Abstract

A polyisocyanate random copolymer that contains an asymmetric chiral carbon center and Disperse Red 1 dye nonlinear optical chromophores is synthesized. The optical activity is measured in the visible and near-infrared spectral ranges, confirming the existence of induced optical chirality in the copolymer film. On application of a corona field to the slab waveguide copolymer film, the polarization rotation at the wavelength of 1.3 µm is changed, opening the possibility of chiral electro-optic modulation in a chiral polymeric waveguide thin film.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Verbiest, M. Kauranen, and A. Persoons, “Second-order nonlinear optical properties of chiral thin films,” J. Mater. Chem. 9, 2005–2012 (1999).
    [CrossRef]
  2. T. Verbiest, S. Van Elshocht, M. Kauranen, L. Hellemans, J. Snauwaert, C. Nuckolls, T. Katxz, and A. Persoons, “Strong enhancement of nonlinear optical properties through supramolecular chirality,” Science 282, 913–915 (1998).
    [CrossRef] [PubMed]
  3. J. D. Byers, H. I. Yee, and J. M. Hicks, “A second harmonic generation analog of optical rotatory dispersion for the study of chiral monolayers,” J. Chem. Phys. 101, 6233–6241 (1994).
    [CrossRef]
  4. T. Verbiest, M. Kauranen, A. Persoons, M. Ikonen, J. Kurkela, and H. Lemmetyinen, “Nonlinear optical activity and biomolecular chirality,” J. Am. Chem. Soc. 116, 9203–9205 (1994).
    [CrossRef]
  5. M. Chien, Y. Kim, and H. Grebel, “Mode conversion in optically active and isotropic waveguides,” Opt. Lett. 14, 826–828 (1989).
    [CrossRef] [PubMed]
  6. D. Beljonne, Z. Shuai, J. L. Bredas, M. Kauranen, T. Verbiest, and A. Persoons, “Electro-optic response of chiral helicenes in isotropic media,” J. Chem. Phys. 108, 1301–1304 (1998).
    [CrossRef]
  7. D. M. Neville and D. F. Bradley, “Anomalous rotatory dispersion of acridine orange–native deoxyribonucleic acid complexes,” Biochim. Biophys. Acta 50, 397–399 (1961).
    [CrossRef] [PubMed]
  8. J. S. Lee and S. W. Ryu, “Anionic living polymerization of 3-(triethoxysilyl)propyl isocyanate,” Macromolecules 32, 2085–2088 (1999).
    [CrossRef]
  9. M. Kauranen, T. Verbiest, C. Boutton, M. N. Teerenstra, K. Clays, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Supramolecular second-order nonlinearity of polymers with orientationally correlated chromophores,” Science 270, 966–969 (1995).
    [CrossRef]
  10. J. F. Nye, Physical Properties of Crystals (Oxford U. Press, Oxford, 1957).
  11. S. H. Han and J. W. Wu, “Polarization-interferometry measurement of the Pockels coefficient in a chiral Bi12SiO20 single crystal,” J. Opt. Soc. Am. B 17, 1205–1210 (2000).
    [CrossRef]
  12. The linear superposition principle should not be mistaken as meaning that 2ρ and δ are interchangeable. It rather states the fact that, for an electromagnetic wave propagating in a birefringent chiral medium, the total optical phase change Δ can be expressed in terms of two independent parameters 2ρ and δ that correspond to different optical properties, namely, the specific rotation and the birefringence. The proper description requires the Fresnel’s equation, which has been adopted in the current analysis reported here. See, for example, A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 4.
  13. C. Cantor and P. R. Schimmel, Biophysical Chemistry Part II: Techniques for the Study of Biological Structure and Function (Freeman, New York, 1980).

2000 (1)

1999 (2)

T. Verbiest, M. Kauranen, and A. Persoons, “Second-order nonlinear optical properties of chiral thin films,” J. Mater. Chem. 9, 2005–2012 (1999).
[CrossRef]

J. S. Lee and S. W. Ryu, “Anionic living polymerization of 3-(triethoxysilyl)propyl isocyanate,” Macromolecules 32, 2085–2088 (1999).
[CrossRef]

1998 (2)

D. Beljonne, Z. Shuai, J. L. Bredas, M. Kauranen, T. Verbiest, and A. Persoons, “Electro-optic response of chiral helicenes in isotropic media,” J. Chem. Phys. 108, 1301–1304 (1998).
[CrossRef]

T. Verbiest, S. Van Elshocht, M. Kauranen, L. Hellemans, J. Snauwaert, C. Nuckolls, T. Katxz, and A. Persoons, “Strong enhancement of nonlinear optical properties through supramolecular chirality,” Science 282, 913–915 (1998).
[CrossRef] [PubMed]

1995 (1)

M. Kauranen, T. Verbiest, C. Boutton, M. N. Teerenstra, K. Clays, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Supramolecular second-order nonlinearity of polymers with orientationally correlated chromophores,” Science 270, 966–969 (1995).
[CrossRef]

1994 (2)

J. D. Byers, H. I. Yee, and J. M. Hicks, “A second harmonic generation analog of optical rotatory dispersion for the study of chiral monolayers,” J. Chem. Phys. 101, 6233–6241 (1994).
[CrossRef]

T. Verbiest, M. Kauranen, A. Persoons, M. Ikonen, J. Kurkela, and H. Lemmetyinen, “Nonlinear optical activity and biomolecular chirality,” J. Am. Chem. Soc. 116, 9203–9205 (1994).
[CrossRef]

1989 (1)

1961 (1)

D. M. Neville and D. F. Bradley, “Anomalous rotatory dispersion of acridine orange–native deoxyribonucleic acid complexes,” Biochim. Biophys. Acta 50, 397–399 (1961).
[CrossRef] [PubMed]

Beljonne, D.

D. Beljonne, Z. Shuai, J. L. Bredas, M. Kauranen, T. Verbiest, and A. Persoons, “Electro-optic response of chiral helicenes in isotropic media,” J. Chem. Phys. 108, 1301–1304 (1998).
[CrossRef]

Boutton, C.

M. Kauranen, T. Verbiest, C. Boutton, M. N. Teerenstra, K. Clays, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Supramolecular second-order nonlinearity of polymers with orientationally correlated chromophores,” Science 270, 966–969 (1995).
[CrossRef]

Bradley, D. F.

D. M. Neville and D. F. Bradley, “Anomalous rotatory dispersion of acridine orange–native deoxyribonucleic acid complexes,” Biochim. Biophys. Acta 50, 397–399 (1961).
[CrossRef] [PubMed]

Bredas, J. L.

D. Beljonne, Z. Shuai, J. L. Bredas, M. Kauranen, T. Verbiest, and A. Persoons, “Electro-optic response of chiral helicenes in isotropic media,” J. Chem. Phys. 108, 1301–1304 (1998).
[CrossRef]

Byers, J. D.

J. D. Byers, H. I. Yee, and J. M. Hicks, “A second harmonic generation analog of optical rotatory dispersion for the study of chiral monolayers,” J. Chem. Phys. 101, 6233–6241 (1994).
[CrossRef]

Chien, M.

Clays, K.

M. Kauranen, T. Verbiest, C. Boutton, M. N. Teerenstra, K. Clays, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Supramolecular second-order nonlinearity of polymers with orientationally correlated chromophores,” Science 270, 966–969 (1995).
[CrossRef]

Grebel, H.

Han, S. H.

Hellemans, L.

T. Verbiest, S. Van Elshocht, M. Kauranen, L. Hellemans, J. Snauwaert, C. Nuckolls, T. Katxz, and A. Persoons, “Strong enhancement of nonlinear optical properties through supramolecular chirality,” Science 282, 913–915 (1998).
[CrossRef] [PubMed]

Hicks, J. M.

J. D. Byers, H. I. Yee, and J. M. Hicks, “A second harmonic generation analog of optical rotatory dispersion for the study of chiral monolayers,” J. Chem. Phys. 101, 6233–6241 (1994).
[CrossRef]

Ikonen, M.

T. Verbiest, M. Kauranen, A. Persoons, M. Ikonen, J. Kurkela, and H. Lemmetyinen, “Nonlinear optical activity and biomolecular chirality,” J. Am. Chem. Soc. 116, 9203–9205 (1994).
[CrossRef]

Katxz, T.

T. Verbiest, S. Van Elshocht, M. Kauranen, L. Hellemans, J. Snauwaert, C. Nuckolls, T. Katxz, and A. Persoons, “Strong enhancement of nonlinear optical properties through supramolecular chirality,” Science 282, 913–915 (1998).
[CrossRef] [PubMed]

Kauranen, M.

T. Verbiest, M. Kauranen, and A. Persoons, “Second-order nonlinear optical properties of chiral thin films,” J. Mater. Chem. 9, 2005–2012 (1999).
[CrossRef]

T. Verbiest, S. Van Elshocht, M. Kauranen, L. Hellemans, J. Snauwaert, C. Nuckolls, T. Katxz, and A. Persoons, “Strong enhancement of nonlinear optical properties through supramolecular chirality,” Science 282, 913–915 (1998).
[CrossRef] [PubMed]

D. Beljonne, Z. Shuai, J. L. Bredas, M. Kauranen, T. Verbiest, and A. Persoons, “Electro-optic response of chiral helicenes in isotropic media,” J. Chem. Phys. 108, 1301–1304 (1998).
[CrossRef]

M. Kauranen, T. Verbiest, C. Boutton, M. N. Teerenstra, K. Clays, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Supramolecular second-order nonlinearity of polymers with orientationally correlated chromophores,” Science 270, 966–969 (1995).
[CrossRef]

T. Verbiest, M. Kauranen, A. Persoons, M. Ikonen, J. Kurkela, and H. Lemmetyinen, “Nonlinear optical activity and biomolecular chirality,” J. Am. Chem. Soc. 116, 9203–9205 (1994).
[CrossRef]

Kim, Y.

Kurkela, J.

T. Verbiest, M. Kauranen, A. Persoons, M. Ikonen, J. Kurkela, and H. Lemmetyinen, “Nonlinear optical activity and biomolecular chirality,” J. Am. Chem. Soc. 116, 9203–9205 (1994).
[CrossRef]

Lee, J. S.

J. S. Lee and S. W. Ryu, “Anionic living polymerization of 3-(triethoxysilyl)propyl isocyanate,” Macromolecules 32, 2085–2088 (1999).
[CrossRef]

Lemmetyinen, H.

T. Verbiest, M. Kauranen, A. Persoons, M. Ikonen, J. Kurkela, and H. Lemmetyinen, “Nonlinear optical activity and biomolecular chirality,” J. Am. Chem. Soc. 116, 9203–9205 (1994).
[CrossRef]

Neville, D. M.

D. M. Neville and D. F. Bradley, “Anomalous rotatory dispersion of acridine orange–native deoxyribonucleic acid complexes,” Biochim. Biophys. Acta 50, 397–399 (1961).
[CrossRef] [PubMed]

Nolte, R. J. M.

M. Kauranen, T. Verbiest, C. Boutton, M. N. Teerenstra, K. Clays, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Supramolecular second-order nonlinearity of polymers with orientationally correlated chromophores,” Science 270, 966–969 (1995).
[CrossRef]

Nuckolls, C.

T. Verbiest, S. Van Elshocht, M. Kauranen, L. Hellemans, J. Snauwaert, C. Nuckolls, T. Katxz, and A. Persoons, “Strong enhancement of nonlinear optical properties through supramolecular chirality,” Science 282, 913–915 (1998).
[CrossRef] [PubMed]

Persoons, A.

T. Verbiest, M. Kauranen, and A. Persoons, “Second-order nonlinear optical properties of chiral thin films,” J. Mater. Chem. 9, 2005–2012 (1999).
[CrossRef]

T. Verbiest, S. Van Elshocht, M. Kauranen, L. Hellemans, J. Snauwaert, C. Nuckolls, T. Katxz, and A. Persoons, “Strong enhancement of nonlinear optical properties through supramolecular chirality,” Science 282, 913–915 (1998).
[CrossRef] [PubMed]

D. Beljonne, Z. Shuai, J. L. Bredas, M. Kauranen, T. Verbiest, and A. Persoons, “Electro-optic response of chiral helicenes in isotropic media,” J. Chem. Phys. 108, 1301–1304 (1998).
[CrossRef]

M. Kauranen, T. Verbiest, C. Boutton, M. N. Teerenstra, K. Clays, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Supramolecular second-order nonlinearity of polymers with orientationally correlated chromophores,” Science 270, 966–969 (1995).
[CrossRef]

T. Verbiest, M. Kauranen, A. Persoons, M. Ikonen, J. Kurkela, and H. Lemmetyinen, “Nonlinear optical activity and biomolecular chirality,” J. Am. Chem. Soc. 116, 9203–9205 (1994).
[CrossRef]

Ryu, S. W.

J. S. Lee and S. W. Ryu, “Anionic living polymerization of 3-(triethoxysilyl)propyl isocyanate,” Macromolecules 32, 2085–2088 (1999).
[CrossRef]

Schouten, A. J.

M. Kauranen, T. Verbiest, C. Boutton, M. N. Teerenstra, K. Clays, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Supramolecular second-order nonlinearity of polymers with orientationally correlated chromophores,” Science 270, 966–969 (1995).
[CrossRef]

Shuai, Z.

D. Beljonne, Z. Shuai, J. L. Bredas, M. Kauranen, T. Verbiest, and A. Persoons, “Electro-optic response of chiral helicenes in isotropic media,” J. Chem. Phys. 108, 1301–1304 (1998).
[CrossRef]

Snauwaert, J.

T. Verbiest, S. Van Elshocht, M. Kauranen, L. Hellemans, J. Snauwaert, C. Nuckolls, T. Katxz, and A. Persoons, “Strong enhancement of nonlinear optical properties through supramolecular chirality,” Science 282, 913–915 (1998).
[CrossRef] [PubMed]

Teerenstra, M. N.

M. Kauranen, T. Verbiest, C. Boutton, M. N. Teerenstra, K. Clays, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Supramolecular second-order nonlinearity of polymers with orientationally correlated chromophores,” Science 270, 966–969 (1995).
[CrossRef]

Van Elshocht, S.

T. Verbiest, S. Van Elshocht, M. Kauranen, L. Hellemans, J. Snauwaert, C. Nuckolls, T. Katxz, and A. Persoons, “Strong enhancement of nonlinear optical properties through supramolecular chirality,” Science 282, 913–915 (1998).
[CrossRef] [PubMed]

Verbiest, T.

T. Verbiest, M. Kauranen, and A. Persoons, “Second-order nonlinear optical properties of chiral thin films,” J. Mater. Chem. 9, 2005–2012 (1999).
[CrossRef]

T. Verbiest, S. Van Elshocht, M. Kauranen, L. Hellemans, J. Snauwaert, C. Nuckolls, T. Katxz, and A. Persoons, “Strong enhancement of nonlinear optical properties through supramolecular chirality,” Science 282, 913–915 (1998).
[CrossRef] [PubMed]

D. Beljonne, Z. Shuai, J. L. Bredas, M. Kauranen, T. Verbiest, and A. Persoons, “Electro-optic response of chiral helicenes in isotropic media,” J. Chem. Phys. 108, 1301–1304 (1998).
[CrossRef]

M. Kauranen, T. Verbiest, C. Boutton, M. N. Teerenstra, K. Clays, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Supramolecular second-order nonlinearity of polymers with orientationally correlated chromophores,” Science 270, 966–969 (1995).
[CrossRef]

T. Verbiest, M. Kauranen, A. Persoons, M. Ikonen, J. Kurkela, and H. Lemmetyinen, “Nonlinear optical activity and biomolecular chirality,” J. Am. Chem. Soc. 116, 9203–9205 (1994).
[CrossRef]

Wu, J. W.

Yee, H. I.

J. D. Byers, H. I. Yee, and J. M. Hicks, “A second harmonic generation analog of optical rotatory dispersion for the study of chiral monolayers,” J. Chem. Phys. 101, 6233–6241 (1994).
[CrossRef]

Biochim. Biophys. Acta (1)

D. M. Neville and D. F. Bradley, “Anomalous rotatory dispersion of acridine orange–native deoxyribonucleic acid complexes,” Biochim. Biophys. Acta 50, 397–399 (1961).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

T. Verbiest, M. Kauranen, A. Persoons, M. Ikonen, J. Kurkela, and H. Lemmetyinen, “Nonlinear optical activity and biomolecular chirality,” J. Am. Chem. Soc. 116, 9203–9205 (1994).
[CrossRef]

J. Chem. Phys. (2)

D. Beljonne, Z. Shuai, J. L. Bredas, M. Kauranen, T. Verbiest, and A. Persoons, “Electro-optic response of chiral helicenes in isotropic media,” J. Chem. Phys. 108, 1301–1304 (1998).
[CrossRef]

J. D. Byers, H. I. Yee, and J. M. Hicks, “A second harmonic generation analog of optical rotatory dispersion for the study of chiral monolayers,” J. Chem. Phys. 101, 6233–6241 (1994).
[CrossRef]

J. Mater. Chem. (1)

T. Verbiest, M. Kauranen, and A. Persoons, “Second-order nonlinear optical properties of chiral thin films,” J. Mater. Chem. 9, 2005–2012 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

Macromolecules (1)

J. S. Lee and S. W. Ryu, “Anionic living polymerization of 3-(triethoxysilyl)propyl isocyanate,” Macromolecules 32, 2085–2088 (1999).
[CrossRef]

Opt. Lett. (1)

Science (2)

M. Kauranen, T. Verbiest, C. Boutton, M. N. Teerenstra, K. Clays, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Supramolecular second-order nonlinearity of polymers with orientationally correlated chromophores,” Science 270, 966–969 (1995).
[CrossRef]

T. Verbiest, S. Van Elshocht, M. Kauranen, L. Hellemans, J. Snauwaert, C. Nuckolls, T. Katxz, and A. Persoons, “Strong enhancement of nonlinear optical properties through supramolecular chirality,” Science 282, 913–915 (1998).
[CrossRef] [PubMed]

Other (3)

J. F. Nye, Physical Properties of Crystals (Oxford U. Press, Oxford, 1957).

The linear superposition principle should not be mistaken as meaning that 2ρ and δ are interchangeable. It rather states the fact that, for an electromagnetic wave propagating in a birefringent chiral medium, the total optical phase change Δ can be expressed in terms of two independent parameters 2ρ and δ that correspond to different optical properties, namely, the specific rotation and the birefringence. The proper description requires the Fresnel’s equation, which has been adopted in the current analysis reported here. See, for example, A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 4.

C. Cantor and P. R. Schimmel, Biophysical Chemistry Part II: Techniques for the Study of Biological Structure and Function (Freeman, New York, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Molecular structure of STMBDR1. The asymmetric carbon sites are marked by arrows.

Fig. 2
Fig. 2

CD, ORD, and linear absorption (ABS.) spectra of STMBDR1.

Fig. 3
Fig. 3

Polarization ellipses in a slab waveguide of STMBDR1 in the absence (open circles) and in the presence (filled circles) of a corona electric field. Oblique straight line, direction of incident polarization. Solid polarization ellipses, least-squares fit to the data points; dotted (dashed) polarization ellipse, the least-squares fit when it is assumed that only the birefringence (specific rotation) is affected by the corona field.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ρλ(E)=ρλ+rE+sEE.
Δ=[(2ρ)2+δ2]1/2,
II0=cos2Δl2cos2(α-β)+ρΔ sin(Δl)sin[(2(α-β)]+4ρ2Δ2 sin2Δl2sin2(α-β)+δ2Δ2 sin2Δl2cos2(α+β),

Metrics