” Appl. Opt. 36, 6794–6796 (1997).
[CrossRef]

N. Umemura, K. Yoshida, T. Kamimura, Y. Mori, T. Sasaki, and K. Kato, “New data on the phase-matching properties of CsLiB6O10,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 715–719.

Withford, M. J.

Yap, Y. K.

Yasui, K.

Yokota, T.

J. Sakuma, A. Finch, Y. Ohsako, K. Deki, M. Yoshino, M. Horiguchi, T. Yokota, Y. Mori, and T. Sasaki, “All-solid-state, 1-W, 5-kHz laser source below 200 nm,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 89–92.

Yoshida, K.

T. Kamimura, M. Yoshimura, Y. Mori, T. Sasaki, and K. Yoshida, “Effect of RF plasma etching on surface damage in CsLiB6O10 crystal,” Jpn. J. Appl. Phys., Part 2 38, L181–L183 (1999).
[CrossRef]

N. Umemura, K. Yoshida, T. Kamimura, Y. Mori, T. Sasaki, and K. Kato, “New data on the phase-matching properties of CsLiB6O10,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 715–719.

Yoshimura, M.

T. Kamimura, M. Yoshimura, Y. Mori, T. Sasaki, and K. Yoshida, “Effect of RF plasma etching on surface damage in CsLiB6O10 crystal,” Jpn. J. Appl. Phys., Part 2 38, L181–L183 (1999).
[CrossRef]

Yoshino, M.

J. Sakuma, A. Finch, Y. Ohsako, K. Deki, M. Yoshino, M. Horiguchi, T. Yokota, Y. Mori, and T. Sasaki, “All-solid-state, 1-W, 5-kHz laser source below 200 nm,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 89–92.

Yoshizawa, K.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, and S. Nakai, “New nonlinear optical crystal: cesium lithium borate,” Appl. Phys. Lett. 67, 1818–1820 (1995).
[CrossRef]

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964).
[CrossRef]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys., Part 2 (1)

T. Kamimura, M. Yoshimura, Y. Mori, T. Sasaki, and K. Yoshida, “Effect of RF plasma etching on surface damage in CsLiB6O10 crystal,” Jpn. J. Appl. Phys., Part 2 38, L181–L183 (1999).
[CrossRef]

Opt. Commun. (1)

G. C. Bhar, P. Kumbhakar, U. Chatterjee, A. M. Rudra, and A. Nagahori, “Widely tunable deep ultraviolet generation in CLBO,” Opt. Commun. 176, 199–205 (2000).
[CrossRef]

Opt. Lett. (3)

Other (2)

N. Umemura, K. Yoshida, T. Kamimura, Y. Mori, T. Sasaki, and K. Kato, “New data on the phase-matching properties of CsLiB6O10,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 715–719.

J. Sakuma, A. Finch, Y. Ohsako, K. Deki, M. Yoshino, M. Horiguchi, T. Yokota, Y. Mori, and T. Sasaki, “All-solid-state, 1-W, 5-kHz laser source below 200 nm,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 89–92.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

SH power as a function of the sample thickness for d36(CLBO) at the fundamental wavelength of 0.532 µm. The fundamental power was 31.16 mW, and the fundamental beam radii, wx and wy, were 80.30 and 21.73 µm, respectively. Squares, experimental data; solid curve, theoretical curve that was least-squares fitted to the experimental data.

Tables (3)

Tables Icon

Table 1 Refractive Indices of CLBO Used in the Data Analysis

Tables Icon

Table 2 Calculated and Measured Coherence Lengths of CLBO

Tables Icon

Table 3 Experimentally Determined Miller’s Δ and Effective Nonlinear Optical Coefficients of CLBO (pm/V)a

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

Δijk=dijk(-2ω; ω, ω)[ni2(2ω)-1][nj2(ω)-1][nk2(ω)-1],
P2ω(L)=K(Pω)22L2π1/2wx2wy(ΔkL/2)2-×exp-4x2wx2F[l(x)]G[l(x)]dx,
K=2ω2dil2π0c3njωnkω[n2ω-(njω-nkω)/2],
l(x)=L+x tan θ,
F(l)=1(1+F2ω sin2 k2ωl)(1+Fjω sin2 kjωl)(1+Fkω sin2 kkωl),
G(l)=Q(1) sin2 Δk2l-Q(2) sin2 k2ω+(kjω+kkω)2l-Q(3) sin2(kkω-kjω)l+Q(4) sin2 k2ωl+Q(5) sin2(kjω+kkω)l+Q(6) sin2 k2ω+(kkω-kjω)2l+Q(7) sin2 k2ω-(kkω-kjω)2l-Q(8) sin2 kjl-Q(9) sin2 kkl.
F2ω=[(n2ω)2-1]24(n2ω)2,
Fjω=[(njω)2-1]24(njω)2,
Fkω=[(nkω)2-1]24(nkω)2,
Q(1)=14(2n2ω+njω+nkω)2(2n2ω+njω-nkω)×{{n2ω(njω+nkω)(njωnkω+3)[4(n2ω)2-(njω)2-(nkω)2+6]+[(njω)2+4njωnkω+(nkω)2+2][8(n2ω)2-(njω)2-(nkω)2+2]},
Q(2)=14(2n2ω+njω+nkω)2(2n2ω+njω-nkω)×{n2ω(njω+nkω)(njωnkω+3)[4(n2ω)2-(njω)2-(nkω)2+6]-[(njω)2+4njωnkω+(nkω)2+2][8(n2ω)2-(njω)2-(nkω)2+2]},
Q(3)=[(njω)2-1][(nkω)2-1][4-(njω-nkω)2][2n2ω-(njω+nkω)]232njωnkω(2n2ω+njω-nkω)2[2n2ω-(njω-nkω)],
Q(4)=njωnkω[(n2ω)2-1]{[4(n2ω)2-(njω)2-(nkω)2+2]2-16(n2ω)2}2(2n2ω+njω+nkω)2(2n2ω+njω-nkω)2[2n2ω-(njω-nkω)],
Q(5)=[(njω)2-1][(nkω)2-1][2n2ω-(njω-nkω)][(njω+nkω)2-4]32njωnkω(2n2ω+njω+nkω)2,
Q(6)=[2n2ω-(njω+nkω)]4(2n2ω+njω+nkω)(2n2ω+njω-nkω)2[2n2ω-(njω-nkω)]×{[4njωnkω-(njω)2-(nkω)2-2][8(n2ω)2-(nkω)2-(nkω)2+2]+n2ω(njω-nkω)(njωnkω-3)[4(n2ω)2-(njω)2-(nkω)2+6]},
Q(7)=[2n2ω-(njω+nkω)]4(2n2ω+njω+nkω)(2n2ω+njω-nkω)2[2n2ω-(njω-nkω)]×{[4njωnkω-(nkω)2-(nkω)2-2][8(n2ω)2-(njω)2-(nkω)2+2]-n2ω(njω-nkω)(njωnkω-3)[4(n2ω)2-(njω)2-(nkω)2+6]},
Q(8)=[(njω)2-1][2n2ω-(njω+nkω)]2[2n2ω-(njω-nkω)]16njωnkω{8(n2ω)2[2(n2ω)2-(njω)2-(nkω)2]+[(njω)2-(nkω)2]2}×[(nkω)4+13(nkω)2-(njω)2(nkω)2-(njω)2+4],
Q(9)=[(njω)2-1][2n2ω-(njω+nkω)]2[2n2ω-(njω-nkω)]16njωnkω{8(n2ω)2[2(n2ω)2-(njω)2-(nkω)2]+[(njω)2-(nkω)2]2}×[(nkω)4+13(nkω)2-(njω)2(nkω)2-(njω)2+4].

Metrics