Abstract

We present a theoretical analysis of a noncollinear polarization-spectroscopy (PS) scheme, taking into account the polarization incoherence of an arbitrarily polarized pump beam. It is based on a light-induced anisotropy (LIA) tensor formalism. Our most important results are analytical expressions for the LIA tensor, which permit classification of the nonlinear medium with LIA in terms of the polarization properties. An expression is derived for the dependence of the PS-signal intensity on the beam-crossing angle, and the usefulness of that expression for spectroscopic purposes is demonstrated.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Reichardt and R. P. Lucht, “Theoretical calculation of line shapes and saturation effects in polarization spectroscopy,” J. Chem. Phys. 109, 5830–5843 (1998).
    [CrossRef]
  2. J. Seidel, “Theory of two-photon polarization spectroscopy of the plasma-broadened hydrogen Lα line,” Phys. Rev. Lett. 57, 2154–2156 (1986).
    [CrossRef] [PubMed]
  3. I. I. Gancheryonok, I. V. Shapochkina, P. G. Zhavrid, V. A. Gaisyonok, and Y. Fujimura, “New peculiarities of polarization-sensitive spectroscopy of isotropic media,” J. Lumin. 72–74, 819–821 (1997).
    [CrossRef]
  4. A. V. Lavrinenko, I. I. Gancheryonok, and D. N. Chigrin, “Free-coordinate formalism for nonlinear photoanisotropy optics description and light propagation effects in periodic anisotropic structures,” in Photoconversion: Science and Technologies, M. Pluta and M. Szyjer, eds., Proc. SPIE 3580, 2–9 (1998).
    [CrossRef]
  5. M. Fujimoto, S. Aoshima, M. Hosoda, and Y. Tsuchiya, “Femtosecond time-resolved optical polarigraphy: the propagation dynamics of intense light in a medium,” Opt. Lett. 24, 850–852 (1999).
    [CrossRef]
  6. A. A. Suvernev, R. Tadday, and T. Dreier, “Measurement and theoretical modeling of quantum beats in picosecond time-resolved degenerate four-wave mixing and polarization spectroscopy of OH in atmospheric pressure flames,” Phys. Rev. A 58, 4102–4115 (1998).
    [CrossRef]
  7. I. I. Gancheryonok, “Conception of normal waves in nonlinear polarization spectroscopy,” Jpn. J. Appl. Phys. 31, 3862–3868 (1992).
    [CrossRef]
  8. I. I. Gancheryonok, “Propagation of polarized light in media with laser induced anisotropy: study in the framework of nonlinear spectroscopy,” Rev. Laser Eng. 20, 813–822 (1992).
    [CrossRef]
  9. I. I. Gancheryonok and A. V. Lavrinenko, “Reflection variant of nonlinear polarization spectroscopy,” Opt. Appl. 25, 93–102 (1995).
  10. I. I. Gancheryonok, “A new possibility for separate measurement of the imaginary and real parts of the third-order nonlinear optical susceptibility of initially isotropic media,” Tech. Phys. Lett. 23, 741–743 (1997).
    [CrossRef]
  11. I. I. Gancheryonok, Y. Kanematsu, and T. Kushida, “New possibilities of optically heterodyned polarization interferometry of isotropic media: linearly and circularly polarized pump and probe waves,” J. Phys. Soc. Jpn. 62, 1964–1977 (1993).
    [CrossRef]
  12. K. Nyholm, R. Fritzon, and M. Alden, “Two-dimensional Imaging of OH in flames by use of polarization spectroscopy,” Opt. Lett. 18, 1672–1674 (1993).
    [CrossRef] [PubMed]
  13. G. Zizak, J. Lanauze, and J. D. Winefordner, “Cross-beam polarization spectroscopy in flames with a pulsed dye laser,” Appl. Opt. 25, 3242–3246 (1986).
    [CrossRef]
  14. I. I. Gancheryonok, “Nonlinear polarization spectroscopy with nonpolarized light,” Jpn. J. Appl. Phys. 31, 3564–3568 (1992).
    [CrossRef]
  15. F. I. Fedorov, The Theory of Gyrotropy (Nauka i Tekhnika, Minsk, USSR, 1976, in Russian).
  16. I. I. Gancheryonok, “Comment on ‘Two-state description of total polarization by means of the singular eigenvalue problem, ’ ” J. Mod. Opt. 40, 373–374 (1993).
    [CrossRef]
  17. L. M. Barkovsky, G. N. Borzdov, and A. V. Lavrinenko, “Fresnel’s reflection and transmission operators for stratified gyroanisotropic media,” J. Phys. A Math. Gen. 25, 1095–1106 (1987).
    [CrossRef]
  18. I. I. Gancheryonok, “Nonlinear spectroscopic ellipsometry of isotropic media,” Rev. Laser Eng. 20, 502–513 (1992).
    [CrossRef]
  19. I. I. Gancheryonok and P. G. Zhavrid, “Breaking of Kleinman symmetry for the components of the cubic susceptibility tensor of dye solutions,” Tech. Phys. 40, 738–739 (1995).
  20. S. Williams, R. N. Zare, and L. A. Rahn, “Reduction of degenerate four-wave mixing spectra to relative populations. II. Strong-field limit,” J. Chem. Phys. 101, 1093–1107 (1994).
    [CrossRef]
  21. M. P. Auzinsh, “General restrictions for the relaxation con-stants of the polarization moments of the density matrix,” Chem. Phys. Lett. 198, 305–310 (1992).
    [CrossRef]
  22. A. Tumaikin, W. van Haeringen, and D. Lenstra, “Elliptically polarized normal waves in nonlinear optics,” Physica C 114, 251–254 (1982).
    [CrossRef]
  23. I. I. Gancheryonok, S. Saikan, and T. Kushida, “Peculiarities of nonlinear spectroscopic ellipsometry of initially isotropic substances,” Thin Solid Films 234, 380–384 (1993).
    [CrossRef]
  24. S. Saikan, “Kleinman relation in the 3rd-order nonlinear susceptibility of dye solutions,” Jpn. J. Appl. Phys. 23, L718–L719 (1984).
    [CrossRef]
  25. V. A. Gaisenok and I. I. Gancheryonok, “Polarization dependence of the signal in nonlinear modulation spectroscopy,” Tech. Phys. Lett. 12, 661–663 (1993).

1999 (1)

1998 (3)

A. V. Lavrinenko, I. I. Gancheryonok, and D. N. Chigrin, “Free-coordinate formalism for nonlinear photoanisotropy optics description and light propagation effects in periodic anisotropic structures,” in Photoconversion: Science and Technologies, M. Pluta and M. Szyjer, eds., Proc. SPIE 3580, 2–9 (1998).
[CrossRef]

A. A. Suvernev, R. Tadday, and T. Dreier, “Measurement and theoretical modeling of quantum beats in picosecond time-resolved degenerate four-wave mixing and polarization spectroscopy of OH in atmospheric pressure flames,” Phys. Rev. A 58, 4102–4115 (1998).
[CrossRef]

T. A. Reichardt and R. P. Lucht, “Theoretical calculation of line shapes and saturation effects in polarization spectroscopy,” J. Chem. Phys. 109, 5830–5843 (1998).
[CrossRef]

1997 (2)

I. I. Gancheryonok, I. V. Shapochkina, P. G. Zhavrid, V. A. Gaisyonok, and Y. Fujimura, “New peculiarities of polarization-sensitive spectroscopy of isotropic media,” J. Lumin. 72–74, 819–821 (1997).
[CrossRef]

I. I. Gancheryonok, “A new possibility for separate measurement of the imaginary and real parts of the third-order nonlinear optical susceptibility of initially isotropic media,” Tech. Phys. Lett. 23, 741–743 (1997).
[CrossRef]

1995 (2)

I. I. Gancheryonok and P. G. Zhavrid, “Breaking of Kleinman symmetry for the components of the cubic susceptibility tensor of dye solutions,” Tech. Phys. 40, 738–739 (1995).

I. I. Gancheryonok and A. V. Lavrinenko, “Reflection variant of nonlinear polarization spectroscopy,” Opt. Appl. 25, 93–102 (1995).

1994 (1)

S. Williams, R. N. Zare, and L. A. Rahn, “Reduction of degenerate four-wave mixing spectra to relative populations. II. Strong-field limit,” J. Chem. Phys. 101, 1093–1107 (1994).
[CrossRef]

1993 (5)

I. I. Gancheryonok, Y. Kanematsu, and T. Kushida, “New possibilities of optically heterodyned polarization interferometry of isotropic media: linearly and circularly polarized pump and probe waves,” J. Phys. Soc. Jpn. 62, 1964–1977 (1993).
[CrossRef]

I. I. Gancheryonok, “Comment on ‘Two-state description of total polarization by means of the singular eigenvalue problem, ’ ” J. Mod. Opt. 40, 373–374 (1993).
[CrossRef]

K. Nyholm, R. Fritzon, and M. Alden, “Two-dimensional Imaging of OH in flames by use of polarization spectroscopy,” Opt. Lett. 18, 1672–1674 (1993).
[CrossRef] [PubMed]

I. I. Gancheryonok, S. Saikan, and T. Kushida, “Peculiarities of nonlinear spectroscopic ellipsometry of initially isotropic substances,” Thin Solid Films 234, 380–384 (1993).
[CrossRef]

V. A. Gaisenok and I. I. Gancheryonok, “Polarization dependence of the signal in nonlinear modulation spectroscopy,” Tech. Phys. Lett. 12, 661–663 (1993).

1992 (5)

I. I. Gancheryonok, “Nonlinear spectroscopic ellipsometry of isotropic media,” Rev. Laser Eng. 20, 502–513 (1992).
[CrossRef]

I. I. Gancheryonok, “Nonlinear polarization spectroscopy with nonpolarized light,” Jpn. J. Appl. Phys. 31, 3564–3568 (1992).
[CrossRef]

M. P. Auzinsh, “General restrictions for the relaxation con-stants of the polarization moments of the density matrix,” Chem. Phys. Lett. 198, 305–310 (1992).
[CrossRef]

I. I. Gancheryonok, “Conception of normal waves in nonlinear polarization spectroscopy,” Jpn. J. Appl. Phys. 31, 3862–3868 (1992).
[CrossRef]

I. I. Gancheryonok, “Propagation of polarized light in media with laser induced anisotropy: study in the framework of nonlinear spectroscopy,” Rev. Laser Eng. 20, 813–822 (1992).
[CrossRef]

1987 (1)

L. M. Barkovsky, G. N. Borzdov, and A. V. Lavrinenko, “Fresnel’s reflection and transmission operators for stratified gyroanisotropic media,” J. Phys. A Math. Gen. 25, 1095–1106 (1987).
[CrossRef]

1986 (2)

J. Seidel, “Theory of two-photon polarization spectroscopy of the plasma-broadened hydrogen Lα line,” Phys. Rev. Lett. 57, 2154–2156 (1986).
[CrossRef] [PubMed]

G. Zizak, J. Lanauze, and J. D. Winefordner, “Cross-beam polarization spectroscopy in flames with a pulsed dye laser,” Appl. Opt. 25, 3242–3246 (1986).
[CrossRef]

1984 (1)

S. Saikan, “Kleinman relation in the 3rd-order nonlinear susceptibility of dye solutions,” Jpn. J. Appl. Phys. 23, L718–L719 (1984).
[CrossRef]

1982 (1)

A. Tumaikin, W. van Haeringen, and D. Lenstra, “Elliptically polarized normal waves in nonlinear optics,” Physica C 114, 251–254 (1982).
[CrossRef]

Alden, M.

Aoshima, S.

Auzinsh, M. P.

M. P. Auzinsh, “General restrictions for the relaxation con-stants of the polarization moments of the density matrix,” Chem. Phys. Lett. 198, 305–310 (1992).
[CrossRef]

Barkovsky, L. M.

L. M. Barkovsky, G. N. Borzdov, and A. V. Lavrinenko, “Fresnel’s reflection and transmission operators for stratified gyroanisotropic media,” J. Phys. A Math. Gen. 25, 1095–1106 (1987).
[CrossRef]

Borzdov, G. N.

L. M. Barkovsky, G. N. Borzdov, and A. V. Lavrinenko, “Fresnel’s reflection and transmission operators for stratified gyroanisotropic media,” J. Phys. A Math. Gen. 25, 1095–1106 (1987).
[CrossRef]

Chigrin, D. N.

A. V. Lavrinenko, I. I. Gancheryonok, and D. N. Chigrin, “Free-coordinate formalism for nonlinear photoanisotropy optics description and light propagation effects in periodic anisotropic structures,” in Photoconversion: Science and Technologies, M. Pluta and M. Szyjer, eds., Proc. SPIE 3580, 2–9 (1998).
[CrossRef]

Dreier, T.

A. A. Suvernev, R. Tadday, and T. Dreier, “Measurement and theoretical modeling of quantum beats in picosecond time-resolved degenerate four-wave mixing and polarization spectroscopy of OH in atmospheric pressure flames,” Phys. Rev. A 58, 4102–4115 (1998).
[CrossRef]

Fritzon, R.

Fujimoto, M.

Fujimura, Y.

I. I. Gancheryonok, I. V. Shapochkina, P. G. Zhavrid, V. A. Gaisyonok, and Y. Fujimura, “New peculiarities of polarization-sensitive spectroscopy of isotropic media,” J. Lumin. 72–74, 819–821 (1997).
[CrossRef]

Gaisenok, V. A.

V. A. Gaisenok and I. I. Gancheryonok, “Polarization dependence of the signal in nonlinear modulation spectroscopy,” Tech. Phys. Lett. 12, 661–663 (1993).

Gaisyonok, V. A.

I. I. Gancheryonok, I. V. Shapochkina, P. G. Zhavrid, V. A. Gaisyonok, and Y. Fujimura, “New peculiarities of polarization-sensitive spectroscopy of isotropic media,” J. Lumin. 72–74, 819–821 (1997).
[CrossRef]

Gancheryonok, I. I.

A. V. Lavrinenko, I. I. Gancheryonok, and D. N. Chigrin, “Free-coordinate formalism for nonlinear photoanisotropy optics description and light propagation effects in periodic anisotropic structures,” in Photoconversion: Science and Technologies, M. Pluta and M. Szyjer, eds., Proc. SPIE 3580, 2–9 (1998).
[CrossRef]

I. I. Gancheryonok, “A new possibility for separate measurement of the imaginary and real parts of the third-order nonlinear optical susceptibility of initially isotropic media,” Tech. Phys. Lett. 23, 741–743 (1997).
[CrossRef]

I. I. Gancheryonok, I. V. Shapochkina, P. G. Zhavrid, V. A. Gaisyonok, and Y. Fujimura, “New peculiarities of polarization-sensitive spectroscopy of isotropic media,” J. Lumin. 72–74, 819–821 (1997).
[CrossRef]

I. I. Gancheryonok and A. V. Lavrinenko, “Reflection variant of nonlinear polarization spectroscopy,” Opt. Appl. 25, 93–102 (1995).

I. I. Gancheryonok and P. G. Zhavrid, “Breaking of Kleinman symmetry for the components of the cubic susceptibility tensor of dye solutions,” Tech. Phys. 40, 738–739 (1995).

V. A. Gaisenok and I. I. Gancheryonok, “Polarization dependence of the signal in nonlinear modulation spectroscopy,” Tech. Phys. Lett. 12, 661–663 (1993).

I. I. Gancheryonok, S. Saikan, and T. Kushida, “Peculiarities of nonlinear spectroscopic ellipsometry of initially isotropic substances,” Thin Solid Films 234, 380–384 (1993).
[CrossRef]

I. I. Gancheryonok, Y. Kanematsu, and T. Kushida, “New possibilities of optically heterodyned polarization interferometry of isotropic media: linearly and circularly polarized pump and probe waves,” J. Phys. Soc. Jpn. 62, 1964–1977 (1993).
[CrossRef]

I. I. Gancheryonok, “Comment on ‘Two-state description of total polarization by means of the singular eigenvalue problem, ’ ” J. Mod. Opt. 40, 373–374 (1993).
[CrossRef]

I. I. Gancheryonok, “Nonlinear polarization spectroscopy with nonpolarized light,” Jpn. J. Appl. Phys. 31, 3564–3568 (1992).
[CrossRef]

I. I. Gancheryonok, “Conception of normal waves in nonlinear polarization spectroscopy,” Jpn. J. Appl. Phys. 31, 3862–3868 (1992).
[CrossRef]

I. I. Gancheryonok, “Propagation of polarized light in media with laser induced anisotropy: study in the framework of nonlinear spectroscopy,” Rev. Laser Eng. 20, 813–822 (1992).
[CrossRef]

I. I. Gancheryonok, “Nonlinear spectroscopic ellipsometry of isotropic media,” Rev. Laser Eng. 20, 502–513 (1992).
[CrossRef]

Hosoda, M.

Kanematsu, Y.

I. I. Gancheryonok, Y. Kanematsu, and T. Kushida, “New possibilities of optically heterodyned polarization interferometry of isotropic media: linearly and circularly polarized pump and probe waves,” J. Phys. Soc. Jpn. 62, 1964–1977 (1993).
[CrossRef]

Kushida, T.

I. I. Gancheryonok, Y. Kanematsu, and T. Kushida, “New possibilities of optically heterodyned polarization interferometry of isotropic media: linearly and circularly polarized pump and probe waves,” J. Phys. Soc. Jpn. 62, 1964–1977 (1993).
[CrossRef]

I. I. Gancheryonok, S. Saikan, and T. Kushida, “Peculiarities of nonlinear spectroscopic ellipsometry of initially isotropic substances,” Thin Solid Films 234, 380–384 (1993).
[CrossRef]

Lanauze, J.

Lavrinenko, A. V.

A. V. Lavrinenko, I. I. Gancheryonok, and D. N. Chigrin, “Free-coordinate formalism for nonlinear photoanisotropy optics description and light propagation effects in periodic anisotropic structures,” in Photoconversion: Science and Technologies, M. Pluta and M. Szyjer, eds., Proc. SPIE 3580, 2–9 (1998).
[CrossRef]

I. I. Gancheryonok and A. V. Lavrinenko, “Reflection variant of nonlinear polarization spectroscopy,” Opt. Appl. 25, 93–102 (1995).

L. M. Barkovsky, G. N. Borzdov, and A. V. Lavrinenko, “Fresnel’s reflection and transmission operators for stratified gyroanisotropic media,” J. Phys. A Math. Gen. 25, 1095–1106 (1987).
[CrossRef]

Lenstra, D.

A. Tumaikin, W. van Haeringen, and D. Lenstra, “Elliptically polarized normal waves in nonlinear optics,” Physica C 114, 251–254 (1982).
[CrossRef]

Lucht, R. P.

T. A. Reichardt and R. P. Lucht, “Theoretical calculation of line shapes and saturation effects in polarization spectroscopy,” J. Chem. Phys. 109, 5830–5843 (1998).
[CrossRef]

Nyholm, K.

Rahn, L. A.

S. Williams, R. N. Zare, and L. A. Rahn, “Reduction of degenerate four-wave mixing spectra to relative populations. II. Strong-field limit,” J. Chem. Phys. 101, 1093–1107 (1994).
[CrossRef]

Reichardt, T. A.

T. A. Reichardt and R. P. Lucht, “Theoretical calculation of line shapes and saturation effects in polarization spectroscopy,” J. Chem. Phys. 109, 5830–5843 (1998).
[CrossRef]

Saikan, S.

I. I. Gancheryonok, S. Saikan, and T. Kushida, “Peculiarities of nonlinear spectroscopic ellipsometry of initially isotropic substances,” Thin Solid Films 234, 380–384 (1993).
[CrossRef]

S. Saikan, “Kleinman relation in the 3rd-order nonlinear susceptibility of dye solutions,” Jpn. J. Appl. Phys. 23, L718–L719 (1984).
[CrossRef]

Seidel, J.

J. Seidel, “Theory of two-photon polarization spectroscopy of the plasma-broadened hydrogen Lα line,” Phys. Rev. Lett. 57, 2154–2156 (1986).
[CrossRef] [PubMed]

Shapochkina, I. V.

I. I. Gancheryonok, I. V. Shapochkina, P. G. Zhavrid, V. A. Gaisyonok, and Y. Fujimura, “New peculiarities of polarization-sensitive spectroscopy of isotropic media,” J. Lumin. 72–74, 819–821 (1997).
[CrossRef]

Suvernev, A. A.

A. A. Suvernev, R. Tadday, and T. Dreier, “Measurement and theoretical modeling of quantum beats in picosecond time-resolved degenerate four-wave mixing and polarization spectroscopy of OH in atmospheric pressure flames,” Phys. Rev. A 58, 4102–4115 (1998).
[CrossRef]

Tadday, R.

A. A. Suvernev, R. Tadday, and T. Dreier, “Measurement and theoretical modeling of quantum beats in picosecond time-resolved degenerate four-wave mixing and polarization spectroscopy of OH in atmospheric pressure flames,” Phys. Rev. A 58, 4102–4115 (1998).
[CrossRef]

Tsuchiya, Y.

Tumaikin, A.

A. Tumaikin, W. van Haeringen, and D. Lenstra, “Elliptically polarized normal waves in nonlinear optics,” Physica C 114, 251–254 (1982).
[CrossRef]

van Haeringen, W.

A. Tumaikin, W. van Haeringen, and D. Lenstra, “Elliptically polarized normal waves in nonlinear optics,” Physica C 114, 251–254 (1982).
[CrossRef]

Williams, S.

S. Williams, R. N. Zare, and L. A. Rahn, “Reduction of degenerate four-wave mixing spectra to relative populations. II. Strong-field limit,” J. Chem. Phys. 101, 1093–1107 (1994).
[CrossRef]

Winefordner, J. D.

Zare, R. N.

S. Williams, R. N. Zare, and L. A. Rahn, “Reduction of degenerate four-wave mixing spectra to relative populations. II. Strong-field limit,” J. Chem. Phys. 101, 1093–1107 (1994).
[CrossRef]

Zhavrid, P. G.

I. I. Gancheryonok, I. V. Shapochkina, P. G. Zhavrid, V. A. Gaisyonok, and Y. Fujimura, “New peculiarities of polarization-sensitive spectroscopy of isotropic media,” J. Lumin. 72–74, 819–821 (1997).
[CrossRef]

I. I. Gancheryonok and P. G. Zhavrid, “Breaking of Kleinman symmetry for the components of the cubic susceptibility tensor of dye solutions,” Tech. Phys. 40, 738–739 (1995).

Zizak, G.

Appl. Opt. (1)

Chem. Phys. Lett. (1)

M. P. Auzinsh, “General restrictions for the relaxation con-stants of the polarization moments of the density matrix,” Chem. Phys. Lett. 198, 305–310 (1992).
[CrossRef]

J. Chem. Phys. (2)

T. A. Reichardt and R. P. Lucht, “Theoretical calculation of line shapes and saturation effects in polarization spectroscopy,” J. Chem. Phys. 109, 5830–5843 (1998).
[CrossRef]

S. Williams, R. N. Zare, and L. A. Rahn, “Reduction of degenerate four-wave mixing spectra to relative populations. II. Strong-field limit,” J. Chem. Phys. 101, 1093–1107 (1994).
[CrossRef]

J. Lumin. (1)

I. I. Gancheryonok, I. V. Shapochkina, P. G. Zhavrid, V. A. Gaisyonok, and Y. Fujimura, “New peculiarities of polarization-sensitive spectroscopy of isotropic media,” J. Lumin. 72–74, 819–821 (1997).
[CrossRef]

J. Mod. Opt. (1)

I. I. Gancheryonok, “Comment on ‘Two-state description of total polarization by means of the singular eigenvalue problem, ’ ” J. Mod. Opt. 40, 373–374 (1993).
[CrossRef]

J. Phys. A Math. Gen. (1)

L. M. Barkovsky, G. N. Borzdov, and A. V. Lavrinenko, “Fresnel’s reflection and transmission operators for stratified gyroanisotropic media,” J. Phys. A Math. Gen. 25, 1095–1106 (1987).
[CrossRef]

J. Phys. Soc. Jpn. (1)

I. I. Gancheryonok, Y. Kanematsu, and T. Kushida, “New possibilities of optically heterodyned polarization interferometry of isotropic media: linearly and circularly polarized pump and probe waves,” J. Phys. Soc. Jpn. 62, 1964–1977 (1993).
[CrossRef]

Jpn. J. Appl. Phys. (3)

I. I. Gancheryonok, “Nonlinear polarization spectroscopy with nonpolarized light,” Jpn. J. Appl. Phys. 31, 3564–3568 (1992).
[CrossRef]

I. I. Gancheryonok, “Conception of normal waves in nonlinear polarization spectroscopy,” Jpn. J. Appl. Phys. 31, 3862–3868 (1992).
[CrossRef]

S. Saikan, “Kleinman relation in the 3rd-order nonlinear susceptibility of dye solutions,” Jpn. J. Appl. Phys. 23, L718–L719 (1984).
[CrossRef]

Opt. Appl. (1)

I. I. Gancheryonok and A. V. Lavrinenko, “Reflection variant of nonlinear polarization spectroscopy,” Opt. Appl. 25, 93–102 (1995).

Opt. Lett. (2)

Phys. Rev. A (1)

A. A. Suvernev, R. Tadday, and T. Dreier, “Measurement and theoretical modeling of quantum beats in picosecond time-resolved degenerate four-wave mixing and polarization spectroscopy of OH in atmospheric pressure flames,” Phys. Rev. A 58, 4102–4115 (1998).
[CrossRef]

Phys. Rev. Lett. (1)

J. Seidel, “Theory of two-photon polarization spectroscopy of the plasma-broadened hydrogen Lα line,” Phys. Rev. Lett. 57, 2154–2156 (1986).
[CrossRef] [PubMed]

Physica C (1)

A. Tumaikin, W. van Haeringen, and D. Lenstra, “Elliptically polarized normal waves in nonlinear optics,” Physica C 114, 251–254 (1982).
[CrossRef]

Proc. SPIE (1)

A. V. Lavrinenko, I. I. Gancheryonok, and D. N. Chigrin, “Free-coordinate formalism for nonlinear photoanisotropy optics description and light propagation effects in periodic anisotropic structures,” in Photoconversion: Science and Technologies, M. Pluta and M. Szyjer, eds., Proc. SPIE 3580, 2–9 (1998).
[CrossRef]

Rev. Laser Eng. (2)

I. I. Gancheryonok, “Propagation of polarized light in media with laser induced anisotropy: study in the framework of nonlinear spectroscopy,” Rev. Laser Eng. 20, 813–822 (1992).
[CrossRef]

I. I. Gancheryonok, “Nonlinear spectroscopic ellipsometry of isotropic media,” Rev. Laser Eng. 20, 502–513 (1992).
[CrossRef]

Tech. Phys. (1)

I. I. Gancheryonok and P. G. Zhavrid, “Breaking of Kleinman symmetry for the components of the cubic susceptibility tensor of dye solutions,” Tech. Phys. 40, 738–739 (1995).

Tech. Phys. Lett. (2)

I. I. Gancheryonok, “A new possibility for separate measurement of the imaginary and real parts of the third-order nonlinear optical susceptibility of initially isotropic media,” Tech. Phys. Lett. 23, 741–743 (1997).
[CrossRef]

V. A. Gaisenok and I. I. Gancheryonok, “Polarization dependence of the signal in nonlinear modulation spectroscopy,” Tech. Phys. Lett. 12, 661–663 (1993).

Thin Solid Films (1)

I. I. Gancheryonok, S. Saikan, and T. Kushida, “Peculiarities of nonlinear spectroscopic ellipsometry of initially isotropic substances,” Thin Solid Films 234, 380–384 (1993).
[CrossRef]

Other (1)

F. I. Fedorov, The Theory of Gyrotropy (Nauka i Tekhnika, Minsk, USSR, 1976, in Russian).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of beam geometry and designated angles of planes of polarization of pump and probe waves, beam-crossing angle θ, and analyzer settings in the theoretical analysis of the polarization-spectroscopy experiment. P and A denote the polarizer and the analyzer, respectively, w is the width of the beam, and M is the sample. Other symbols are defined in the text.

Fig. 2
Fig. 2

Intensity of the PS signal in arbitrary units versus crossing angle θ in degrees and polarization angle α in degrees for φ=π/4.

Fig. 3
Fig. 3

Intensity of the PS signal in arbitrary units versus crossing angle θ in degrees and polarization angle α in degrees for φ=π/2.

Fig. 4
Fig. 4

Plots for cot2 θ (solid curve) and cot2 θ cos2 θ (dashed curve) functions versus angle θ in degrees.

Fig. 5
Fig. 5

Intensity of the signal in arbitrary units for a circularly polarized pump beam versus crossing angle of the beams in degrees, α=π/4. Solid curve, a medium with LIA as an ensemble of linear dipoles; dashed curve, circular dipoles.

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

κˆ=1ˆ+(C1Φˆ+C2Φˆ*)/I0,
Φˆ=E0E0*.
Φˆ=I0e0e0*,
C1=χ1122(3)/χ1221(3),C2=χ1212(3)/χ1221(3),
Φˆ=λpe0e0*+λn(1ˆ-τˆn),
I0=λp+2λn,
κˆ=1+λnI0(C1+C2)1ˆ+λpI0(C1e0e0*+C2e0*e0)-λnI0(C1+C2)τˆn.
κˆ=1ˆ+1-p2C1ˆ+p(C1e0e0*+C2e0*e0)-(1-p)C2τˆn,
e0=(cos η cos φ-i sin η sin φ)a0+(cos η sin φ+i sin η cos φ)b0,
κˆ=1+C21ˆ+12[-Cτˆn+pC cos 2η(τˆa-τˆb)×(cos 2φ1ˆ-sin 2φn0×)+ipS sin 2ηn0×],
ˆ=ε0(1+χ0)1ˆ+Lχ1221κˆ,
κˆ=Rˆ+iHˆ,
κˆ=Rˆ+ikn0×,
ep=Pˆe1,
up=cos αa0+sin α(cos θb0-sin θn0),
uA=-sin αa0+cos α(cos θb0-sin θn0).
uA*κˆup=12 -C sin 2α2 sin2 θ+pC cos 2η×-sin 2α cos 2φ2(1+cos2 θ)+cos θ sin 2φ cos 2α+ipS sin 2η cos θ.
I=Ksin2 θ -C2 sin 2α sin2 θ+pC cos 2η×cos θ sin 2φ cos 2α-sin 2α cos 2φ(1+cos2 θ)22+p2S2 sin2 2η cos2 θ,
K=916 ω12c2n12|E10|2|E0|4w2|χ1221|2/4,
I=Ksin2 θ -C2 sin 2α sin2 θ2sin2 θ sin2 2α.
I=Ksin2 θ -C2 sin 2α sin2 θ+C cos 2η×cos θ sin 2φ cos 2α-sin 2α cos 2φ(1+cos2 θ)22+S2 sin2 2η cos2 θ.
I=KC2[cot θ sin 2φ cos 2α-sin 2α×(cos2 φ-sin2 φ cos2 θ)/sin θ]2,
Isin 2αsin θ2=sin2 2α(1+cot2 θ).
Icot2 θ cos2 θ sin2 α.
I=KC24 sin2 2α sin2 θ+S2 cot2 θ.
I=K cot2 θ[(C cos 2η sin 2φ)2+S2 sin2 2η].
I=KS2 cot2 θ sin2 2η,
I=K cot2 θ(C12+C22+2C1C2 cos 4η),
sin4 θe=2SC sin 2α24q2sin2 2α.
q1=5W1(2)-9W1(1)-2W1(0)7W2(2)-3W1(1)+2W1(0),
q2=W2(0)+W2(1)-2W2(2)W2(0)-W2(1).
q=GA+GS-2GOGA+0.2GS+2GO,
q=3ρ-11-ρ.

Metrics