Abstract

A synchronously pumped optical parametric oscillator (OPO) employing periodically poled lithium niobate (PPLN) efficiently generates diffraction-limited short pulses that are tunable in the 1.45–1.56-µm spectral range, with their duration adjustable from ≈1 ps–15 ps and output power as high as 630 mW. The pump laser that produces these unique OPO characteristics is a 200-MHz, 2.5-W average power, diode-pumped Nd:YVO4 laser emitting at 1064 nm and passively mode locked by a nonlinear mirror (NLM) technique. One can select the output pulse width from the vanadate laser to be either 16 or 6 ps simply by choosing the appropriate NLM configuration. Significantly enhanced performance of the mode-locked Nd:YVO4 laser was obtained with a critically phase-matched type I LiB3O5 crystal. A comparison of this crystal with type II KTiOPO4 is reported.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. McCarthy and D. C. Hanna, “All-solid-state synchronously pumped optical parametric oscillator,” J. Opt. Soc. Am. B 10, 2180–2190 (1993).
    [CrossRef]
  2. J. D. Kafka, M. L. Watts, and J. W. Pieterse, “Synchronously pumped optical parametric oscillators with LiB3O5,” J. Opt. Soc. Am. B 12, 2147–2157 (1995).
    [CrossRef]
  3. T. Graf, G. McConnell, A. I. Ferguson, E. Bente, D. Burns, and M. D. Dawson, “Synchronously pumped optical parametric oscillation in periodically poled lithium niobate with 1-W average output power,” Appl. Opt. 38, 3324–3328 (1999).
    [CrossRef]
  4. L. Lefort, K. Puech, S. D. Butterworth, Y. P. Svirko, and D. C. Hanna, “Generation of femtosecond pulses from order-of-magnitude pulse compression in a synchronously pumped optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 24, 28–30 (1999).
    [CrossRef]
  5. A. Agnesi, C. Pennacchio, G. Reali, and V. Kubecek, “High-power diode-pumped picosecond Nd3+:YVO4 laser,” Opt. Lett. 22, 1645–1647 (1997).
    [CrossRef]
  6. A. Agnesi, C. Pennacchio, and G. Reali, “High-average-power nonlinear mirror mode-locking with diode-pumped neodymium lasers,” in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 16.
  7. K. A. Stankov, “A mirror with an intensity-dependent reflection coefficient,” Appl. Phys. B 45, 191–195 (1988).
    [CrossRef]
  8. H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
    [CrossRef]
  9. Y. F. Chen, T. M. Huang, C. L. Wang, L. J. Lee, and S. C. Wang, “Theoretical and experimental studies of single-mode operation in diode-pumped Nd:YVO4/KTP green laser: influence of KTP length,” Opt. Commun. 152, 319–323 (1998).
    [CrossRef]
  10. Technical handbook (Raicol Crystals, Yehud, Israel; www.raicol.com ).
  11. G. Cerullo, V. Magni, and A. Monguzzi, “Group-velocity mismatch compensation in continuous-wave lasers mode-locked by second-order nonlinearities,” Opt. Lett. 20, 1785–1787 (1995).
    [CrossRef]
  12. B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61, 429–437 (1995).
    [CrossRef]
  13. D. Findlay and R. A. Clay, “The measurement of internal losses in a 4-level laser,” Phys. Lett. 20, 277–278 (1966).
    [CrossRef]
  14. J. D. V. Khaydarov, J. H. Andrews, and K. D. Singer, “Pulse-compression mechanism in a synchronously pumped optical parametic oscillator,” J. Opt. Soc. Am. B 12, 2199–2208 (1995).
    [CrossRef]

1999 (2)

1998 (1)

Y. F. Chen, T. M. Huang, C. L. Wang, L. J. Lee, and S. C. Wang, “Theoretical and experimental studies of single-mode operation in diode-pumped Nd:YVO4/KTP green laser: influence of KTP length,” Opt. Commun. 152, 319–323 (1998).
[CrossRef]

1997 (1)

1995 (4)

1993 (1)

1992 (1)

H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
[CrossRef]

1988 (1)

K. A. Stankov, “A mirror with an intensity-dependent reflection coefficient,” Appl. Phys. B 45, 191–195 (1988).
[CrossRef]

1966 (1)

D. Findlay and R. A. Clay, “The measurement of internal losses in a 4-level laser,” Phys. Lett. 20, 277–278 (1966).
[CrossRef]

Agnesi, A.

A. Agnesi, C. Pennacchio, G. Reali, and V. Kubecek, “High-power diode-pumped picosecond Nd3+:YVO4 laser,” Opt. Lett. 22, 1645–1647 (1997).
[CrossRef]

A. Agnesi, C. Pennacchio, and G. Reali, “High-average-power nonlinear mirror mode-locking with diode-pumped neodymium lasers,” in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 16.

Andrews, J. H.

Bente, E.

Braun, B.

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61, 429–437 (1995).
[CrossRef]

Burns, D.

Butterworth, S. D.

Cerullo, G.

Chen, Y. F.

Y. F. Chen, T. M. Huang, C. L. Wang, L. J. Lee, and S. C. Wang, “Theoretical and experimental studies of single-mode operation in diode-pumped Nd:YVO4/KTP green laser: influence of KTP length,” Opt. Commun. 152, 319–323 (1998).
[CrossRef]

Clay, R. A.

D. Findlay and R. A. Clay, “The measurement of internal losses in a 4-level laser,” Phys. Lett. 20, 277–278 (1966).
[CrossRef]

Dawson, M. D.

Ferguson, A. I.

Findlay, D.

D. Findlay and R. A. Clay, “The measurement of internal losses in a 4-level laser,” Phys. Lett. 20, 277–278 (1966).
[CrossRef]

Graf, T.

Hanna, D. C.

Huang, T. M.

Y. F. Chen, T. M. Huang, C. L. Wang, L. J. Lee, and S. C. Wang, “Theoretical and experimental studies of single-mode operation in diode-pumped Nd:YVO4/KTP green laser: influence of KTP length,” Opt. Commun. 152, 319–323 (1998).
[CrossRef]

Kafka, J. D.

Kärtner, F. X.

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61, 429–437 (1995).
[CrossRef]

Kazamura, M.

H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
[CrossRef]

Keller, U.

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61, 429–437 (1995).
[CrossRef]

Khaydarov, J. D. V.

Kubecek, V.

Kume, M.

H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
[CrossRef]

Lee, L. J.

Y. F. Chen, T. M. Huang, C. L. Wang, L. J. Lee, and S. C. Wang, “Theoretical and experimental studies of single-mode operation in diode-pumped Nd:YVO4/KTP green laser: influence of KTP length,” Opt. Commun. 152, 319–323 (1998).
[CrossRef]

Lefort, L.

Magni, V.

McCarthy, M. J.

McConnell, G.

Monguzzi, A.

Nagai, H.

H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
[CrossRef]

Ohta, I.

H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
[CrossRef]

Pennacchio, C.

A. Agnesi, C. Pennacchio, G. Reali, and V. Kubecek, “High-power diode-pumped picosecond Nd3+:YVO4 laser,” Opt. Lett. 22, 1645–1647 (1997).
[CrossRef]

A. Agnesi, C. Pennacchio, and G. Reali, “High-average-power nonlinear mirror mode-locking with diode-pumped neodymium lasers,” in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 16.

Pieterse, J. W.

Puech, K.

Reali, G.

A. Agnesi, C. Pennacchio, G. Reali, and V. Kubecek, “High-power diode-pumped picosecond Nd3+:YVO4 laser,” Opt. Lett. 22, 1645–1647 (1997).
[CrossRef]

A. Agnesi, C. Pennacchio, and G. Reali, “High-average-power nonlinear mirror mode-locking with diode-pumped neodymium lasers,” in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 16.

Shimizu, H.

H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
[CrossRef]

Singer, K. D.

Stankov, K. A.

K. A. Stankov, “A mirror with an intensity-dependent reflection coefficient,” Appl. Phys. B 45, 191–195 (1988).
[CrossRef]

Svirko, Y. P.

Wang, C. L.

Y. F. Chen, T. M. Huang, C. L. Wang, L. J. Lee, and S. C. Wang, “Theoretical and experimental studies of single-mode operation in diode-pumped Nd:YVO4/KTP green laser: influence of KTP length,” Opt. Commun. 152, 319–323 (1998).
[CrossRef]

Wang, S. C.

Y. F. Chen, T. M. Huang, C. L. Wang, L. J. Lee, and S. C. Wang, “Theoretical and experimental studies of single-mode operation in diode-pumped Nd:YVO4/KTP green laser: influence of KTP length,” Opt. Commun. 152, 319–323 (1998).
[CrossRef]

Watts, M. L.

Weingarten, K. J.

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61, 429–437 (1995).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61, 429–437 (1995).
[CrossRef]

K. A. Stankov, “A mirror with an intensity-dependent reflection coefficient,” Appl. Phys. B 45, 191–195 (1988).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (1)

Y. F. Chen, T. M. Huang, C. L. Wang, L. J. Lee, and S. C. Wang, “Theoretical and experimental studies of single-mode operation in diode-pumped Nd:YVO4/KTP green laser: influence of KTP length,” Opt. Commun. 152, 319–323 (1998).
[CrossRef]

Opt. Lett. (3)

Phys. Lett. (1)

D. Findlay and R. A. Clay, “The measurement of internal losses in a 4-level laser,” Phys. Lett. 20, 277–278 (1966).
[CrossRef]

Other (2)

A. Agnesi, C. Pennacchio, and G. Reali, “High-average-power nonlinear mirror mode-locking with diode-pumped neodymium lasers,” in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 16.

Technical handbook (Raicol Crystals, Yehud, Israel; www.raicol.com ).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the NLM mode-locked laser: FC, 12-W fiber-coupled diode; PO, pump optics; LC, Nd:YVO4 laser crystal; M1, R1=500-mm folding mirror; M2, R2=250-mm folding mirror; DO, dichroic output coupler; SH, second-harmonic crystal.

Fig. 2
Fig. 2

Autocorrelation traces from the three NLM mode-locking configurations.

Fig. 3
Fig. 3

Schematic of the OPO experiment: HW, half-wave quartz plate; L1, lens with 500-mm focal length; L2, lens with 200-mm focal length; MF’s, folding mirrors; R=150 mm; MR, total reflector; OC, output coupler.

Fig. 4
Fig. 4

Output power from the OPO pumped by 16-ps pulses. Slope efficiency is also indicated for the curves that correspond to different OC’s.

Fig. 5
Fig. 5

Detuning characteristics of the OPO pumped by 16-ps pulses. (δ>0 for an OPO cavity longer than the pump laser.)

Fig. 6
Fig. 6

Output power from the OPO pumped by 6-ps pulses. Slope efficiency is also indicated for the curves that correspond to different OC’s.

Fig. 7
Fig. 7

Detuning characteristics of the OPO pumped by 6-ps pulses. (δ>0 for an OPO cavity longer than the pump laser.)

Fig. 8
Fig. 8

Autocorrelation of the signal pulse from the OPO pumped by 6-ps pulses at two resonator detunings.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

κPth=L+T.
Ps=η0 TT+L(Pi-Pth).
Topt=κPiL-L.

Metrics