Abstract

A broad-surface-area vertical GaAs microcavity was operated as an adaptive holographic film. The cavity mirrors were transparent to high-energy (millijoules per square centimeter) hologram writing pulses at a wavelength of 730 nm that generated optically pumped gain gratings in a 1-µm-thick active layer of GaAs. The gain gratings were probed with a low-intensity (mW) tunable laser at wavelengths near the GaAs band edge in the high-reflectance bandwidth of the cavity Bragg mirrors. When the structure was designed with low mirror reflectances [(R1R2)1/2=90%] to operate below the lasing threshold, the cavity resonance bandwidth was sufficiently broad to permit homogeneous hologram readout over a large (several square millimeters) area. Diffraction efficiencies of approximately 10% were predicted and approached experimentally. These results represent a first step toward the realization of a holographic vertical-cavity surface-emitting laser structure.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1990).
  2. D. D. Nolte and M. R. Melloch, “Photorefractive quantum wells and thin films,” in Photorefractive Effects and Materials, D. D. Nolte, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1995), pp. 373–451.
  3. D. D. Nolte, “Semi-insulating semiconductor heterostructures: Optoelectronic properties and applications,” J. Appl. Phys. 85, 6259–6289 (1999).
    [CrossRef]
  4. S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, “Two-wave mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings,” Appl. Phys. B 68, 863–869 (1999).
    [CrossRef]
  5. Q. N. Wang, R. M. Brubaker, D. D. Nolte, and M. R. Melloch, “Photorefractive quantum wells: transverse Franz–Keldysh geometry,” J. Opt. Soc. Am. B 9, 1626–1641 (1992).
    [CrossRef]
  6. A. Partovi, A. M. Glass, T. H. Chiu, and D. T. H. Liu, “High-speed joint-transform optical image correlator using GaAs/AlGaAs semi-insulating multiple quantum wells and laser diodes,” Opt. Lett. 18, 906–908 (1993).
    [CrossRef]
  7. W. S. Rabinovich, S. R. Bowman, R. Mahon, A. Walsh, G. Beadie, L. Adler, D. S. Katzer, and K. Ikossi Anastasiou, “Gray-scale response of multiple quantum well spatial light modulators,” J. Opt. Soc. Am. B 13, 2235–2241 (1996).
    [CrossRef]
  8. I. Lahiri, D. D. Nolte, M. R. Melloch, and M. B. Klein, “Oscillatory mode coupling and electrically strobed gratings in photorefractive quantum-well diodes,” Opt. Lett. 23, 49–51 (1998).
    [CrossRef]
  9. I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
    [CrossRef]
  10. Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Time-domain image processing using dynamic holography,” IEEE J. Sel. Top. Quantum Electron. 4, 332–341 (1998).
    [CrossRef]
  11. Y. Ding, R. M. Brubaker, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Femtosecond pulse shaping by dynamic holograms in photorefractive multiple quantum wells,” Opt. Lett. 22, 718–721 (1997).
    [CrossRef] [PubMed]
  12. Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Real-time edge enhancement of femtosecond time-domain images by use of photorefractive quantum wells,” Opt. Lett. 22, 1101–1103 (1997).
    [CrossRef] [PubMed]
  13. R. Jones, M. Tziraki, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Direct-to-video holographic 3-D imaging using photorefractive multiple quantum well devices,” Opt. Express 2, 439–448 (1998); http://epubs.osa.org/opticsexpress.
    [CrossRef] [PubMed]
  14. R. Jones, N. P. Barry, S. C. W. Hyde, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Direct-to-video holographic readout in quantum wells for 3-D imaging through turbid media,” Opt. Lett. 23, 103–105 (1998).
    [CrossRef]
  15. D. D. Nolte and K. M. Kwolek, “Diffraction from a short-cavity Fabry–Perot: applications to photorefractive quantum wells,” Opt. Commun. 115, 606–616 (1995).
    [CrossRef]
  16. Y. Ding, A. M. Weiner, M. R. Melloch, and D. D. Nolte, “Adaptive all-order dispersion compensation of ultrafast laser pulses using dynamic spectral holography,” Appl. Phys. Lett. 75, 3255–3257 (1999).
    [CrossRef]
  17. M. J. Damzen, R. P. M. Green, and K. S. Syed, “Self-adaptive solid-state laser oscillator formed by dynamic gain-grating holograms,” Opt. Lett. 20, 1704–1706 (1995).
    [CrossRef] [PubMed]
  18. A. Brignon and J. P. Huignard, “Energy efficiency of phase conjugation by saturable-gain degenerate four-wave mixing in Nd: YAG amplitudes,” Opt. Commun. 119, 171–177 (1995).
    [CrossRef]
  19. M. J. Damzen, S. Camacho Lopez, and R. P. M. Green, “Wave-mixing and vector phase conjugation by polarization-dependent saturable absorption in Cr4+/:YAG,” Phys. Rev. Lett. 76, 2894–2897 (1996).
    [CrossRef] [PubMed]
  20. K. S. Syed, G. J. Crofts, R. P. M. Green, and M. J. Damzen, “Vectorial phase conjugation via four-wave mixing in isotropic saturable-gain media,” J. Opt. Soc. Am. B 14, 2067–2078 (1997).
    [CrossRef]
  21. R. P. M. Green, D. Udaiyan, G. J. Crofts, D. H. Kim, and M. J. Damzen, “Holographic laser oscillator which adaptively corrects for polarization and phase distortions,” Phys. Rev. Lett. 77, 3533–3536 (1996).
    [CrossRef] [PubMed]
  22. A. Brignon, L. Loiseau, C. Larat, J. Huignard, and J. Pocholle, “Phase conjugation in a continuous-wave diode-pumped Nd:YVO4 laser,” Appl. Phys. B 69, 159–162 (1999).
    [CrossRef]
  23. H. C. Casey and M. B. Panish, Heterostructure Lasers (Academic, New York, 1978).
  24. J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
    [CrossRef]
  25. T. E. Sale, Vertical Cavity Surface Emitting Lasers (Wiley, New York, 1995)
  26. K. M. Kwolek, M. R. Melloch, D. D. Nolte, and G. A. Brost, “Diffractive quantum-well asymmetric Fabry–Perot: transverse-field photorefractive geometry,” Appl. Phys. Lett. 67, 736–738 (1995).
    [CrossRef]

1999 (4)

D. D. Nolte, “Semi-insulating semiconductor heterostructures: Optoelectronic properties and applications,” J. Appl. Phys. 85, 6259–6289 (1999).
[CrossRef]

S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, “Two-wave mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings,” Appl. Phys. B 68, 863–869 (1999).
[CrossRef]

Y. Ding, A. M. Weiner, M. R. Melloch, and D. D. Nolte, “Adaptive all-order dispersion compensation of ultrafast laser pulses using dynamic spectral holography,” Appl. Phys. Lett. 75, 3255–3257 (1999).
[CrossRef]

A. Brignon, L. Loiseau, C. Larat, J. Huignard, and J. Pocholle, “Phase conjugation in a continuous-wave diode-pumped Nd:YVO4 laser,” Appl. Phys. B 69, 159–162 (1999).
[CrossRef]

1998 (5)

1997 (3)

1996 (3)

W. S. Rabinovich, S. R. Bowman, R. Mahon, A. Walsh, G. Beadie, L. Adler, D. S. Katzer, and K. Ikossi Anastasiou, “Gray-scale response of multiple quantum well spatial light modulators,” J. Opt. Soc. Am. B 13, 2235–2241 (1996).
[CrossRef]

M. J. Damzen, S. Camacho Lopez, and R. P. M. Green, “Wave-mixing and vector phase conjugation by polarization-dependent saturable absorption in Cr4+/:YAG,” Phys. Rev. Lett. 76, 2894–2897 (1996).
[CrossRef] [PubMed]

R. P. M. Green, D. Udaiyan, G. J. Crofts, D. H. Kim, and M. J. Damzen, “Holographic laser oscillator which adaptively corrects for polarization and phase distortions,” Phys. Rev. Lett. 77, 3533–3536 (1996).
[CrossRef] [PubMed]

1995 (4)

A. Brignon and J. P. Huignard, “Energy efficiency of phase conjugation by saturable-gain degenerate four-wave mixing in Nd: YAG amplitudes,” Opt. Commun. 119, 171–177 (1995).
[CrossRef]

D. D. Nolte and K. M. Kwolek, “Diffraction from a short-cavity Fabry–Perot: applications to photorefractive quantum wells,” Opt. Commun. 115, 606–616 (1995).
[CrossRef]

M. J. Damzen, R. P. M. Green, and K. S. Syed, “Self-adaptive solid-state laser oscillator formed by dynamic gain-grating holograms,” Opt. Lett. 20, 1704–1706 (1995).
[CrossRef] [PubMed]

K. M. Kwolek, M. R. Melloch, D. D. Nolte, and G. A. Brost, “Diffractive quantum-well asymmetric Fabry–Perot: transverse-field photorefractive geometry,” Appl. Phys. Lett. 67, 736–738 (1995).
[CrossRef]

1993 (1)

1992 (1)

1991 (1)

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[CrossRef]

Adler, L.

Bacher, G. D.

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

Balasubramanian, S.

S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, “Two-wave mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings,” Appl. Phys. B 68, 863–869 (1999).
[CrossRef]

Barry, N. P.

Beadie, G.

Bowman, S. R.

Brignon, A.

A. Brignon, L. Loiseau, C. Larat, J. Huignard, and J. Pocholle, “Phase conjugation in a continuous-wave diode-pumped Nd:YVO4 laser,” Appl. Phys. B 69, 159–162 (1999).
[CrossRef]

A. Brignon and J. P. Huignard, “Energy efficiency of phase conjugation by saturable-gain degenerate four-wave mixing in Nd: YAG amplitudes,” Opt. Commun. 119, 171–177 (1995).
[CrossRef]

Brost, G. A.

K. M. Kwolek, M. R. Melloch, D. D. Nolte, and G. A. Brost, “Diffractive quantum-well asymmetric Fabry–Perot: transverse-field photorefractive geometry,” Appl. Phys. Lett. 67, 736–738 (1995).
[CrossRef]

Brubaker, R. M.

Chiu, T. H.

Crofts, G. J.

K. S. Syed, G. J. Crofts, R. P. M. Green, and M. J. Damzen, “Vectorial phase conjugation via four-wave mixing in isotropic saturable-gain media,” J. Opt. Soc. Am. B 14, 2067–2078 (1997).
[CrossRef]

R. P. M. Green, D. Udaiyan, G. J. Crofts, D. H. Kim, and M. J. Damzen, “Holographic laser oscillator which adaptively corrects for polarization and phase distortions,” Phys. Rev. Lett. 77, 3533–3536 (1996).
[CrossRef] [PubMed]

Damzen, M. J.

K. S. Syed, G. J. Crofts, R. P. M. Green, and M. J. Damzen, “Vectorial phase conjugation via four-wave mixing in isotropic saturable-gain media,” J. Opt. Soc. Am. B 14, 2067–2078 (1997).
[CrossRef]

M. J. Damzen, S. Camacho Lopez, and R. P. M. Green, “Wave-mixing and vector phase conjugation by polarization-dependent saturable absorption in Cr4+/:YAG,” Phys. Rev. Lett. 76, 2894–2897 (1996).
[CrossRef] [PubMed]

R. P. M. Green, D. Udaiyan, G. J. Crofts, D. H. Kim, and M. J. Damzen, “Holographic laser oscillator which adaptively corrects for polarization and phase distortions,” Phys. Rev. Lett. 77, 3533–3536 (1996).
[CrossRef] [PubMed]

M. J. Damzen, R. P. M. Green, and K. S. Syed, “Self-adaptive solid-state laser oscillator formed by dynamic gain-grating holograms,” Opt. Lett. 20, 1704–1706 (1995).
[CrossRef] [PubMed]

Ding, Y.

Y. Ding, A. M. Weiner, M. R. Melloch, and D. D. Nolte, “Adaptive all-order dispersion compensation of ultrafast laser pulses using dynamic spectral holography,” Appl. Phys. Lett. 75, 3255–3257 (1999).
[CrossRef]

S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, “Two-wave mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings,” Appl. Phys. B 68, 863–869 (1999).
[CrossRef]

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Time-domain image processing using dynamic holography,” IEEE J. Sel. Top. Quantum Electron. 4, 332–341 (1998).
[CrossRef]

Y. Ding, R. M. Brubaker, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Femtosecond pulse shaping by dynamic holograms in photorefractive multiple quantum wells,” Opt. Lett. 22, 718–721 (1997).
[CrossRef] [PubMed]

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Real-time edge enhancement of femtosecond time-domain images by use of photorefractive quantum wells,” Opt. Lett. 22, 1101–1103 (1997).
[CrossRef] [PubMed]

Florez, L. T.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[CrossRef]

French, P. M. W.

Glass, A. M.

Green, R. P. M.

K. S. Syed, G. J. Crofts, R. P. M. Green, and M. J. Damzen, “Vectorial phase conjugation via four-wave mixing in isotropic saturable-gain media,” J. Opt. Soc. Am. B 14, 2067–2078 (1997).
[CrossRef]

M. J. Damzen, S. Camacho Lopez, and R. P. M. Green, “Wave-mixing and vector phase conjugation by polarization-dependent saturable absorption in Cr4+/:YAG,” Phys. Rev. Lett. 76, 2894–2897 (1996).
[CrossRef] [PubMed]

R. P. M. Green, D. Udaiyan, G. J. Crofts, D. H. Kim, and M. J. Damzen, “Holographic laser oscillator which adaptively corrects for polarization and phase distortions,” Phys. Rev. Lett. 77, 3533–3536 (1996).
[CrossRef] [PubMed]

M. J. Damzen, R. P. M. Green, and K. S. Syed, “Self-adaptive solid-state laser oscillator formed by dynamic gain-grating holograms,” Opt. Lett. 20, 1704–1706 (1995).
[CrossRef] [PubMed]

Harbison, J. P.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[CrossRef]

Huignard, J.

A. Brignon, L. Loiseau, C. Larat, J. Huignard, and J. Pocholle, “Phase conjugation in a continuous-wave diode-pumped Nd:YVO4 laser,” Appl. Phys. B 69, 159–162 (1999).
[CrossRef]

Huignard, J. P.

A. Brignon and J. P. Huignard, “Energy efficiency of phase conjugation by saturable-gain degenerate four-wave mixing in Nd: YAG amplitudes,” Opt. Commun. 119, 171–177 (1995).
[CrossRef]

Hyde, S. C. W.

Ikossi Anastasiou, K.

Jewell, J. L.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[CrossRef]

Jones, R.

Katzer, D. S.

Kim, D. H.

R. P. M. Green, D. Udaiyan, G. J. Crofts, D. H. Kim, and M. J. Damzen, “Holographic laser oscillator which adaptively corrects for polarization and phase distortions,” Phys. Rev. Lett. 77, 3533–3536 (1996).
[CrossRef] [PubMed]

Klein, M. B.

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

I. Lahiri, D. D. Nolte, M. R. Melloch, and M. B. Klein, “Oscillatory mode coupling and electrically strobed gratings in photorefractive quantum-well diodes,” Opt. Lett. 23, 49–51 (1998).
[CrossRef]

Kruger, R. A.

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

Kwolek, K. M.

R. Jones, N. P. Barry, S. C. W. Hyde, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Direct-to-video holographic readout in quantum wells for 3-D imaging through turbid media,” Opt. Lett. 23, 103–105 (1998).
[CrossRef]

R. Jones, M. Tziraki, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Direct-to-video holographic 3-D imaging using photorefractive multiple quantum well devices,” Opt. Express 2, 439–448 (1998); http://epubs.osa.org/opticsexpress.
[CrossRef] [PubMed]

D. D. Nolte and K. M. Kwolek, “Diffraction from a short-cavity Fabry–Perot: applications to photorefractive quantum wells,” Opt. Commun. 115, 606–616 (1995).
[CrossRef]

K. M. Kwolek, M. R. Melloch, D. D. Nolte, and G. A. Brost, “Diffractive quantum-well asymmetric Fabry–Perot: transverse-field photorefractive geometry,” Appl. Phys. Lett. 67, 736–738 (1995).
[CrossRef]

Lahiri, I.

S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, “Two-wave mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings,” Appl. Phys. B 68, 863–869 (1999).
[CrossRef]

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

I. Lahiri, D. D. Nolte, M. R. Melloch, and M. B. Klein, “Oscillatory mode coupling and electrically strobed gratings in photorefractive quantum-well diodes,” Opt. Lett. 23, 49–51 (1998).
[CrossRef]

Larat, C.

A. Brignon, L. Loiseau, C. Larat, J. Huignard, and J. Pocholle, “Phase conjugation in a continuous-wave diode-pumped Nd:YVO4 laser,” Appl. Phys. B 69, 159–162 (1999).
[CrossRef]

Lee, Y. H.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[CrossRef]

Liu, D. T. H.

Loiseau, L.

A. Brignon, L. Loiseau, C. Larat, J. Huignard, and J. Pocholle, “Phase conjugation in a continuous-wave diode-pumped Nd:YVO4 laser,” Appl. Phys. B 69, 159–162 (1999).
[CrossRef]

Lopez, S. Camacho

M. J. Damzen, S. Camacho Lopez, and R. P. M. Green, “Wave-mixing and vector phase conjugation by polarization-dependent saturable absorption in Cr4+/:YAG,” Phys. Rev. Lett. 76, 2894–2897 (1996).
[CrossRef] [PubMed]

Mahon, R.

Melloch, M. R.

Y. Ding, A. M. Weiner, M. R. Melloch, and D. D. Nolte, “Adaptive all-order dispersion compensation of ultrafast laser pulses using dynamic spectral holography,” Appl. Phys. Lett. 75, 3255–3257 (1999).
[CrossRef]

S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, “Two-wave mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings,” Appl. Phys. B 68, 863–869 (1999).
[CrossRef]

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Time-domain image processing using dynamic holography,” IEEE J. Sel. Top. Quantum Electron. 4, 332–341 (1998).
[CrossRef]

I. Lahiri, D. D. Nolte, M. R. Melloch, and M. B. Klein, “Oscillatory mode coupling and electrically strobed gratings in photorefractive quantum-well diodes,” Opt. Lett. 23, 49–51 (1998).
[CrossRef]

R. Jones, N. P. Barry, S. C. W. Hyde, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Direct-to-video holographic readout in quantum wells for 3-D imaging through turbid media,” Opt. Lett. 23, 103–105 (1998).
[CrossRef]

R. Jones, M. Tziraki, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Direct-to-video holographic 3-D imaging using photorefractive multiple quantum well devices,” Opt. Express 2, 439–448 (1998); http://epubs.osa.org/opticsexpress.
[CrossRef] [PubMed]

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Real-time edge enhancement of femtosecond time-domain images by use of photorefractive quantum wells,” Opt. Lett. 22, 1101–1103 (1997).
[CrossRef] [PubMed]

Y. Ding, R. M. Brubaker, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Femtosecond pulse shaping by dynamic holograms in photorefractive multiple quantum wells,” Opt. Lett. 22, 718–721 (1997).
[CrossRef] [PubMed]

K. M. Kwolek, M. R. Melloch, D. D. Nolte, and G. A. Brost, “Diffractive quantum-well asymmetric Fabry–Perot: transverse-field photorefractive geometry,” Appl. Phys. Lett. 67, 736–738 (1995).
[CrossRef]

Q. N. Wang, R. M. Brubaker, D. D. Nolte, and M. R. Melloch, “Photorefractive quantum wells: transverse Franz–Keldysh geometry,” J. Opt. Soc. Am. B 9, 1626–1641 (1992).
[CrossRef]

Nolte, D. D.

S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, “Two-wave mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings,” Appl. Phys. B 68, 863–869 (1999).
[CrossRef]

D. D. Nolte, “Semi-insulating semiconductor heterostructures: Optoelectronic properties and applications,” J. Appl. Phys. 85, 6259–6289 (1999).
[CrossRef]

Y. Ding, A. M. Weiner, M. R. Melloch, and D. D. Nolte, “Adaptive all-order dispersion compensation of ultrafast laser pulses using dynamic spectral holography,” Appl. Phys. Lett. 75, 3255–3257 (1999).
[CrossRef]

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Time-domain image processing using dynamic holography,” IEEE J. Sel. Top. Quantum Electron. 4, 332–341 (1998).
[CrossRef]

I. Lahiri, D. D. Nolte, M. R. Melloch, and M. B. Klein, “Oscillatory mode coupling and electrically strobed gratings in photorefractive quantum-well diodes,” Opt. Lett. 23, 49–51 (1998).
[CrossRef]

R. Jones, N. P. Barry, S. C. W. Hyde, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Direct-to-video holographic readout in quantum wells for 3-D imaging through turbid media,” Opt. Lett. 23, 103–105 (1998).
[CrossRef]

R. Jones, M. Tziraki, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Direct-to-video holographic 3-D imaging using photorefractive multiple quantum well devices,” Opt. Express 2, 439–448 (1998); http://epubs.osa.org/opticsexpress.
[CrossRef] [PubMed]

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Real-time edge enhancement of femtosecond time-domain images by use of photorefractive quantum wells,” Opt. Lett. 22, 1101–1103 (1997).
[CrossRef] [PubMed]

Y. Ding, R. M. Brubaker, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Femtosecond pulse shaping by dynamic holograms in photorefractive multiple quantum wells,” Opt. Lett. 22, 718–721 (1997).
[CrossRef] [PubMed]

D. D. Nolte and K. M. Kwolek, “Diffraction from a short-cavity Fabry–Perot: applications to photorefractive quantum wells,” Opt. Commun. 115, 606–616 (1995).
[CrossRef]

K. M. Kwolek, M. R. Melloch, D. D. Nolte, and G. A. Brost, “Diffractive quantum-well asymmetric Fabry–Perot: transverse-field photorefractive geometry,” Appl. Phys. Lett. 67, 736–738 (1995).
[CrossRef]

Q. N. Wang, R. M. Brubaker, D. D. Nolte, and M. R. Melloch, “Photorefractive quantum wells: transverse Franz–Keldysh geometry,” J. Opt. Soc. Am. B 9, 1626–1641 (1992).
[CrossRef]

Partovi, A.

Pocholle, J.

A. Brignon, L. Loiseau, C. Larat, J. Huignard, and J. Pocholle, “Phase conjugation in a continuous-wave diode-pumped Nd:YVO4 laser,” Appl. Phys. B 69, 159–162 (1999).
[CrossRef]

Pyrak-Nolte, L. J.

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

Rabinovich, W. S.

Scherer, A.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[CrossRef]

Syed, K. S.

Tziraki, M.

Udaiyan, D.

R. P. M. Green, D. Udaiyan, G. J. Crofts, D. H. Kim, and M. J. Damzen, “Holographic laser oscillator which adaptively corrects for polarization and phase distortions,” Phys. Rev. Lett. 77, 3533–3536 (1996).
[CrossRef] [PubMed]

Walsh, A.

Wang, Q. N.

Weiner, A. M.

Y. Ding, A. M. Weiner, M. R. Melloch, and D. D. Nolte, “Adaptive all-order dispersion compensation of ultrafast laser pulses using dynamic spectral holography,” Appl. Phys. Lett. 75, 3255–3257 (1999).
[CrossRef]

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Time-domain image processing using dynamic holography,” IEEE J. Sel. Top. Quantum Electron. 4, 332–341 (1998).
[CrossRef]

Y. Ding, R. M. Brubaker, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Femtosecond pulse shaping by dynamic holograms in photorefractive multiple quantum wells,” Opt. Lett. 22, 718–721 (1997).
[CrossRef] [PubMed]

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Real-time edge enhancement of femtosecond time-domain images by use of photorefractive quantum wells,” Opt. Lett. 22, 1101–1103 (1997).
[CrossRef] [PubMed]

Appl. Phys. B (2)

S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, “Two-wave mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings,” Appl. Phys. B 68, 863–869 (1999).
[CrossRef]

A. Brignon, L. Loiseau, C. Larat, J. Huignard, and J. Pocholle, “Phase conjugation in a continuous-wave diode-pumped Nd:YVO4 laser,” Appl. Phys. B 69, 159–162 (1999).
[CrossRef]

Appl. Phys. Lett. (3)

K. M. Kwolek, M. R. Melloch, D. D. Nolte, and G. A. Brost, “Diffractive quantum-well asymmetric Fabry–Perot: transverse-field photorefractive geometry,” Appl. Phys. Lett. 67, 736–738 (1995).
[CrossRef]

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

Y. Ding, A. M. Weiner, M. R. Melloch, and D. D. Nolte, “Adaptive all-order dispersion compensation of ultrafast laser pulses using dynamic spectral holography,” Appl. Phys. Lett. 75, 3255–3257 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Time-domain image processing using dynamic holography,” IEEE J. Sel. Top. Quantum Electron. 4, 332–341 (1998).
[CrossRef]

J. Appl. Phys. (1)

D. D. Nolte, “Semi-insulating semiconductor heterostructures: Optoelectronic properties and applications,” J. Appl. Phys. 85, 6259–6289 (1999).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (2)

D. D. Nolte and K. M. Kwolek, “Diffraction from a short-cavity Fabry–Perot: applications to photorefractive quantum wells,” Opt. Commun. 115, 606–616 (1995).
[CrossRef]

A. Brignon and J. P. Huignard, “Energy efficiency of phase conjugation by saturable-gain degenerate four-wave mixing in Nd: YAG amplitudes,” Opt. Commun. 119, 171–177 (1995).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Phys. Rev. Lett. (2)

M. J. Damzen, S. Camacho Lopez, and R. P. M. Green, “Wave-mixing and vector phase conjugation by polarization-dependent saturable absorption in Cr4+/:YAG,” Phys. Rev. Lett. 76, 2894–2897 (1996).
[CrossRef] [PubMed]

R. P. M. Green, D. Udaiyan, G. J. Crofts, D. H. Kim, and M. J. Damzen, “Holographic laser oscillator which adaptively corrects for polarization and phase distortions,” Phys. Rev. Lett. 77, 3533–3536 (1996).
[CrossRef] [PubMed]

Other (4)

T. E. Sale, Vertical Cavity Surface Emitting Lasers (Wiley, New York, 1995)

H. C. Casey and M. B. Panish, Heterostructure Lasers (Academic, New York, 1978).

H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1990).

D. D. Nolte and M. R. Melloch, “Photorefractive quantum wells and thin films,” in Photorefractive Effects and Materials, D. D. Nolte, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1995), pp. 373–451.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Calculated cavity bandwidth versus joint mirror reflectance (R1R2)1/2. The gain threshold at 97% is calculated for a 1-µm GaAs active layer that has saturated gain. The bandwidth of the microcavity structure grown at UT Austin is approximately 3.6 nm.

Fig. 2
Fig. 2

Vertical GaAs microcavity structure grown at UT Austin. The 1-µm active-layer thickness provides a long interaction length to compensate partially for the low mirror reflectances that were chosen to yield the wide bandwidth that is necessary for broad-area holography.

Fig. 3
Fig. 3

Calculated reflectance and absorbance spectra of the UT Austin microcavity. The probe and pump wavelengths used in the experiments are indicated. The top mirror is transparent to the pump light at 730 nm but reflective at the probe wavelength near 870 nm.

Fig. 4
Fig. 4

Calculated intensities inside the structure for the pump and probe waves. Note the difference in vertical scale between the two figures. The structure rests upon a GaAs substrate.

Fig. 5
Fig. 5

Calculated reflectance for the structure in the dark and pumped with a carrier density of 1×1018 cm-3, showing the mode pulling of the cavity resonance.

Fig. 6
Fig. 6

(a) Calculated reflectance and (b) diffraction efficiency versus cavity thickness. Diffraction efficiencies of 10% are predicted for the structure under an excited carrier concentration of 1×1018 cm-3 when the cavity resonance is slightly below the energy of the GaAs band edge.

Fig. 7
Fig. 7

Calculated diffraction efficiency versus carrier density, showing the mode pulling and saturation at high excitation. The dark reflectance is also shown.

Fig. 8
Fig. 8

Measured reflectance versus thickness for the UT Austin structure at several locations across the wafer. Varying the location on the wafer allows the resonance to be tuned into the band edge of the GaAs active layer.

Fig. 9
Fig. 9

Experimental setup for generating optically pumped gain gratings probed by a tunable cw Ti:sapphire laser. The pump fluence can be varied up to several millijoules per square centimeter. HVCSEL, holographic vertical-cavity surface-emitting laser.

Fig. 10
Fig. 10

(a) Measured reflectance and (b) diffraction efficiency for several cavity conditions across the wafer. The diffraction efficiencies have not been corrected for the system response. The data show semiquantitative agreement with the behavior calculated in Fig. 6. Differences between the calculated and the measured responses are described and explained in the text.

Fig. 11
Fig. 11

Measured diffraction efficiency (not corrected for system response) versus pump fluence, showing mode pulling and saturation, in semiquantitative agreement with the behavior calculated in Fig. 7.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

BW=νFF=C(1-R)2LπR,
gainth=12L ln R.

Metrics