Abstract

We present a comprehensive study of excitonic electroabsorption and two-wave mixing in photorefractive quantum wells. By combining these two measurements, we are able to determine the internal grating writing efficiency for converting an external spatial light modulation into an internal space-charge field. The internal writing efficiency at a fringe spacing Λ=40 µm is found to be a decreasing function of applied field, varying from ξ=0.4 at low fields to 0.2 at 12 kV/cm. The two-wave mixing efficiency in the quantum wells exceeds 40% and is used for adaptive beam combining and laser-based ultrasound detection. The quantum wells balance the hot-electron-induced photorefractive phase shift with excitonic spectral phase to guarantee quadrature in homodyne detection of ultrasound-induced surface displacements. The ability to tune through multiple quadratures is demonstrated here for the first time to our knowledge. We derive a noise-equivalent surface displacement of 1.7×10-6 Å (W/Hz)1/2 at a field of 12 kV/cm and a fringe spacing of Λ=40 µm. This value is within a factor of 7 of the shot-noise limit of an ideal interferometer.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Rossomakhin and S. I. Stepanov, “Linear adaptive interferometers via diffusion recording in cubic photorefractive crystals,” Opt. Commun. 86, 199–204 (1991).
    [CrossRef]
  2. R. K. Ing and J.-P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233–3235 (1991).
    [CrossRef]
  3. A. Blouin and J.-P. Monchalin, “Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal,” Appl. Phys. Lett. 65, 932–934 (1994).
    [CrossRef]
  4. B. F. Pouet, R. K. Ing, S. Krishnaswamy, and D. Royer, “Heterodyne interferometer with two-wave mixing in photorefractive crystals for ultrasound detection on rough surfaces,” Appl. Phys. Lett. 69, 3782 (1996).
    [CrossRef]
  5. L.-A. Montmorillon, I. Biaggio, P. Delaye, J.-C. Launay, and G. Roosen, “Eye safe large field of view homodyne detection using a photorefractive CdTe:V crystal,” Opt. Commun. 129, 293 (1996).
    [CrossRef]
  6. P. Delaye, A. Blouin, D. Drolet, L. Montmorillon, G. Roosen, and J. Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field,” J. Opt. Soc. Am. B 14, 1723–1734 (1997).
    [CrossRef]
  7. D. D. Nolte, “Semi-insulating semiconductor heterostructures: optoelectronic properties and applications,” J. Appl. Phys. 85, 6259–6289 (1999).
    [CrossRef]
  8. S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, “Two-wave mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings,” Appl. Phys. B 68, 863–869 (1999).
    [CrossRef]
  9. I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
    [CrossRef]
  10. R. M. Brubaker, Q. N. Wang, D. D. Nolte, and M. R. Melloch, “Nonlocal photorefractive response induced by intervalley electron scattering in semiconductors,” Phys. Rev. Lett. 77, 4249–4252 (1996).
    [CrossRef] [PubMed]
  11. D. D. Nolte and M. R. Melloch, “Photorefractive quantum wells and thin films,” in Photorefractive Effects and Materials D. D. Nolte, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1995), pp. 372–451.
  12. Q. N. Wang, R. M. Brubaker, D. D. Nolte, and M. R. Melloch, “Photorefractive quantum wells: transverse Franz–Keldysh geometry,” J. Opt. Soc. Am. B 9, 1626–1641 (1992).
    [CrossRef]
  13. I. Lahiri, “Photorefractive quantum wells: materials, devices and systems,” Ph.D. dissertation (Purdue University, West Lafayette, Ind., 1998).
  14. D. D. Nolte, Book Photorefractive Effects and Materials (Kluwer Academic, Dordrecht, The Netherlands, 1995).
  15. Q. N. Wang, D. D. Nolte, and M. R. Melloch, “Two-wave mixing in photorefractive AlGaAs/GaAs quantum wells,” Appl. Phys. Lett. 59, 256–258 (1991).
    [CrossRef]
  16. Q. N. Wang, R. M. Brubaker, and D. D. Nolte, “Photorefractive phase shift induced by hot electron transport: multiple quantum well structures,” J. Opt. Soc. Am. B 11, 1773–1779 (1994).
    [CrossRef]
  17. C. V. Raman and N. S. N. Nath, “The diffraction of light by high frequency sound waves,” Proc. Indian Acad. Sci. 2, 406 (1935).
  18. Y. Ding, R. M. Brubaker, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Femtosecond pulse shaping by dynamic holograms in photorefractive multiple quantum wells,” Opt. Lett. 22, 718–721 (1997).
    [CrossRef] [PubMed]
  19. Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Time-domain image processing using dynamic holography,” IEEE J. Sel. Top. Quantum Electron. 4, 332–341 (1998).
    [CrossRef]
  20. M. Dinu, K. Nakagawa, M. R. Melloch, A. M. Weiner, and D. D. Nolte, “Broadband low-dispersion diffraction of femtosecond pulses from photorefractive quantum wells,” J. Opt. Soc. Am. B 17, 1313–1319 (2000).
    [CrossRef]

2000 (1)

1999 (2)

D. D. Nolte, “Semi-insulating semiconductor heterostructures: optoelectronic properties and applications,” J. Appl. Phys. 85, 6259–6289 (1999).
[CrossRef]

S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, “Two-wave mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings,” Appl. Phys. B 68, 863–869 (1999).
[CrossRef]

1998 (2)

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Time-domain image processing using dynamic holography,” IEEE J. Sel. Top. Quantum Electron. 4, 332–341 (1998).
[CrossRef]

1997 (2)

1996 (3)

R. M. Brubaker, Q. N. Wang, D. D. Nolte, and M. R. Melloch, “Nonlocal photorefractive response induced by intervalley electron scattering in semiconductors,” Phys. Rev. Lett. 77, 4249–4252 (1996).
[CrossRef] [PubMed]

B. F. Pouet, R. K. Ing, S. Krishnaswamy, and D. Royer, “Heterodyne interferometer with two-wave mixing in photorefractive crystals for ultrasound detection on rough surfaces,” Appl. Phys. Lett. 69, 3782 (1996).
[CrossRef]

L.-A. Montmorillon, I. Biaggio, P. Delaye, J.-C. Launay, and G. Roosen, “Eye safe large field of view homodyne detection using a photorefractive CdTe:V crystal,” Opt. Commun. 129, 293 (1996).
[CrossRef]

1994 (2)

A. Blouin and J.-P. Monchalin, “Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal,” Appl. Phys. Lett. 65, 932–934 (1994).
[CrossRef]

Q. N. Wang, R. M. Brubaker, and D. D. Nolte, “Photorefractive phase shift induced by hot electron transport: multiple quantum well structures,” J. Opt. Soc. Am. B 11, 1773–1779 (1994).
[CrossRef]

1992 (1)

1991 (3)

Q. N. Wang, D. D. Nolte, and M. R. Melloch, “Two-wave mixing in photorefractive AlGaAs/GaAs quantum wells,” Appl. Phys. Lett. 59, 256–258 (1991).
[CrossRef]

I. Rossomakhin and S. I. Stepanov, “Linear adaptive interferometers via diffusion recording in cubic photorefractive crystals,” Opt. Commun. 86, 199–204 (1991).
[CrossRef]

R. K. Ing and J.-P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233–3235 (1991).
[CrossRef]

1935 (1)

C. V. Raman and N. S. N. Nath, “The diffraction of light by high frequency sound waves,” Proc. Indian Acad. Sci. 2, 406 (1935).

Bacher, G. D.

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

Balasubramanian, S.

S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, “Two-wave mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings,” Appl. Phys. B 68, 863–869 (1999).
[CrossRef]

Biaggio, I.

L.-A. Montmorillon, I. Biaggio, P. Delaye, J.-C. Launay, and G. Roosen, “Eye safe large field of view homodyne detection using a photorefractive CdTe:V crystal,” Opt. Commun. 129, 293 (1996).
[CrossRef]

Blouin, A.

P. Delaye, A. Blouin, D. Drolet, L. Montmorillon, G. Roosen, and J. Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field,” J. Opt. Soc. Am. B 14, 1723–1734 (1997).
[CrossRef]

A. Blouin and J.-P. Monchalin, “Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal,” Appl. Phys. Lett. 65, 932–934 (1994).
[CrossRef]

Brubaker, R. M.

Delaye, P.

P. Delaye, A. Blouin, D. Drolet, L. Montmorillon, G. Roosen, and J. Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field,” J. Opt. Soc. Am. B 14, 1723–1734 (1997).
[CrossRef]

L.-A. Montmorillon, I. Biaggio, P. Delaye, J.-C. Launay, and G. Roosen, “Eye safe large field of view homodyne detection using a photorefractive CdTe:V crystal,” Opt. Commun. 129, 293 (1996).
[CrossRef]

Ding, Y.

S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, “Two-wave mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings,” Appl. Phys. B 68, 863–869 (1999).
[CrossRef]

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Time-domain image processing using dynamic holography,” IEEE J. Sel. Top. Quantum Electron. 4, 332–341 (1998).
[CrossRef]

Y. Ding, R. M. Brubaker, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Femtosecond pulse shaping by dynamic holograms in photorefractive multiple quantum wells,” Opt. Lett. 22, 718–721 (1997).
[CrossRef] [PubMed]

Dinu, M.

Drolet, D.

Ing, R. K.

B. F. Pouet, R. K. Ing, S. Krishnaswamy, and D. Royer, “Heterodyne interferometer with two-wave mixing in photorefractive crystals for ultrasound detection on rough surfaces,” Appl. Phys. Lett. 69, 3782 (1996).
[CrossRef]

R. K. Ing and J.-P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233–3235 (1991).
[CrossRef]

Klein, M. B.

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

Krishnaswamy, S.

B. F. Pouet, R. K. Ing, S. Krishnaswamy, and D. Royer, “Heterodyne interferometer with two-wave mixing in photorefractive crystals for ultrasound detection on rough surfaces,” Appl. Phys. Lett. 69, 3782 (1996).
[CrossRef]

Kruger, R. A.

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

Lahiri, I.

S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, “Two-wave mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings,” Appl. Phys. B 68, 863–869 (1999).
[CrossRef]

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

Launay, J.-C.

L.-A. Montmorillon, I. Biaggio, P. Delaye, J.-C. Launay, and G. Roosen, “Eye safe large field of view homodyne detection using a photorefractive CdTe:V crystal,” Opt. Commun. 129, 293 (1996).
[CrossRef]

Melloch, M. R.

M. Dinu, K. Nakagawa, M. R. Melloch, A. M. Weiner, and D. D. Nolte, “Broadband low-dispersion diffraction of femtosecond pulses from photorefractive quantum wells,” J. Opt. Soc. Am. B 17, 1313–1319 (2000).
[CrossRef]

S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, “Two-wave mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings,” Appl. Phys. B 68, 863–869 (1999).
[CrossRef]

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Time-domain image processing using dynamic holography,” IEEE J. Sel. Top. Quantum Electron. 4, 332–341 (1998).
[CrossRef]

Y. Ding, R. M. Brubaker, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Femtosecond pulse shaping by dynamic holograms in photorefractive multiple quantum wells,” Opt. Lett. 22, 718–721 (1997).
[CrossRef] [PubMed]

R. M. Brubaker, Q. N. Wang, D. D. Nolte, and M. R. Melloch, “Nonlocal photorefractive response induced by intervalley electron scattering in semiconductors,” Phys. Rev. Lett. 77, 4249–4252 (1996).
[CrossRef] [PubMed]

Q. N. Wang, R. M. Brubaker, D. D. Nolte, and M. R. Melloch, “Photorefractive quantum wells: transverse Franz–Keldysh geometry,” J. Opt. Soc. Am. B 9, 1626–1641 (1992).
[CrossRef]

Q. N. Wang, D. D. Nolte, and M. R. Melloch, “Two-wave mixing in photorefractive AlGaAs/GaAs quantum wells,” Appl. Phys. Lett. 59, 256–258 (1991).
[CrossRef]

Monchalin, J.

Monchalin, J.-P.

A. Blouin and J.-P. Monchalin, “Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal,” Appl. Phys. Lett. 65, 932–934 (1994).
[CrossRef]

R. K. Ing and J.-P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233–3235 (1991).
[CrossRef]

Montmorillon, L.

Montmorillon, L.-A.

L.-A. Montmorillon, I. Biaggio, P. Delaye, J.-C. Launay, and G. Roosen, “Eye safe large field of view homodyne detection using a photorefractive CdTe:V crystal,” Opt. Commun. 129, 293 (1996).
[CrossRef]

Nakagawa, K.

Nath, N. S. N.

C. V. Raman and N. S. N. Nath, “The diffraction of light by high frequency sound waves,” Proc. Indian Acad. Sci. 2, 406 (1935).

Nolte, D. D.

M. Dinu, K. Nakagawa, M. R. Melloch, A. M. Weiner, and D. D. Nolte, “Broadband low-dispersion diffraction of femtosecond pulses from photorefractive quantum wells,” J. Opt. Soc. Am. B 17, 1313–1319 (2000).
[CrossRef]

D. D. Nolte, “Semi-insulating semiconductor heterostructures: optoelectronic properties and applications,” J. Appl. Phys. 85, 6259–6289 (1999).
[CrossRef]

S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, “Two-wave mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings,” Appl. Phys. B 68, 863–869 (1999).
[CrossRef]

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Time-domain image processing using dynamic holography,” IEEE J. Sel. Top. Quantum Electron. 4, 332–341 (1998).
[CrossRef]

Y. Ding, R. M. Brubaker, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Femtosecond pulse shaping by dynamic holograms in photorefractive multiple quantum wells,” Opt. Lett. 22, 718–721 (1997).
[CrossRef] [PubMed]

R. M. Brubaker, Q. N. Wang, D. D. Nolte, and M. R. Melloch, “Nonlocal photorefractive response induced by intervalley electron scattering in semiconductors,” Phys. Rev. Lett. 77, 4249–4252 (1996).
[CrossRef] [PubMed]

Q. N. Wang, R. M. Brubaker, and D. D. Nolte, “Photorefractive phase shift induced by hot electron transport: multiple quantum well structures,” J. Opt. Soc. Am. B 11, 1773–1779 (1994).
[CrossRef]

Q. N. Wang, R. M. Brubaker, D. D. Nolte, and M. R. Melloch, “Photorefractive quantum wells: transverse Franz–Keldysh geometry,” J. Opt. Soc. Am. B 9, 1626–1641 (1992).
[CrossRef]

Q. N. Wang, D. D. Nolte, and M. R. Melloch, “Two-wave mixing in photorefractive AlGaAs/GaAs quantum wells,” Appl. Phys. Lett. 59, 256–258 (1991).
[CrossRef]

Pouet, B. F.

B. F. Pouet, R. K. Ing, S. Krishnaswamy, and D. Royer, “Heterodyne interferometer with two-wave mixing in photorefractive crystals for ultrasound detection on rough surfaces,” Appl. Phys. Lett. 69, 3782 (1996).
[CrossRef]

Pyrak-Nolte, L. J.

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

Raman, C. V.

C. V. Raman and N. S. N. Nath, “The diffraction of light by high frequency sound waves,” Proc. Indian Acad. Sci. 2, 406 (1935).

Roosen, G.

P. Delaye, A. Blouin, D. Drolet, L. Montmorillon, G. Roosen, and J. Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field,” J. Opt. Soc. Am. B 14, 1723–1734 (1997).
[CrossRef]

L.-A. Montmorillon, I. Biaggio, P. Delaye, J.-C. Launay, and G. Roosen, “Eye safe large field of view homodyne detection using a photorefractive CdTe:V crystal,” Opt. Commun. 129, 293 (1996).
[CrossRef]

Rossomakhin, I.

I. Rossomakhin and S. I. Stepanov, “Linear adaptive interferometers via diffusion recording in cubic photorefractive crystals,” Opt. Commun. 86, 199–204 (1991).
[CrossRef]

Royer, D.

B. F. Pouet, R. K. Ing, S. Krishnaswamy, and D. Royer, “Heterodyne interferometer with two-wave mixing in photorefractive crystals for ultrasound detection on rough surfaces,” Appl. Phys. Lett. 69, 3782 (1996).
[CrossRef]

Stepanov, S. I.

I. Rossomakhin and S. I. Stepanov, “Linear adaptive interferometers via diffusion recording in cubic photorefractive crystals,” Opt. Commun. 86, 199–204 (1991).
[CrossRef]

Wang, Q. N.

R. M. Brubaker, Q. N. Wang, D. D. Nolte, and M. R. Melloch, “Nonlocal photorefractive response induced by intervalley electron scattering in semiconductors,” Phys. Rev. Lett. 77, 4249–4252 (1996).
[CrossRef] [PubMed]

Q. N. Wang, R. M. Brubaker, and D. D. Nolte, “Photorefractive phase shift induced by hot electron transport: multiple quantum well structures,” J. Opt. Soc. Am. B 11, 1773–1779 (1994).
[CrossRef]

Q. N. Wang, R. M. Brubaker, D. D. Nolte, and M. R. Melloch, “Photorefractive quantum wells: transverse Franz–Keldysh geometry,” J. Opt. Soc. Am. B 9, 1626–1641 (1992).
[CrossRef]

Q. N. Wang, D. D. Nolte, and M. R. Melloch, “Two-wave mixing in photorefractive AlGaAs/GaAs quantum wells,” Appl. Phys. Lett. 59, 256–258 (1991).
[CrossRef]

Weiner, A. M.

Appl. Phys. B (1)

S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, “Two-wave mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings,” Appl. Phys. B 68, 863–869 (1999).
[CrossRef]

Appl. Phys. Lett. (5)

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
[CrossRef]

R. K. Ing and J.-P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233–3235 (1991).
[CrossRef]

A. Blouin and J.-P. Monchalin, “Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal,” Appl. Phys. Lett. 65, 932–934 (1994).
[CrossRef]

B. F. Pouet, R. K. Ing, S. Krishnaswamy, and D. Royer, “Heterodyne interferometer with two-wave mixing in photorefractive crystals for ultrasound detection on rough surfaces,” Appl. Phys. Lett. 69, 3782 (1996).
[CrossRef]

Q. N. Wang, D. D. Nolte, and M. R. Melloch, “Two-wave mixing in photorefractive AlGaAs/GaAs quantum wells,” Appl. Phys. Lett. 59, 256–258 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Time-domain image processing using dynamic holography,” IEEE J. Sel. Top. Quantum Electron. 4, 332–341 (1998).
[CrossRef]

J. Appl. Phys. (1)

D. D. Nolte, “Semi-insulating semiconductor heterostructures: optoelectronic properties and applications,” J. Appl. Phys. 85, 6259–6289 (1999).
[CrossRef]

J. Opt. Soc. Am. B (4)

Opt. Commun. (2)

I. Rossomakhin and S. I. Stepanov, “Linear adaptive interferometers via diffusion recording in cubic photorefractive crystals,” Opt. Commun. 86, 199–204 (1991).
[CrossRef]

L.-A. Montmorillon, I. Biaggio, P. Delaye, J.-C. Launay, and G. Roosen, “Eye safe large field of view homodyne detection using a photorefractive CdTe:V crystal,” Opt. Commun. 129, 293 (1996).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

R. M. Brubaker, Q. N. Wang, D. D. Nolte, and M. R. Melloch, “Nonlocal photorefractive response induced by intervalley electron scattering in semiconductors,” Phys. Rev. Lett. 77, 4249–4252 (1996).
[CrossRef] [PubMed]

Proc. Indian Acad. Sci. (1)

C. V. Raman and N. S. N. Nath, “The diffraction of light by high frequency sound waves,” Proc. Indian Acad. Sci. 2, 406 (1935).

Other (3)

I. Lahiri, “Photorefractive quantum wells: materials, devices and systems,” Ph.D. dissertation (Purdue University, West Lafayette, Ind., 1998).

D. D. Nolte, Book Photorefractive Effects and Materials (Kluwer Academic, Dordrecht, The Netherlands, 1995).

D. D. Nolte and M. R. Melloch, “Photorefractive quantum wells and thin films,” in Photorefractive Effects and Materials D. D. Nolte, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1995), pp. 372–451.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Differential transmission ΔT/T data as a function of wavelength for increasing dc electric fields. Reprinted from Ref. 9.

Fig. 2
Fig. 2

Electroabsorption Δα as a function of wavelength extracted from the data in Fig. 1.

Fig. 3
Fig. 3

Plot of the maximum differential transmission shown with the low-field quadratic fit. The deviation from quadratic behavior is shown as the dashed curve.

Fig. 4
Fig. 4

Electrorefraction Δn obtained through a Kramers–Kronig transform of the electroabsorption in Fig. 2.

Fig. 5
Fig. 5

Two-wave mixing at a fixed wavelength as a function of electric field for a family of different fringe spacings.

Fig. 6
Fig. 6

Differential transmission ΔT/T and two-wave mixing signal ΔI/I spectra for β=1 and Λ=40 µm with increasing field strength, showing results for both positive and negative fields.

Fig. 7
Fig. 7

Differential transmission ΔT/T and two-wave mixing signal ΔI/I spectra for β=16 and Λ=40 µm with increasing field strength, showing results for both positive and negative fields. The two-wave mixing efficiency is greater than 40% for a field of -12 kV/cm.

Fig. 8
Fig. 8

Two-wave mixing spectrum for positive and negative fields at 12 kV/cm, showing the asymmetry caused by the photorefractive phase shift.

Fig. 9
Fig. 9

Plot of (a) the internal writing efficiency ξ versus field strength for β=1 and 16 and (b) the photorefractive phase shift. These graphs are obtained by fitting the data of Figs. 6 and 7 to the theoretical differential intensity derived from Eq. (25).

Fig. 10
Fig. 10

Excitonic spectral phase Ψ(λ) as a function of wavelength for the field-dependent data in Figs. 2 and 4.

Fig. 11
Fig. 11

Laser-based ultrasound time traces as the laser wavelength is tuned from one quadrature to the opposite quadrature. The arrival of the compressional (P) and shear (S) waves are clearly observed.

Fig. 12
Fig. 12

Noise-equivalent surface-displacement NESD as a function of wavelength for (a) positive field and (b) negative field. The theoretical curve is from Eq. (38) with the parameters from Fig. 9. Also shown in the figure is the ideal shot-noise limit of a perfect interferometer.

Fig. 13
Fig. 13

Noise-equivalent surface-displacement NESD theoretical curves from Fig. 12 to show the change in the quadrature conditions upon reversal of the electric field on the photorefractive quantum-well device.

Equations (41)

Equations on this page are rendered with MathJax. Learn more.

α(hν, F)=α(0)(hν)+12α(2)(hν)F2[1+ρ(hν, F)],
Δα(hν, F0)=α(hν, F0)-α(hν, 0)=12α(2)(hν)F02[1+ρ(hν, F0)].
Δα(hν, F0)=-1L ln1+T(hν, F0)-T(hν, 0)T(hν, 0),
ρ(hν, F)-12ρ1F2,
Δn(λ)=-λ22π2P0 Δα(λ)λ2-λ2 dλ.
I(x)=(I1+I2)[1+m cos(Kx)],
m=2I1I2I1+I2=2β1+β,
F(x)=F0[1-mξ cos(Kx+ϕP)],
α(hν, x)=α0(hν)+αK(hν)cos(Kx+ϕP).
α0(hν)=α(0)(hν)+Δα(hν, F0)1+ρ(hν, F0) 1+12m2ξ2+Δα(hν, F0)F02Λ 0ΛF(x)2ρ[hν,F(x)]dx,
αK(hν)=-Δα(hν, F0)1+ρ(hν, F0)2mξ+2Δα(hν, F0)F02Λ 0ΛF(x)2ρ[hν,F(x)]cos(Kx+ϕP)dx,
α0(hν)=α(0)(hν)+Δα(hν, F0)1+12m2ξ2-Δα(hν, F0) 12ρ1F0252m2ξ2+38m4ξ4,
αK(hν)=Δα(hν, F0)-2mξ+12ρ1F02(2mξ+3m3ξ3).
nK(hν)=Δn(hν, F0)-2mξ+12ρ1F02(2mξ+3m3ξ3),
α0(hν, F0)=α(0)(hν)+Δα(hν, F0)1+12m2ξ2,
αK(hν, F0)=-Δα(hν, F0)2mξ,
nK(hν, F0)=-Δn(hν, F0)2mξ.
ξeff=αK(hν)2mΔα(hν)=ξ1-12ρ1F021+32m2ξ2.
E1(x, L)=E1(x, 0)exp{i[δ0+δ1 cos(Kx+ϕP)]},
δK=2πnK(hν, F0)Lλ cos θ+i αK(hν, F0)L2 cos θ,
E1(E2, L)=J0(δ1)E1(0)exp(iδ0)+J1(δ1)E2(0)exp[i(δ0+ϕP+π/2)],
I1(I2, L)=η0I1(0)exp(-α0L)+η1I2(0)exp(-α0L)+2I1(0)I2(0) exp(-α0L)×{Re[J1(δ1)J0(δ1*)]sin ϕP-Im[J1(δ1*)J0(δ1)]cos ϕP},
I2(I1, L)=η0I2(0)exp(-α0L)+η1I1(0)exp(-α0L)+2I1(0)I2(0) exp(-α0L)×{Re[J-1(δ1)J0(δ1*)]sin ϕP+Im[J-1(δ1*)J0(δ1)]cos ϕP},
ηM=JM(δ1)JM(δ1*).
I1(I2, L)=exp[-α0(F0)L]×I1(0)-I1(0)I2(0)αK(hν, F0)L2 cos θ cos ϕP+2πnK(hν, F0)Lλ cos θ sin ϕP
I2(I1, L)=exp[-α0(F0)L]×I2(0)-I1(0)I2(0)αK(hν, F0)L2 cos θ cos ϕP-2πnK(hν, F0)Lλ cos θ sin ϕP.
ΔII=I1(I2, F0, L)-I1(0, F0, L)I1(0, F0, L).
ΔII=exp-Δα(F0)L 12m2ξ2×-12m2ξ2Δα(F0)L+2β1+βξΔα(F0)Lcos θ cos ϕP+4πΔn(F0)Lλ cos θ sin ϕP.
ϕ(t)=-4πλd(t).
E1(E2, L)=J0(δ1)E1(0)exp(iδ0)+J1(δ1)E2(0)×expiδ0+ϕP-4πλd(t)+π/2,
E1(E2, L)=E1(0)exp(iδ0)+12δ1E2(0)×expiδ0+δP-4πλd(t)+π/2.
δ1=|δ1|exp(iψ),
12|δ1|=η(λ)=πn1(λ)Lλ cos θ2+α1(λ)L4 cos θ2,
ψ(λ)=tan-1λ4π α1(λ)n1(λ),
E1(E2, L)=exp(iδ0)E1(0)+η(λ)E2(0)×expiϕP+ψ(λ)-4πλd(t)+π/2.
ϕP=-ψ(λ).
δI1=2I1(0)I2(0) exp(-αL)η(λ)×cosϕP+ψ(λ)+π2+4πλ d(t),
δI1=-2I1(0)I2(0) exp(-αL)η(λ)×cos[ϕP+ψ(λ)] 4πλ d(t),
SN=δP1P1(0)exp(-α0L) Δf·hν-ζdet,
SN=2P2(0)ζdethνΔf exp(-α0L/2)η(λ)×cos[ϕP+ψ(λ)] 4πλ d(t).
dmin(λ)=λ4π 12η(λ) cos[ϕP+ψ(λ)]×exp(α0L/2)hνζdet,

Metrics