Abstract

The dispersions of the waveguide modes of planar and wavelength-scale textured microcavities are measured and compared. We show that when just one mirror of the microcavity has a corrugated profile, the waveguide modes are dramatically altered with Bragg scattering from the texture leading to a series of flat bands and photonic band gaps. In contrast, we further show that when both mirrors possess a similar in-phase corrugation, although Bragg scattering of the modes still occurs, no bandgaps or band edges are formed. The results are explained by modeling the electric field distribution in the microcavity, and the implications of the findings for emissive devices are discussed.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, “Bragg scattering from periodically mi-crostructures light-emitting diodes,” Appl. Phys. Lett. 77, 3340–3342 (2000).
    [CrossRef]
  2. R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74, 1522–1524 (1999).
    [CrossRef]
  3. M. Bororditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Nhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1039 (1999).
    [CrossRef]
  4. M. G. Salt and W. L. Barnes, “Photonic band gaps in guided modes of textured metallic microcavities,” Opt. Commun. 166, 151–162 (1999).
    [CrossRef]
  5. I. Abram and G. Bourdon, “Photonic-well microcavities for spontaneous emission control,” Phys. Rev. A 54, 3476–3479 (1996).
    [CrossRef] [PubMed]
  6. W. L. Barnes, “Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices,” J. Lightwave Technol. 17, 2170–2182 (1999).
    [CrossRef]
  7. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band-edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
    [CrossRef]
  8. M. G. Salt and W. L. Barnes, “Flat photonic bands in guided modes of textured metallic microcavities,” Phys. Rev. B 61, 11125–11135 (2000).
    [CrossRef]
  9. K. B. Blodgett and I. Langmuir, Phys. Rev. 51, 964 (1937).
    [CrossRef]
  10. R. M. Amos and W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror,” Phys. Rev. B 55, 7249–7254 (1997).
    [CrossRef]
  11. E. L. Wood, J. R. Sambles, N. P. Cotter, and S. C. Kitson, “Diffraction grating characterization using multiple-wavelength excitation of surface-plasmon polaritons,” J. Mod. Opt. 42, 1343–1349 (1995).
    [CrossRef]
  12. R. G. Baets, K. David, and G. Morthier, “On the distinctive features of gain coupled DFB lasers and DFB lasers with second order grating,” IEEE J. Quantum Electron. 29, 1792–1798 (1993).
    [CrossRef]
  13. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
    [CrossRef]
  14. P. Russell, “Photonic band gaps,” Phys. World (August 1992), pp. 37–42.
  15. J. Chandezon, M. T. Dupuis, G. Cornet, and D. Maystre, “Multicoated gratings: a differential formalism applicable to the entire optical region,” J. Opt. Soc. Am. 72, 839–846 (1982).
    [CrossRef]
  16. H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction. Part II: Selected exact simulations and role of photon recycling,” IEEE J. Quantum Electron. 34, 1632–1643 (1998).
    [CrossRef]

2000

J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, “Bragg scattering from periodically mi-crostructures light-emitting diodes,” Appl. Phys. Lett. 77, 3340–3342 (2000).
[CrossRef]

M. G. Salt and W. L. Barnes, “Flat photonic bands in guided modes of textured metallic microcavities,” Phys. Rev. B 61, 11125–11135 (2000).
[CrossRef]

1999

W. L. Barnes, “Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices,” J. Lightwave Technol. 17, 2170–2182 (1999).
[CrossRef]

R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74, 1522–1524 (1999).
[CrossRef]

M. Bororditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Nhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1039 (1999).
[CrossRef]

M. G. Salt and W. L. Barnes, “Photonic band gaps in guided modes of textured metallic microcavities,” Opt. Commun. 166, 151–162 (1999).
[CrossRef]

1998

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction. Part II: Selected exact simulations and role of photon recycling,” IEEE J. Quantum Electron. 34, 1632–1643 (1998).
[CrossRef]

1997

R. M. Amos and W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror,” Phys. Rev. B 55, 7249–7254 (1997).
[CrossRef]

1996

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

I. Abram and G. Bourdon, “Photonic-well microcavities for spontaneous emission control,” Phys. Rev. A 54, 3476–3479 (1996).
[CrossRef] [PubMed]

1995

E. L. Wood, J. R. Sambles, N. P. Cotter, and S. C. Kitson, “Diffraction grating characterization using multiple-wavelength excitation of surface-plasmon polaritons,” J. Mod. Opt. 42, 1343–1349 (1995).
[CrossRef]

1994

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band-edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[CrossRef]

1993

R. G. Baets, K. David, and G. Morthier, “On the distinctive features of gain coupled DFB lasers and DFB lasers with second order grating,” IEEE J. Quantum Electron. 29, 1792–1798 (1993).
[CrossRef]

1982

1937

K. B. Blodgett and I. Langmuir, Phys. Rev. 51, 964 (1937).
[CrossRef]

Abram, I.

I. Abram and G. Bourdon, “Photonic-well microcavities for spontaneous emission control,” Phys. Rev. A 54, 3476–3479 (1996).
[CrossRef] [PubMed]

Amos, R. M.

R. M. Amos and W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror,” Phys. Rev. B 55, 7249–7254 (1997).
[CrossRef]

Baets, R. G.

R. G. Baets, K. David, and G. Morthier, “On the distinctive features of gain coupled DFB lasers and DFB lasers with second order grating,” IEEE J. Quantum Electron. 29, 1792–1798 (1993).
[CrossRef]

Barnes, W. L.

M. G. Salt and W. L. Barnes, “Flat photonic bands in guided modes of textured metallic microcavities,” Phys. Rev. B 61, 11125–11135 (2000).
[CrossRef]

J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, “Bragg scattering from periodically mi-crostructures light-emitting diodes,” Appl. Phys. Lett. 77, 3340–3342 (2000).
[CrossRef]

W. L. Barnes, “Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices,” J. Lightwave Technol. 17, 2170–2182 (1999).
[CrossRef]

M. G. Salt and W. L. Barnes, “Photonic band gaps in guided modes of textured metallic microcavities,” Opt. Commun. 166, 151–162 (1999).
[CrossRef]

R. M. Amos and W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror,” Phys. Rev. B 55, 7249–7254 (1997).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

Benisty, H.

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction. Part II: Selected exact simulations and role of photon recycling,” IEEE J. Quantum Electron. 34, 1632–1643 (1998).
[CrossRef]

Blodgett, K. B.

K. B. Blodgett and I. Langmuir, Phys. Rev. 51, 964 (1937).
[CrossRef]

Bloemer, M. J.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band-edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[CrossRef]

Bororditsky, M.

M. Bororditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Nhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1039 (1999).
[CrossRef]

Bourdon, G.

I. Abram and G. Bourdon, “Photonic-well microcavities for spontaneous emission control,” Phys. Rev. A 54, 3476–3479 (1996).
[CrossRef] [PubMed]

Bowden, C. M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band-edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[CrossRef]

Chandezon, J.

Coccioli, R.

M. Bororditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Nhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1039 (1999).
[CrossRef]

Cornet, G.

Cotter, N. P.

E. L. Wood, J. R. Sambles, N. P. Cotter, and S. C. Kitson, “Diffraction grating characterization using multiple-wavelength excitation of surface-plasmon polaritons,” J. Mod. Opt. 42, 1343–1349 (1995).
[CrossRef]

D’Urso, B.

R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74, 1522–1524 (1999).
[CrossRef]

David, K.

R. G. Baets, K. David, and G. Morthier, “On the distinctive features of gain coupled DFB lasers and DFB lasers with second order grating,” IEEE J. Quantum Electron. 29, 1792–1798 (1993).
[CrossRef]

De Neve, H.

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction. Part II: Selected exact simulations and role of photon recycling,” IEEE J. Quantum Electron. 34, 1632–1643 (1998).
[CrossRef]

Dowling, J. P.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band-edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[CrossRef]

Dupuis, M. T.

Jory, M. J.

J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, “Bragg scattering from periodically mi-crostructures light-emitting diodes,” Appl. Phys. Lett. 77, 3340–3342 (2000).
[CrossRef]

Kitson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

E. L. Wood, J. R. Sambles, N. P. Cotter, and S. C. Kitson, “Diffraction grating characterization using multiple-wavelength excitation of surface-plasmon polaritons,” J. Mod. Opt. 42, 1343–1349 (1995).
[CrossRef]

Krauss, T. F.

M. Bororditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Nhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1039 (1999).
[CrossRef]

Langmuir, I.

K. B. Blodgett and I. Langmuir, Phys. Rev. 51, 964 (1937).
[CrossRef]

Lee, R. K.

R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74, 1522–1524 (1999).
[CrossRef]

Lupton, J. M.

J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, “Bragg scattering from periodically mi-crostructures light-emitting diodes,” Appl. Phys. Lett. 77, 3340–3342 (2000).
[CrossRef]

Matterson, B. J.

J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, “Bragg scattering from periodically mi-crostructures light-emitting diodes,” Appl. Phys. Lett. 77, 3340–3342 (2000).
[CrossRef]

Maystre, D.

Morthier, G.

R. G. Baets, K. David, and G. Morthier, “On the distinctive features of gain coupled DFB lasers and DFB lasers with second order grating,” IEEE J. Quantum Electron. 29, 1792–1798 (1993).
[CrossRef]

Nhat, R.

M. Bororditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Nhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1039 (1999).
[CrossRef]

Painter, O. J.

R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74, 1522–1524 (1999).
[CrossRef]

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

Salt, M. G.

M. G. Salt and W. L. Barnes, “Flat photonic bands in guided modes of textured metallic microcavities,” Phys. Rev. B 61, 11125–11135 (2000).
[CrossRef]

M. G. Salt and W. L. Barnes, “Photonic band gaps in guided modes of textured metallic microcavities,” Opt. Commun. 166, 151–162 (1999).
[CrossRef]

Sambles, J. R.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

E. L. Wood, J. R. Sambles, N. P. Cotter, and S. C. Kitson, “Diffraction grating characterization using multiple-wavelength excitation of surface-plasmon polaritons,” J. Mod. Opt. 42, 1343–1349 (1995).
[CrossRef]

Samuel, I. D. W.

J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, “Bragg scattering from periodically mi-crostructures light-emitting diodes,” Appl. Phys. Lett. 77, 3340–3342 (2000).
[CrossRef]

Scalora, M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band-edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[CrossRef]

Scherer, A.

R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74, 1522–1524 (1999).
[CrossRef]

Vrijen, R.

M. Bororditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Nhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1039 (1999).
[CrossRef]

Weisbuch, C.

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction. Part II: Selected exact simulations and role of photon recycling,” IEEE J. Quantum Electron. 34, 1632–1643 (1998).
[CrossRef]

Wood, E. L.

E. L. Wood, J. R. Sambles, N. P. Cotter, and S. C. Kitson, “Diffraction grating characterization using multiple-wavelength excitation of surface-plasmon polaritons,” J. Mod. Opt. 42, 1343–1349 (1995).
[CrossRef]

Yablonovitch, E.

M. Bororditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Nhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1039 (1999).
[CrossRef]

Yariv, A.

R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74, 1522–1524 (1999).
[CrossRef]

Appl. Phys. Lett.

J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, “Bragg scattering from periodically mi-crostructures light-emitting diodes,” Appl. Phys. Lett. 77, 3340–3342 (2000).
[CrossRef]

R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74, 1522–1524 (1999).
[CrossRef]

M. Bororditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Nhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1039 (1999).
[CrossRef]

IEEE J. Quantum Electron.

R. G. Baets, K. David, and G. Morthier, “On the distinctive features of gain coupled DFB lasers and DFB lasers with second order grating,” IEEE J. Quantum Electron. 29, 1792–1798 (1993).
[CrossRef]

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction. Part II: Selected exact simulations and role of photon recycling,” IEEE J. Quantum Electron. 34, 1632–1643 (1998).
[CrossRef]

J. Appl. Phys.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band-edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[CrossRef]

J. Lightwave Technol.

J. Mod. Opt.

E. L. Wood, J. R. Sambles, N. P. Cotter, and S. C. Kitson, “Diffraction grating characterization using multiple-wavelength excitation of surface-plasmon polaritons,” J. Mod. Opt. 42, 1343–1349 (1995).
[CrossRef]

J. Opt. Soc. Am.

Opt. Commun.

M. G. Salt and W. L. Barnes, “Photonic band gaps in guided modes of textured metallic microcavities,” Opt. Commun. 166, 151–162 (1999).
[CrossRef]

Phys. Rev.

K. B. Blodgett and I. Langmuir, Phys. Rev. 51, 964 (1937).
[CrossRef]

Phys. Rev. A

I. Abram and G. Bourdon, “Photonic-well microcavities for spontaneous emission control,” Phys. Rev. A 54, 3476–3479 (1996).
[CrossRef] [PubMed]

Phys. Rev. B

R. M. Amos and W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror,” Phys. Rev. B 55, 7249–7254 (1997).
[CrossRef]

M. G. Salt and W. L. Barnes, “Flat photonic bands in guided modes of textured metallic microcavities,” Phys. Rev. B 61, 11125–11135 (2000).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

Other

P. Russell, “Photonic band gaps,” Phys. World (August 1992), pp. 37–42.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the symmetric (upper) and asymmetric (middle) microcavities. The lower section shows a schematic of the dispersion of a planar microcavity mode (solid curve) and the anticipated effect of Bragg scattering (dashed curves) for a periodically textured microcavity in the absence of photonic-bandgap generation.

Fig. 2
Fig. 2

Measured transmittivity as a function of frequency (ω) and in-plane wave vector (kx) for the three samples: planar (top); symmetrically corrugated (middle); and asymmetrically corrugated (lower). Regions of high transmittivity are shown as dark and result from resonant coupling of the incident light to modes of the different structures. For the asymmetric case the data are plotted on a logarithmic scale so as to reveal the weakly Bragg-scattered features, hence the overexposure of the unscattered mode). In each set the dashed line in the lower-right-hand corner defines a triangle in ωkx space for which data could not be successfully acquired owing to limitations of the equipment used; data in these regions should be ignored. The first (kg/2) and second (kg) Brillouin zone boundaries are indicated.

Fig. 3
Fig. 3

Computed electric field intensity distribution (time averaged) in and around the asymmetric microcavity for light that couples to (a) the upper band edge and (b) the lower band edge. The dotted curves show the surfaces of the silver films used to form the microcavity. The dielectric constants of the different media used for the calculations were taken from Ref. 4.

Metrics