Abstract

A synchronously pumped optical parametric oscillator (OPO) employing periodically poled lithium niobate (PPLN) efficiently generates diffraction-limited short pulses that are tunable in the 1.45–1.56-µm spectral range, with their duration adjustable from ≈1 ps–15 ps and output power as high as 630 mW. The pump laser that produces these unique OPO characteristics is a 200-MHz, 2.5-W average power, diode-pumped Nd:YVO4 laser emitting at 1064 nm and passively mode locked by a nonlinear mirror (NLM) technique. One can select the output pulse width from the vanadate laser to be either 16 or 6 ps simply by choosing the appropriate NLM configuration. Significantly enhanced performance of the mode-locked Nd:YVO4 laser was obtained with a critically phase-matched type I LiB3O5 crystal. A comparison of this crystal with type II KTiOPO4 is reported.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. McCarthy and D. C. Hanna, “All-solid-state synchronously pumped optical parametric oscillator,” J. Opt. Soc. Am. B 10, 2180–2190 (1993).
    [CrossRef]
  2. J. D. Kafka, M. L. Watts, and J. W. Pieterse, “Synchronously pumped optical parametric oscillators with LiB3O5,” J. Opt. Soc. Am. B 12, 2147–2157 (1995).
    [CrossRef]
  3. T. Graf, G. McConnell, A. I. Ferguson, E. Bente, D. Burns, and M. D. Dawson, “Synchronously pumped optical parametric oscillation in periodically poled lithium niobate with 1-W average output power,” Appl. Opt. 38, 3324–3328 (1999).
    [CrossRef]
  4. L. Lefort, K. Puech, S. D. Butterworth, Y. P. Svirko, and D. C. Hanna, “Generation of femtosecond pulses from order-of-magnitude pulse compression in a synchronously pumped optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 24, 28–30 (1999).
    [CrossRef]
  5. A. Agnesi, C. Pennacchio, G. Reali, and V. Kubecek, “High-power diode-pumped picosecond Nd3+:YVO4 laser,” Opt. Lett. 22, 1645–1647 (1997).
    [CrossRef]
  6. A. Agnesi, C. Pennacchio, and G. Reali, “High-average-power nonlinear mirror mode-locking with diode-pumped neodymium lasers,” in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 16.
  7. K. A. Stankov, “A mirror with an intensity-dependent reflection coefficient,” Appl. Phys. B 45, 191–195 (1988).
    [CrossRef]
  8. H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
    [CrossRef]
  9. Y. F. Chen, T. M. Huang, C. L. Wang, L. J. Lee, and S. C. Wang, “Theoretical and experimental studies of single-mode operation in diode-pumped Nd:YVO4/KTP green laser: influence of KTP length,” Opt. Commun. 152, 319–323 (1998).
    [CrossRef]
  10. Technical handbook (Raicol Crystals, Yehud, Israel; www.raicol.com).
  11. G. Cerullo, V. Magni, and A. Monguzzi, “Group-velocity mismatch compensation in continuous-wave lasers mode-locked by second-order nonlinearities,” Opt. Lett. 20, 1785–1787 (1995).
    [CrossRef]
  12. B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61, 429–437 (1995).
    [CrossRef]
  13. D. Findlay and R. A. Clay, “The measurement of internal losses in a 4-level laser,” Phys. Lett. 20, 277–278 (1966).
    [CrossRef]
  14. J. D. V. Khaydarov, J. H. Andrews, and K. D. Singer, “Pulse-compression mechanism in a synchronously pumped optical parametic oscillator,” J. Opt. Soc. Am. B 12, 2199–2208 (1995).
    [CrossRef]

1999 (2)

1998 (1)

Y. F. Chen, T. M. Huang, C. L. Wang, L. J. Lee, and S. C. Wang, “Theoretical and experimental studies of single-mode operation in diode-pumped Nd:YVO4/KTP green laser: influence of KTP length,” Opt. Commun. 152, 319–323 (1998).
[CrossRef]

1997 (1)

1995 (4)

1993 (1)

1992 (1)

H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
[CrossRef]

1988 (1)

K. A. Stankov, “A mirror with an intensity-dependent reflection coefficient,” Appl. Phys. B 45, 191–195 (1988).
[CrossRef]

1966 (1)

D. Findlay and R. A. Clay, “The measurement of internal losses in a 4-level laser,” Phys. Lett. 20, 277–278 (1966).
[CrossRef]

Agnesi, A.

Andrews, J. H.

Bente, E.

Braun, B.

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61, 429–437 (1995).
[CrossRef]

Burns, D.

Butterworth, S. D.

Cerullo, G.

Chen, Y. F.

Y. F. Chen, T. M. Huang, C. L. Wang, L. J. Lee, and S. C. Wang, “Theoretical and experimental studies of single-mode operation in diode-pumped Nd:YVO4/KTP green laser: influence of KTP length,” Opt. Commun. 152, 319–323 (1998).
[CrossRef]

Clay, R. A.

D. Findlay and R. A. Clay, “The measurement of internal losses in a 4-level laser,” Phys. Lett. 20, 277–278 (1966).
[CrossRef]

Dawson, M. D.

Ferguson, A. I.

Findlay, D.

D. Findlay and R. A. Clay, “The measurement of internal losses in a 4-level laser,” Phys. Lett. 20, 277–278 (1966).
[CrossRef]

Graf, T.

Hanna, D. C.

Huang, T. M.

Y. F. Chen, T. M. Huang, C. L. Wang, L. J. Lee, and S. C. Wang, “Theoretical and experimental studies of single-mode operation in diode-pumped Nd:YVO4/KTP green laser: influence of KTP length,” Opt. Commun. 152, 319–323 (1998).
[CrossRef]

Kafka, J. D.

Kärtner, F. X.

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61, 429–437 (1995).
[CrossRef]

Kazamura, M.

H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
[CrossRef]

Keller, U.

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61, 429–437 (1995).
[CrossRef]

Khaydarov, J. D. V.

Kubecek, V.

Kume, M.

H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
[CrossRef]

Lee, L. J.

Y. F. Chen, T. M. Huang, C. L. Wang, L. J. Lee, and S. C. Wang, “Theoretical and experimental studies of single-mode operation in diode-pumped Nd:YVO4/KTP green laser: influence of KTP length,” Opt. Commun. 152, 319–323 (1998).
[CrossRef]

Lefort, L.

Magni, V.

McCarthy, M. J.

McConnell, G.

Monguzzi, A.

Nagai, H.

H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
[CrossRef]

Ohta, I.

H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
[CrossRef]

Pennacchio, C.

Pieterse, J. W.

Puech, K.

Reali, G.

Shimizu, H.

H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
[CrossRef]

Singer, K. D.

Stankov, K. A.

K. A. Stankov, “A mirror with an intensity-dependent reflection coefficient,” Appl. Phys. B 45, 191–195 (1988).
[CrossRef]

Svirko, Y. P.

Wang, C. L.

Y. F. Chen, T. M. Huang, C. L. Wang, L. J. Lee, and S. C. Wang, “Theoretical and experimental studies of single-mode operation in diode-pumped Nd:YVO4/KTP green laser: influence of KTP length,” Opt. Commun. 152, 319–323 (1998).
[CrossRef]

Wang, S. C.

Y. F. Chen, T. M. Huang, C. L. Wang, L. J. Lee, and S. C. Wang, “Theoretical and experimental studies of single-mode operation in diode-pumped Nd:YVO4/KTP green laser: influence of KTP length,” Opt. Commun. 152, 319–323 (1998).
[CrossRef]

Watts, M. L.

Weingarten, K. J.

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61, 429–437 (1995).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

K. A. Stankov, “A mirror with an intensity-dependent reflection coefficient,” Appl. Phys. B 45, 191–195 (1988).
[CrossRef]

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61, 429–437 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (1)

Y. F. Chen, T. M. Huang, C. L. Wang, L. J. Lee, and S. C. Wang, “Theoretical and experimental studies of single-mode operation in diode-pumped Nd:YVO4/KTP green laser: influence of KTP length,” Opt. Commun. 152, 319–323 (1998).
[CrossRef]

Opt. Lett. (3)

Phys. Lett. (1)

D. Findlay and R. A. Clay, “The measurement of internal losses in a 4-level laser,” Phys. Lett. 20, 277–278 (1966).
[CrossRef]

Other (2)

A. Agnesi, C. Pennacchio, and G. Reali, “High-average-power nonlinear mirror mode-locking with diode-pumped neodymium lasers,” in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 16.

Technical handbook (Raicol Crystals, Yehud, Israel; www.raicol.com).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the NLM mode-locked laser: FC, 12-W fiber-coupled diode; PO, pump optics; LC, Nd:YVO4 laser crystal; M1, R1=500-mm folding mirror; M2, R2=250-mm folding mirror; DO, dichroic output coupler; SH, second-harmonic crystal.

Fig. 2
Fig. 2

Autocorrelation traces from the three NLM mode-locking configurations.

Fig. 3
Fig. 3

Schematic of the OPO experiment: HW, half-wave quartz plate; L1, lens with 500-mm focal length; L2, lens with 200-mm focal length; MF’s, folding mirrors; R=150 mm; MR, total reflector; OC, output coupler.

Fig. 4
Fig. 4

Output power from the OPO pumped by 16-ps pulses. Slope efficiency is also indicated for the curves that correspond to different OC’s.

Fig. 5
Fig. 5

Detuning characteristics of the OPO pumped by 16-ps pulses. (δ>0 for an OPO cavity longer than the pump laser.)

Fig. 6
Fig. 6

Output power from the OPO pumped by 6-ps pulses. Slope efficiency is also indicated for the curves that correspond to different OC’s.

Fig. 7
Fig. 7

Detuning characteristics of the OPO pumped by 6-ps pulses. (δ>0 for an OPO cavity longer than the pump laser.)

Fig. 8
Fig. 8

Autocorrelation of the signal pulse from the OPO pumped by 6-ps pulses at two resonator detunings.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

κPth=L+T.
Ps=η0 TT+L(Pi-Pth).
Topt=κPiL-L.

Metrics