Abstract

The mechanism for highly efficient photoionization spectral hole burning in the 4f74f65d1 transition of Eu2+ in MgS host is investigated in detail. The time and power dependencies of the hole depth and its photoerasure are analyzed assuming that a resonant two-photon ionization process initiates the hole burning. The near-room-temperature cycling shifts the hole to low energies, demonstrating the relaxation of an unstable lattice resulting from the hole burning. The characteristics of hole burning change significantly in samples codoped with Ce and Eu. All of these studies support that the mechanism of hole burning is the electron transfer from the Eu2+ ion to the Eu3+ deep trap, both of which are located at the substitutional octahedral sites.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Szabo, “Frequency selective optical memory,” U.S. patent 3, 896, 420 (July 22, 1975); G. Castro, D. Haarer, R. M. Macfarlane, and H. P. Trommsdroff, “Frequency selective optical data storage system,” U.S. Patent 4, 101, 976 (July 18, 1978).
  2. Z. Hasan, M. Solonenko, P. I. Macfarlane, L. Biyikli, V. K. Mathur, and F. A. Karwacki, “Persistent high density spectral holeburning in CaS:Eu and CaS:Eu, Sm phosphors,” Appl. Phys. Lett. 72, 2373–2375 (1998).
    [CrossRef]
  3. Z. Hasan, L. Biyikli, and P. I. Macfarlane, “Power-gated spectral holeburning in MgS:Eu2+, Eu3+: a case for high-density persistent spectral holeburning,” Appl. Phys. Lett. 72, 3399–3401 (1998).
    [CrossRef]
  4. Z. Hasan, “Material challenges for spectral hole burning,” Proc. SPIE 3468, 154–164 (1998).
    [CrossRef]
  5. Z. Hasan and L. Biyikli, “Photon-gated hole burning materials: directions in high density memory storage,” Mater. Sci. Forum 51, 315–317 (1999).
  6. L. Biyikli, M. Solonenko, S. M. Ahmedyan, and Z. Hasan, “High density photon-gated hole burning in sulfides,” Proc. SPIE 3468, 285–292 (1998).
    [CrossRef]
  7. M. Solonenko and Z. Hasan, Temple University, Philadelphia, Pa. (personal communication, 1999).
  8. Y. Nakao, “Luminescent centers of MgS, CaS and CaSe phosphors activated with Eu3+ ion,” J. Phys. Soc. Jpn. 48, 534–541 (1980).
    [CrossRef]
  9. S. Volker, R. M. MacFarlane, A. Z. Genack, H. P. Tormmsdorff, and J. H. VanderWaals, “Homogeneous linewidth of the S1 from S0 transition of free-base porphyrin in ann-octane crystal as studied by photochemical hole-burning,” J. Chem. Phys. 67, 1759–1765 (1977).
    [CrossRef]
  10. D. M. Burland and D. Haarer, “One- and two-photon laser photochemistry in organic solids,” IBM J. Res. Dev. 23, 534–546 (1979).
    [CrossRef]
  11. R. Jankowiak, R. Richert, and H. Bassler, “Nonexponential hole burning in organic glasses,” J. Phys. Chem. 89, 4569–4574 (1985).
    [CrossRef]
  12. K. Kanematsu, R. Shiraishi, A. Imaoka, S. Saikan, and T. Kushida, “Time dependence of hole spectrum due to dispersive burning kinetics in dye-doped polymers,” J. Chem. Phys. 91, 6579–6587 (1989).
    [CrossRef]
  13. M. J. Kenney, R. Jankowiak, and G. J. Small, “Dispersive kinetics of nonphotochemical hole growth for oxazine 720 in glycerol, polyvinyl alcohol and their deuterated analogues,” Chem. Phys. 146, 47–61 (1990).
    [CrossRef]
  14. L. A. Rebane, A. A. Gorokhovskii, and J. V. Kikas, “Low-temperature spectroscopy of organic molecules in solids by photochemical hole burning,” Appl. Phys. B 29, 235–250 (1982).
    [CrossRef]
  15. L. Biyikli and Z. Hasan, “The dynamics of hole burning in 4fn-4fn−15d1 transition of Eu2+ in MgS,” J. Lumin. 83, 373–377 (1999).
    [CrossRef]
  16. M. Solonenko, “Persistent spectral hole burning in europium and europium–samasium doped CaS,” Ph.D. dissertation (Temple University, Philadelphia, Pa., 1999).
  17. S. Asano, N. Yamashita, and T. Ohnishi, “Luminescence of the Ce3+ ion in the phosphor MgS,” Phys. Status Solidi 99, 661–672 (1980).
    [CrossRef]
  18. D. S. McClure and Z. Kiss, “Survey of the spectra of the divalent rare-earth ions in cubic crystals,” J. Chem. Phys. 39, 3251–3257 (1963).
    [CrossRef]
  19. C. Pedrini, F. Rogemond, and D. S. McClure, “Photoionization thresholds of rare-earth impurity ions. Eu2+:CaF2, Ce3+:YAG, and Sm2+:CaF2,” J. Appl. Phys. 59, 1196–1201 (1986).
    [CrossRef]

1999 (2)

Z. Hasan and L. Biyikli, “Photon-gated hole burning materials: directions in high density memory storage,” Mater. Sci. Forum 51, 315–317 (1999).

L. Biyikli and Z. Hasan, “The dynamics of hole burning in 4fn-4fn−15d1 transition of Eu2+ in MgS,” J. Lumin. 83, 373–377 (1999).
[CrossRef]

1998 (4)

L. Biyikli, M. Solonenko, S. M. Ahmedyan, and Z. Hasan, “High density photon-gated hole burning in sulfides,” Proc. SPIE 3468, 285–292 (1998).
[CrossRef]

Z. Hasan, M. Solonenko, P. I. Macfarlane, L. Biyikli, V. K. Mathur, and F. A. Karwacki, “Persistent high density spectral holeburning in CaS:Eu and CaS:Eu, Sm phosphors,” Appl. Phys. Lett. 72, 2373–2375 (1998).
[CrossRef]

Z. Hasan, L. Biyikli, and P. I. Macfarlane, “Power-gated spectral holeburning in MgS:Eu2+, Eu3+: a case for high-density persistent spectral holeburning,” Appl. Phys. Lett. 72, 3399–3401 (1998).
[CrossRef]

Z. Hasan, “Material challenges for spectral hole burning,” Proc. SPIE 3468, 154–164 (1998).
[CrossRef]

1990 (1)

M. J. Kenney, R. Jankowiak, and G. J. Small, “Dispersive kinetics of nonphotochemical hole growth for oxazine 720 in glycerol, polyvinyl alcohol and their deuterated analogues,” Chem. Phys. 146, 47–61 (1990).
[CrossRef]

1989 (1)

K. Kanematsu, R. Shiraishi, A. Imaoka, S. Saikan, and T. Kushida, “Time dependence of hole spectrum due to dispersive burning kinetics in dye-doped polymers,” J. Chem. Phys. 91, 6579–6587 (1989).
[CrossRef]

1986 (1)

C. Pedrini, F. Rogemond, and D. S. McClure, “Photoionization thresholds of rare-earth impurity ions. Eu2+:CaF2, Ce3+:YAG, and Sm2+:CaF2,” J. Appl. Phys. 59, 1196–1201 (1986).
[CrossRef]

1985 (1)

R. Jankowiak, R. Richert, and H. Bassler, “Nonexponential hole burning in organic glasses,” J. Phys. Chem. 89, 4569–4574 (1985).
[CrossRef]

1982 (1)

L. A. Rebane, A. A. Gorokhovskii, and J. V. Kikas, “Low-temperature spectroscopy of organic molecules in solids by photochemical hole burning,” Appl. Phys. B 29, 235–250 (1982).
[CrossRef]

1980 (2)

S. Asano, N. Yamashita, and T. Ohnishi, “Luminescence of the Ce3+ ion in the phosphor MgS,” Phys. Status Solidi 99, 661–672 (1980).
[CrossRef]

Y. Nakao, “Luminescent centers of MgS, CaS and CaSe phosphors activated with Eu3+ ion,” J. Phys. Soc. Jpn. 48, 534–541 (1980).
[CrossRef]

1979 (1)

D. M. Burland and D. Haarer, “One- and two-photon laser photochemistry in organic solids,” IBM J. Res. Dev. 23, 534–546 (1979).
[CrossRef]

1977 (1)

S. Volker, R. M. MacFarlane, A. Z. Genack, H. P. Tormmsdorff, and J. H. VanderWaals, “Homogeneous linewidth of the S1 from S0 transition of free-base porphyrin in ann-octane crystal as studied by photochemical hole-burning,” J. Chem. Phys. 67, 1759–1765 (1977).
[CrossRef]

1963 (1)

D. S. McClure and Z. Kiss, “Survey of the spectra of the divalent rare-earth ions in cubic crystals,” J. Chem. Phys. 39, 3251–3257 (1963).
[CrossRef]

Ahmedyan, S. M.

L. Biyikli, M. Solonenko, S. M. Ahmedyan, and Z. Hasan, “High density photon-gated hole burning in sulfides,” Proc. SPIE 3468, 285–292 (1998).
[CrossRef]

Asano, S.

S. Asano, N. Yamashita, and T. Ohnishi, “Luminescence of the Ce3+ ion in the phosphor MgS,” Phys. Status Solidi 99, 661–672 (1980).
[CrossRef]

Bassler, H.

R. Jankowiak, R. Richert, and H. Bassler, “Nonexponential hole burning in organic glasses,” J. Phys. Chem. 89, 4569–4574 (1985).
[CrossRef]

Biyikli, L.

Z. Hasan and L. Biyikli, “Photon-gated hole burning materials: directions in high density memory storage,” Mater. Sci. Forum 51, 315–317 (1999).

L. Biyikli and Z. Hasan, “The dynamics of hole burning in 4fn-4fn−15d1 transition of Eu2+ in MgS,” J. Lumin. 83, 373–377 (1999).
[CrossRef]

L. Biyikli, M. Solonenko, S. M. Ahmedyan, and Z. Hasan, “High density photon-gated hole burning in sulfides,” Proc. SPIE 3468, 285–292 (1998).
[CrossRef]

Z. Hasan, M. Solonenko, P. I. Macfarlane, L. Biyikli, V. K. Mathur, and F. A. Karwacki, “Persistent high density spectral holeburning in CaS:Eu and CaS:Eu, Sm phosphors,” Appl. Phys. Lett. 72, 2373–2375 (1998).
[CrossRef]

Z. Hasan, L. Biyikli, and P. I. Macfarlane, “Power-gated spectral holeburning in MgS:Eu2+, Eu3+: a case for high-density persistent spectral holeburning,” Appl. Phys. Lett. 72, 3399–3401 (1998).
[CrossRef]

Burland, D. M.

D. M. Burland and D. Haarer, “One- and two-photon laser photochemistry in organic solids,” IBM J. Res. Dev. 23, 534–546 (1979).
[CrossRef]

Genack, A. Z.

S. Volker, R. M. MacFarlane, A. Z. Genack, H. P. Tormmsdorff, and J. H. VanderWaals, “Homogeneous linewidth of the S1 from S0 transition of free-base porphyrin in ann-octane crystal as studied by photochemical hole-burning,” J. Chem. Phys. 67, 1759–1765 (1977).
[CrossRef]

Gorokhovskii, A. A.

L. A. Rebane, A. A. Gorokhovskii, and J. V. Kikas, “Low-temperature spectroscopy of organic molecules in solids by photochemical hole burning,” Appl. Phys. B 29, 235–250 (1982).
[CrossRef]

Haarer, D.

D. M. Burland and D. Haarer, “One- and two-photon laser photochemistry in organic solids,” IBM J. Res. Dev. 23, 534–546 (1979).
[CrossRef]

Hasan, Z.

Z. Hasan and L. Biyikli, “Photon-gated hole burning materials: directions in high density memory storage,” Mater. Sci. Forum 51, 315–317 (1999).

L. Biyikli and Z. Hasan, “The dynamics of hole burning in 4fn-4fn−15d1 transition of Eu2+ in MgS,” J. Lumin. 83, 373–377 (1999).
[CrossRef]

Z. Hasan, M. Solonenko, P. I. Macfarlane, L. Biyikli, V. K. Mathur, and F. A. Karwacki, “Persistent high density spectral holeburning in CaS:Eu and CaS:Eu, Sm phosphors,” Appl. Phys. Lett. 72, 2373–2375 (1998).
[CrossRef]

Z. Hasan, L. Biyikli, and P. I. Macfarlane, “Power-gated spectral holeburning in MgS:Eu2+, Eu3+: a case for high-density persistent spectral holeburning,” Appl. Phys. Lett. 72, 3399–3401 (1998).
[CrossRef]

Z. Hasan, “Material challenges for spectral hole burning,” Proc. SPIE 3468, 154–164 (1998).
[CrossRef]

L. Biyikli, M. Solonenko, S. M. Ahmedyan, and Z. Hasan, “High density photon-gated hole burning in sulfides,” Proc. SPIE 3468, 285–292 (1998).
[CrossRef]

Imaoka, A.

K. Kanematsu, R. Shiraishi, A. Imaoka, S. Saikan, and T. Kushida, “Time dependence of hole spectrum due to dispersive burning kinetics in dye-doped polymers,” J. Chem. Phys. 91, 6579–6587 (1989).
[CrossRef]

Jankowiak, R.

M. J. Kenney, R. Jankowiak, and G. J. Small, “Dispersive kinetics of nonphotochemical hole growth for oxazine 720 in glycerol, polyvinyl alcohol and their deuterated analogues,” Chem. Phys. 146, 47–61 (1990).
[CrossRef]

R. Jankowiak, R. Richert, and H. Bassler, “Nonexponential hole burning in organic glasses,” J. Phys. Chem. 89, 4569–4574 (1985).
[CrossRef]

Kanematsu, K.

K. Kanematsu, R. Shiraishi, A. Imaoka, S. Saikan, and T. Kushida, “Time dependence of hole spectrum due to dispersive burning kinetics in dye-doped polymers,” J. Chem. Phys. 91, 6579–6587 (1989).
[CrossRef]

Karwacki, F. A.

Z. Hasan, M. Solonenko, P. I. Macfarlane, L. Biyikli, V. K. Mathur, and F. A. Karwacki, “Persistent high density spectral holeburning in CaS:Eu and CaS:Eu, Sm phosphors,” Appl. Phys. Lett. 72, 2373–2375 (1998).
[CrossRef]

Kenney, M. J.

M. J. Kenney, R. Jankowiak, and G. J. Small, “Dispersive kinetics of nonphotochemical hole growth for oxazine 720 in glycerol, polyvinyl alcohol and their deuterated analogues,” Chem. Phys. 146, 47–61 (1990).
[CrossRef]

Kikas, J. V.

L. A. Rebane, A. A. Gorokhovskii, and J. V. Kikas, “Low-temperature spectroscopy of organic molecules in solids by photochemical hole burning,” Appl. Phys. B 29, 235–250 (1982).
[CrossRef]

Kiss, Z.

D. S. McClure and Z. Kiss, “Survey of the spectra of the divalent rare-earth ions in cubic crystals,” J. Chem. Phys. 39, 3251–3257 (1963).
[CrossRef]

Kushida, T.

K. Kanematsu, R. Shiraishi, A. Imaoka, S. Saikan, and T. Kushida, “Time dependence of hole spectrum due to dispersive burning kinetics in dye-doped polymers,” J. Chem. Phys. 91, 6579–6587 (1989).
[CrossRef]

Macfarlane, P. I.

Z. Hasan, M. Solonenko, P. I. Macfarlane, L. Biyikli, V. K. Mathur, and F. A. Karwacki, “Persistent high density spectral holeburning in CaS:Eu and CaS:Eu, Sm phosphors,” Appl. Phys. Lett. 72, 2373–2375 (1998).
[CrossRef]

Z. Hasan, L. Biyikli, and P. I. Macfarlane, “Power-gated spectral holeburning in MgS:Eu2+, Eu3+: a case for high-density persistent spectral holeburning,” Appl. Phys. Lett. 72, 3399–3401 (1998).
[CrossRef]

MacFarlane, R. M.

S. Volker, R. M. MacFarlane, A. Z. Genack, H. P. Tormmsdorff, and J. H. VanderWaals, “Homogeneous linewidth of the S1 from S0 transition of free-base porphyrin in ann-octane crystal as studied by photochemical hole-burning,” J. Chem. Phys. 67, 1759–1765 (1977).
[CrossRef]

Mathur, V. K.

Z. Hasan, M. Solonenko, P. I. Macfarlane, L. Biyikli, V. K. Mathur, and F. A. Karwacki, “Persistent high density spectral holeburning in CaS:Eu and CaS:Eu, Sm phosphors,” Appl. Phys. Lett. 72, 2373–2375 (1998).
[CrossRef]

McClure, D. S.

C. Pedrini, F. Rogemond, and D. S. McClure, “Photoionization thresholds of rare-earth impurity ions. Eu2+:CaF2, Ce3+:YAG, and Sm2+:CaF2,” J. Appl. Phys. 59, 1196–1201 (1986).
[CrossRef]

D. S. McClure and Z. Kiss, “Survey of the spectra of the divalent rare-earth ions in cubic crystals,” J. Chem. Phys. 39, 3251–3257 (1963).
[CrossRef]

Nakao, Y.

Y. Nakao, “Luminescent centers of MgS, CaS and CaSe phosphors activated with Eu3+ ion,” J. Phys. Soc. Jpn. 48, 534–541 (1980).
[CrossRef]

Ohnishi, T.

S. Asano, N. Yamashita, and T. Ohnishi, “Luminescence of the Ce3+ ion in the phosphor MgS,” Phys. Status Solidi 99, 661–672 (1980).
[CrossRef]

Pedrini, C.

C. Pedrini, F. Rogemond, and D. S. McClure, “Photoionization thresholds of rare-earth impurity ions. Eu2+:CaF2, Ce3+:YAG, and Sm2+:CaF2,” J. Appl. Phys. 59, 1196–1201 (1986).
[CrossRef]

Rebane, L. A.

L. A. Rebane, A. A. Gorokhovskii, and J. V. Kikas, “Low-temperature spectroscopy of organic molecules in solids by photochemical hole burning,” Appl. Phys. B 29, 235–250 (1982).
[CrossRef]

Richert, R.

R. Jankowiak, R. Richert, and H. Bassler, “Nonexponential hole burning in organic glasses,” J. Phys. Chem. 89, 4569–4574 (1985).
[CrossRef]

Rogemond, F.

C. Pedrini, F. Rogemond, and D. S. McClure, “Photoionization thresholds of rare-earth impurity ions. Eu2+:CaF2, Ce3+:YAG, and Sm2+:CaF2,” J. Appl. Phys. 59, 1196–1201 (1986).
[CrossRef]

Saikan, S.

K. Kanematsu, R. Shiraishi, A. Imaoka, S. Saikan, and T. Kushida, “Time dependence of hole spectrum due to dispersive burning kinetics in dye-doped polymers,” J. Chem. Phys. 91, 6579–6587 (1989).
[CrossRef]

Shiraishi, R.

K. Kanematsu, R. Shiraishi, A. Imaoka, S. Saikan, and T. Kushida, “Time dependence of hole spectrum due to dispersive burning kinetics in dye-doped polymers,” J. Chem. Phys. 91, 6579–6587 (1989).
[CrossRef]

Small, G. J.

M. J. Kenney, R. Jankowiak, and G. J. Small, “Dispersive kinetics of nonphotochemical hole growth for oxazine 720 in glycerol, polyvinyl alcohol and their deuterated analogues,” Chem. Phys. 146, 47–61 (1990).
[CrossRef]

Solonenko, M.

L. Biyikli, M. Solonenko, S. M. Ahmedyan, and Z. Hasan, “High density photon-gated hole burning in sulfides,” Proc. SPIE 3468, 285–292 (1998).
[CrossRef]

Z. Hasan, M. Solonenko, P. I. Macfarlane, L. Biyikli, V. K. Mathur, and F. A. Karwacki, “Persistent high density spectral holeburning in CaS:Eu and CaS:Eu, Sm phosphors,” Appl. Phys. Lett. 72, 2373–2375 (1998).
[CrossRef]

Tormmsdorff, H. P.

S. Volker, R. M. MacFarlane, A. Z. Genack, H. P. Tormmsdorff, and J. H. VanderWaals, “Homogeneous linewidth of the S1 from S0 transition of free-base porphyrin in ann-octane crystal as studied by photochemical hole-burning,” J. Chem. Phys. 67, 1759–1765 (1977).
[CrossRef]

VanderWaals, J. H.

S. Volker, R. M. MacFarlane, A. Z. Genack, H. P. Tormmsdorff, and J. H. VanderWaals, “Homogeneous linewidth of the S1 from S0 transition of free-base porphyrin in ann-octane crystal as studied by photochemical hole-burning,” J. Chem. Phys. 67, 1759–1765 (1977).
[CrossRef]

Volker, S.

S. Volker, R. M. MacFarlane, A. Z. Genack, H. P. Tormmsdorff, and J. H. VanderWaals, “Homogeneous linewidth of the S1 from S0 transition of free-base porphyrin in ann-octane crystal as studied by photochemical hole-burning,” J. Chem. Phys. 67, 1759–1765 (1977).
[CrossRef]

Yamashita, N.

S. Asano, N. Yamashita, and T. Ohnishi, “Luminescence of the Ce3+ ion in the phosphor MgS,” Phys. Status Solidi 99, 661–672 (1980).
[CrossRef]

Appl. Phys. B (1)

L. A. Rebane, A. A. Gorokhovskii, and J. V. Kikas, “Low-temperature spectroscopy of organic molecules in solids by photochemical hole burning,” Appl. Phys. B 29, 235–250 (1982).
[CrossRef]

Appl. Phys. Lett. (2)

Z. Hasan, M. Solonenko, P. I. Macfarlane, L. Biyikli, V. K. Mathur, and F. A. Karwacki, “Persistent high density spectral holeburning in CaS:Eu and CaS:Eu, Sm phosphors,” Appl. Phys. Lett. 72, 2373–2375 (1998).
[CrossRef]

Z. Hasan, L. Biyikli, and P. I. Macfarlane, “Power-gated spectral holeburning in MgS:Eu2+, Eu3+: a case for high-density persistent spectral holeburning,” Appl. Phys. Lett. 72, 3399–3401 (1998).
[CrossRef]

Chem. Phys. (1)

M. J. Kenney, R. Jankowiak, and G. J. Small, “Dispersive kinetics of nonphotochemical hole growth for oxazine 720 in glycerol, polyvinyl alcohol and their deuterated analogues,” Chem. Phys. 146, 47–61 (1990).
[CrossRef]

IBM J. Res. Dev. (1)

D. M. Burland and D. Haarer, “One- and two-photon laser photochemistry in organic solids,” IBM J. Res. Dev. 23, 534–546 (1979).
[CrossRef]

J. Appl. Phys. (1)

C. Pedrini, F. Rogemond, and D. S. McClure, “Photoionization thresholds of rare-earth impurity ions. Eu2+:CaF2, Ce3+:YAG, and Sm2+:CaF2,” J. Appl. Phys. 59, 1196–1201 (1986).
[CrossRef]

J. Chem. Phys. (3)

D. S. McClure and Z. Kiss, “Survey of the spectra of the divalent rare-earth ions in cubic crystals,” J. Chem. Phys. 39, 3251–3257 (1963).
[CrossRef]

S. Volker, R. M. MacFarlane, A. Z. Genack, H. P. Tormmsdorff, and J. H. VanderWaals, “Homogeneous linewidth of the S1 from S0 transition of free-base porphyrin in ann-octane crystal as studied by photochemical hole-burning,” J. Chem. Phys. 67, 1759–1765 (1977).
[CrossRef]

K. Kanematsu, R. Shiraishi, A. Imaoka, S. Saikan, and T. Kushida, “Time dependence of hole spectrum due to dispersive burning kinetics in dye-doped polymers,” J. Chem. Phys. 91, 6579–6587 (1989).
[CrossRef]

J. Lumin. (1)

L. Biyikli and Z. Hasan, “The dynamics of hole burning in 4fn-4fn−15d1 transition of Eu2+ in MgS,” J. Lumin. 83, 373–377 (1999).
[CrossRef]

J. Phys. Chem. (1)

R. Jankowiak, R. Richert, and H. Bassler, “Nonexponential hole burning in organic glasses,” J. Phys. Chem. 89, 4569–4574 (1985).
[CrossRef]

J. Phys. Soc. Jpn. (1)

Y. Nakao, “Luminescent centers of MgS, CaS and CaSe phosphors activated with Eu3+ ion,” J. Phys. Soc. Jpn. 48, 534–541 (1980).
[CrossRef]

Mater. Sci. Forum (1)

Z. Hasan and L. Biyikli, “Photon-gated hole burning materials: directions in high density memory storage,” Mater. Sci. Forum 51, 315–317 (1999).

Phys. Status Solidi (1)

S. Asano, N. Yamashita, and T. Ohnishi, “Luminescence of the Ce3+ ion in the phosphor MgS,” Phys. Status Solidi 99, 661–672 (1980).
[CrossRef]

Proc. SPIE (2)

L. Biyikli, M. Solonenko, S. M. Ahmedyan, and Z. Hasan, “High density photon-gated hole burning in sulfides,” Proc. SPIE 3468, 285–292 (1998).
[CrossRef]

Z. Hasan, “Material challenges for spectral hole burning,” Proc. SPIE 3468, 154–164 (1998).
[CrossRef]

Other (3)

M. Solonenko and Z. Hasan, Temple University, Philadelphia, Pa. (personal communication, 1999).

A. Szabo, “Frequency selective optical memory,” U.S. patent 3, 896, 420 (July 22, 1975); G. Castro, D. Haarer, R. M. Macfarlane, and H. P. Trommsdroff, “Frequency selective optical data storage system,” U.S. Patent 4, 101, 976 (July 18, 1978).

M. Solonenko, “Persistent spectral hole burning in europium and europium–samasium doped CaS,” Ph.D. dissertation (Temple University, Philadelphia, Pa., 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Laser-excitation spectra in MgS:Eu2+, T=10 K. The shaded area shows the ZPL for the 4f5d transition. The other sharp lines are the vibronic replicas. The inset shows the energy level of Eu2+ and two-photon ionization hole burning in the band gap of MgS:Eu.

Fig. 2
Fig. 2

240 holes burned in the ZPL of MgS:Eu2+ at 578 nm. The holes can be burned in the farthest wings with an excellent signal-to-noise ratio, as shown in the insets. The inset at the upper right compares a fast-burned sharp hole with a slow-burned broad hole; the dotted curve is a single Lorentzian fit to the fast-burned hole.

Fig. 3
Fig. 3

Hole depth as a function of burn-beam power (triangles), and burning time t (diamonds). The solid curves show a double-exponential fit.

Fig. 4
Fig. 4

Hole erasure as a function of exposure time for the erasing beam. The solid curve is a fit with two exponentials; see Eq. (7). The inset shows the data for erasure during the burning of multiple holes as extracted from Fig. 2. The solid curve shows that a single exponential does not give a good fit to the data.

Fig. 5
Fig. 5

Multiple holes burned in the ZPL of MgS:Eu2+ at 578 nm, T=10 K (solid curve). The holes were burned alternately on either side of the peak. The dotted curve shows the unburned ZPL. The area under the ZPL remains the same before and after the hole burning.

Fig. 6
Fig. 6

Crystal structure of MgS:Eu. At a substitutional cubic site, Eu3+ will require ionic displacements as shown diagrammatically by the arrows.

Fig. 7
Fig. 7

Thermal diffusion of the hole as a function of cycling temperature. The hole broadens and shifts toward lower energies with the temperature of cycling. The hole was read at 10 K.

Fig. 8
Fig. 8

Comparison of erasure owing to multiple hole burning in (a) singly Eu-doped, and (b) Ce-codoped MgS. The erasure of hole 1 is reduced by more than 50% in (b) because of the presence of Ce traps.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

dϕ(ν0)=-η1ϕ(ν0)Ib2dt.
ϕ(ν0, t)=ϕ0 exp(-η1Ib2t),
D(ν0, t)=ϕ0-ϕ(ν0, t)=ϕ0-ϕ0 exp(-η1Ib2t).
D(ν0, t)=ϕ0-ϕ1 exp(-η1Ib2t)-ϕII(-η2Ib2t),
dD(ν0)=-ηerasure D(ν0)AZPLIb2dt,
D(ν0, t)=D0 exp(-α1Ib2t),
D(ν0, t)=D1 exp(-α1Ib2t)+D2 exp(-α2Ib2t),
Eu2++Ce4++ωbEu2+*+Ce4+,
Eu2+*+Ce4++ωbEu3++Ce4++eEu3++Ce3+.

Metrics