Abstract

We report, to our knowledge, the first polarization-resolved measurement of the frequency dependence of both the electronic and the electrostrictive contributions to the dc Kerr coefficient in silica. At the acoustic resonance the perpendicular polarization phase shift is a factor of 2.3 times greater than in the parallel polarization, confirming the presence of strong electrostriction. We find good agreement between the phase-shift measurements and theoretical models of both the polarization and frequency dependence. The analysis indicates the dc Kerr coefficient χ1111(3)(−ω;ω, 0, 0) to be 1.9 × 10−22 m2/V2. From these results the electrostrictive contribution to a poled-silica device near the device acoustic resonance is expected to be r33,Es = 28 pm/V, over an order of magnitude greater than the electronic Kerr electro-optic coefficient r33, Kerr=0.2 pm/V.

© 2001 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription