Abstract

Bulk II–VI semi-insulating ternary alloy Cd0.9Zn0.1Te is characterized as a basic material for all-optical switching functions on free-space beams at λ=1.5 µm. The adopted switching mechanism jointly exploits photoconduction and the linear electro-optic effect. Cd0.9Zn0.1Te proves to be six orders of magnitude faster than binary CdTe:In working in the same configuration. Control-beam fluence of less than 0.02 nJ/µm2 is sufficient for complete switching, and an extinction ratio of 23 dB is obtained, limited by spurious crystal birefringence. The role of material parameters in determining switching performances is discussed. A first estimate of the applicability of the switching principle in itself to communication signals is also given.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Eisen and A. Shor, “CdTe and CdZnTe materials for room-temperature X-ray and gamma-ray detectors,” J. Cryst. Growth 184/185, 1302–1312 (1998).
    [CrossRef]
  2. P. Fourgeres, M. Hage-Ali, J. M. Koebel, P. Siffert, S. Hassan, A. Lusson, R. Triboulet, G. Marrakchi, A. Zerrai, K. Cherkaoui, R. Adhiri, G. Bremond, O. Kaitasov, M. O. Ruault, and J. Crestou, “Properties of Cd1−xZnxTe crystals grown by high-pressure Bridgman for nuclear detection,” J. Cryst. Growth 184/185, 1313–1318 (1998).
    [CrossRef]
  3. P. Tribolet, J. P. Chatard, P. Costa, and A. Manissadijan, “Progress in HgCdTe homojunction infrared detectors,” J. Cryst. Growth 184/185, 1262–1271 (1998).
    [CrossRef]
  4. W. H. Steier, J. Kumar, and M. Ziari, “Opto-optical switching in the infrared using CdTe,” Opt. Lett. 14, 224–226 (1989).
    [CrossRef] [PubMed]
  5. M. Ziari, W. Steier, and R. L. S. Levine, “Infrared nonlinear neurons using the field shielding effect in CdTe,” Appl. Opt. 29, 2074–2083 (1990).
    [CrossRef] [PubMed]
  6. S. M. Pietralunga, “Sviluppo e realizzazione di commutatori ottici in materiali semiconduttori,” Ph.D. dissertation (Politecnico di Milano, Italy, 1998).
  7. S. Pietralunga, P. Boffi, and M. Martinelli, “CdTe:In monocrystal modules for all-optical processing,” J. Nonlinear Opt. Phys. Mater. 5, 247–268 (1996).
    [CrossRef]
  8. D. Mottarella, D. Piccinin, P. Boffi, and M. Martinelli, “Free-space architecture for digital signal processing at 1.55mm,” presented at the European Conference on Lasers and Electro-Optics of the Optical Society of America, Hünchen, Germany, June 14–16, 1999, paper LTuB3.
  9. P. Boffi, S. Pietralunga, and M. Martinelli, “Optical time-to-space converter,” Opt. Commun. 123, 473–476 (1996).
    [CrossRef]
  10. P. Boffi and M. Martinelli, “Photonic sampler for 1550-nm signals,” Opt. Lett. 20, 641–643 (1995).
    [CrossRef] [PubMed]
  11. S. M. Johnson, S. Sen, W. Konkel, and M. H. Kalisher, “Optical techniques for composition measurement of bulk and thin-film Cd1−yZnyTe,” J. Vac. Sci. Technol. B 9, 1897–1901 (1991).
    [CrossRef]
  12. S. Adachi and T. Kimura, “Refractive-index dispersion in Zn1−xCdxTe ternary alloys,” Jpn. J. Appl. Phys., Part 1 32, 3866–3867 (1993).
    [CrossRef]
  13. A. Castaldini, A. Cavallini, B. Fraboni, P. Fernandez, and J. Piqueras, “Deep energy levels in CdTe and CdZnTe,” J. Appl. Phys. 83, 2121–2126 (1998).
    [CrossRef]
  14. A. Castaldini, A. Cavallini, B. Fraboni, L. Polenta, P. Fernandez, and J. Piqueras, “Cathodoluminescence and photoinduced current spectroscopy studies of defects in Cd0.8Zn0.2Te,” Phys. Rev. B 54, 7622–7625 (1996).
    [CrossRef]
  15. M. Fiederle, C. Eiche, M. Salk, R. Schwarz, K. W. Benz, “Modified compensation model of CdTe,” J. Appl. Phys. 84, 6689–6692 (1998).
    [CrossRef]
  16. A. Castaldini, A. Cavallini, B. Fraboni, P. Fernandez, and J. Piqueras, “Midgap traps related to compensation processes in CdTe alloys,” Phys. Rev. B 56, 14897–14900 (1997).
    [CrossRef]
  17. W. Stadler, D. M. Hoffmann, H. C. Alt, T. Muschik, B. K. Meyer, E. Weigel, G. Müller-Vogt, M. Salk, E. Rupp, and K. W. Benz, “Optical investigation of defects in Cd1−xZnxTe,” Phys. Rev. B 51, 10619–10630 (1995).
    [CrossRef]
  18. M. Ziari and W. H. Steier, “Optical switching in cadmium telluride using a light-induced electrode nonlinearity,” Appl. Opt. 32, 5711–5723 (1993).
    [CrossRef] [PubMed]
  19. G. Ghislotti, D. Ielmini, E. Riedo, and M. Martinelli, “Picosecond time-resolved studies of defect-related recombination in high resistivity CdTe, CdZnTe,” Proc. Symp. MRS 510, 601–605 (1998).
    [CrossRef]

1998

A. Castaldini, A. Cavallini, B. Fraboni, P. Fernandez, and J. Piqueras, “Deep energy levels in CdTe and CdZnTe,” J. Appl. Phys. 83, 2121–2126 (1998).
[CrossRef]

Y. Eisen and A. Shor, “CdTe and CdZnTe materials for room-temperature X-ray and gamma-ray detectors,” J. Cryst. Growth 184/185, 1302–1312 (1998).
[CrossRef]

P. Fourgeres, M. Hage-Ali, J. M. Koebel, P. Siffert, S. Hassan, A. Lusson, R. Triboulet, G. Marrakchi, A. Zerrai, K. Cherkaoui, R. Adhiri, G. Bremond, O. Kaitasov, M. O. Ruault, and J. Crestou, “Properties of Cd1−xZnxTe crystals grown by high-pressure Bridgman for nuclear detection,” J. Cryst. Growth 184/185, 1313–1318 (1998).
[CrossRef]

P. Tribolet, J. P. Chatard, P. Costa, and A. Manissadijan, “Progress in HgCdTe homojunction infrared detectors,” J. Cryst. Growth 184/185, 1262–1271 (1998).
[CrossRef]

M. Fiederle, C. Eiche, M. Salk, R. Schwarz, K. W. Benz, “Modified compensation model of CdTe,” J. Appl. Phys. 84, 6689–6692 (1998).
[CrossRef]

G. Ghislotti, D. Ielmini, E. Riedo, and M. Martinelli, “Picosecond time-resolved studies of defect-related recombination in high resistivity CdTe, CdZnTe,” Proc. Symp. MRS 510, 601–605 (1998).
[CrossRef]

1997

A. Castaldini, A. Cavallini, B. Fraboni, P. Fernandez, and J. Piqueras, “Midgap traps related to compensation processes in CdTe alloys,” Phys. Rev. B 56, 14897–14900 (1997).
[CrossRef]

1996

S. Pietralunga, P. Boffi, and M. Martinelli, “CdTe:In monocrystal modules for all-optical processing,” J. Nonlinear Opt. Phys. Mater. 5, 247–268 (1996).
[CrossRef]

P. Boffi, S. Pietralunga, and M. Martinelli, “Optical time-to-space converter,” Opt. Commun. 123, 473–476 (1996).
[CrossRef]

A. Castaldini, A. Cavallini, B. Fraboni, L. Polenta, P. Fernandez, and J. Piqueras, “Cathodoluminescence and photoinduced current spectroscopy studies of defects in Cd0.8Zn0.2Te,” Phys. Rev. B 54, 7622–7625 (1996).
[CrossRef]

1995

W. Stadler, D. M. Hoffmann, H. C. Alt, T. Muschik, B. K. Meyer, E. Weigel, G. Müller-Vogt, M. Salk, E. Rupp, and K. W. Benz, “Optical investigation of defects in Cd1−xZnxTe,” Phys. Rev. B 51, 10619–10630 (1995).
[CrossRef]

P. Boffi and M. Martinelli, “Photonic sampler for 1550-nm signals,” Opt. Lett. 20, 641–643 (1995).
[CrossRef] [PubMed]

1993

M. Ziari and W. H. Steier, “Optical switching in cadmium telluride using a light-induced electrode nonlinearity,” Appl. Opt. 32, 5711–5723 (1993).
[CrossRef] [PubMed]

S. Adachi and T. Kimura, “Refractive-index dispersion in Zn1−xCdxTe ternary alloys,” Jpn. J. Appl. Phys., Part 1 32, 3866–3867 (1993).
[CrossRef]

1991

S. M. Johnson, S. Sen, W. Konkel, and M. H. Kalisher, “Optical techniques for composition measurement of bulk and thin-film Cd1−yZnyTe,” J. Vac. Sci. Technol. B 9, 1897–1901 (1991).
[CrossRef]

1990

1989

Adachi, S.

S. Adachi and T. Kimura, “Refractive-index dispersion in Zn1−xCdxTe ternary alloys,” Jpn. J. Appl. Phys., Part 1 32, 3866–3867 (1993).
[CrossRef]

Adhiri, R.

P. Fourgeres, M. Hage-Ali, J. M. Koebel, P. Siffert, S. Hassan, A. Lusson, R. Triboulet, G. Marrakchi, A. Zerrai, K. Cherkaoui, R. Adhiri, G. Bremond, O. Kaitasov, M. O. Ruault, and J. Crestou, “Properties of Cd1−xZnxTe crystals grown by high-pressure Bridgman for nuclear detection,” J. Cryst. Growth 184/185, 1313–1318 (1998).
[CrossRef]

Alt, H. C.

W. Stadler, D. M. Hoffmann, H. C. Alt, T. Muschik, B. K. Meyer, E. Weigel, G. Müller-Vogt, M. Salk, E. Rupp, and K. W. Benz, “Optical investigation of defects in Cd1−xZnxTe,” Phys. Rev. B 51, 10619–10630 (1995).
[CrossRef]

Benz, K. W.

M. Fiederle, C. Eiche, M. Salk, R. Schwarz, K. W. Benz, “Modified compensation model of CdTe,” J. Appl. Phys. 84, 6689–6692 (1998).
[CrossRef]

W. Stadler, D. M. Hoffmann, H. C. Alt, T. Muschik, B. K. Meyer, E. Weigel, G. Müller-Vogt, M. Salk, E. Rupp, and K. W. Benz, “Optical investigation of defects in Cd1−xZnxTe,” Phys. Rev. B 51, 10619–10630 (1995).
[CrossRef]

Boffi, P.

S. Pietralunga, P. Boffi, and M. Martinelli, “CdTe:In monocrystal modules for all-optical processing,” J. Nonlinear Opt. Phys. Mater. 5, 247–268 (1996).
[CrossRef]

P. Boffi, S. Pietralunga, and M. Martinelli, “Optical time-to-space converter,” Opt. Commun. 123, 473–476 (1996).
[CrossRef]

P. Boffi and M. Martinelli, “Photonic sampler for 1550-nm signals,” Opt. Lett. 20, 641–643 (1995).
[CrossRef] [PubMed]

Bremond, G.

P. Fourgeres, M. Hage-Ali, J. M. Koebel, P. Siffert, S. Hassan, A. Lusson, R. Triboulet, G. Marrakchi, A. Zerrai, K. Cherkaoui, R. Adhiri, G. Bremond, O. Kaitasov, M. O. Ruault, and J. Crestou, “Properties of Cd1−xZnxTe crystals grown by high-pressure Bridgman for nuclear detection,” J. Cryst. Growth 184/185, 1313–1318 (1998).
[CrossRef]

Castaldini, A.

A. Castaldini, A. Cavallini, B. Fraboni, P. Fernandez, and J. Piqueras, “Deep energy levels in CdTe and CdZnTe,” J. Appl. Phys. 83, 2121–2126 (1998).
[CrossRef]

A. Castaldini, A. Cavallini, B. Fraboni, P. Fernandez, and J. Piqueras, “Midgap traps related to compensation processes in CdTe alloys,” Phys. Rev. B 56, 14897–14900 (1997).
[CrossRef]

A. Castaldini, A. Cavallini, B. Fraboni, L. Polenta, P. Fernandez, and J. Piqueras, “Cathodoluminescence and photoinduced current spectroscopy studies of defects in Cd0.8Zn0.2Te,” Phys. Rev. B 54, 7622–7625 (1996).
[CrossRef]

Cavallini, A.

A. Castaldini, A. Cavallini, B. Fraboni, P. Fernandez, and J. Piqueras, “Deep energy levels in CdTe and CdZnTe,” J. Appl. Phys. 83, 2121–2126 (1998).
[CrossRef]

A. Castaldini, A. Cavallini, B. Fraboni, P. Fernandez, and J. Piqueras, “Midgap traps related to compensation processes in CdTe alloys,” Phys. Rev. B 56, 14897–14900 (1997).
[CrossRef]

A. Castaldini, A. Cavallini, B. Fraboni, L. Polenta, P. Fernandez, and J. Piqueras, “Cathodoluminescence and photoinduced current spectroscopy studies of defects in Cd0.8Zn0.2Te,” Phys. Rev. B 54, 7622–7625 (1996).
[CrossRef]

Chatard, J. P.

P. Tribolet, J. P. Chatard, P. Costa, and A. Manissadijan, “Progress in HgCdTe homojunction infrared detectors,” J. Cryst. Growth 184/185, 1262–1271 (1998).
[CrossRef]

Cherkaoui, K.

P. Fourgeres, M. Hage-Ali, J. M. Koebel, P. Siffert, S. Hassan, A. Lusson, R. Triboulet, G. Marrakchi, A. Zerrai, K. Cherkaoui, R. Adhiri, G. Bremond, O. Kaitasov, M. O. Ruault, and J. Crestou, “Properties of Cd1−xZnxTe crystals grown by high-pressure Bridgman for nuclear detection,” J. Cryst. Growth 184/185, 1313–1318 (1998).
[CrossRef]

Costa, P.

P. Tribolet, J. P. Chatard, P. Costa, and A. Manissadijan, “Progress in HgCdTe homojunction infrared detectors,” J. Cryst. Growth 184/185, 1262–1271 (1998).
[CrossRef]

Crestou, J.

P. Fourgeres, M. Hage-Ali, J. M. Koebel, P. Siffert, S. Hassan, A. Lusson, R. Triboulet, G. Marrakchi, A. Zerrai, K. Cherkaoui, R. Adhiri, G. Bremond, O. Kaitasov, M. O. Ruault, and J. Crestou, “Properties of Cd1−xZnxTe crystals grown by high-pressure Bridgman for nuclear detection,” J. Cryst. Growth 184/185, 1313–1318 (1998).
[CrossRef]

Eiche, C.

M. Fiederle, C. Eiche, M. Salk, R. Schwarz, K. W. Benz, “Modified compensation model of CdTe,” J. Appl. Phys. 84, 6689–6692 (1998).
[CrossRef]

Eisen, Y.

Y. Eisen and A. Shor, “CdTe and CdZnTe materials for room-temperature X-ray and gamma-ray detectors,” J. Cryst. Growth 184/185, 1302–1312 (1998).
[CrossRef]

Fernandez, P.

A. Castaldini, A. Cavallini, B. Fraboni, P. Fernandez, and J. Piqueras, “Deep energy levels in CdTe and CdZnTe,” J. Appl. Phys. 83, 2121–2126 (1998).
[CrossRef]

A. Castaldini, A. Cavallini, B. Fraboni, P. Fernandez, and J. Piqueras, “Midgap traps related to compensation processes in CdTe alloys,” Phys. Rev. B 56, 14897–14900 (1997).
[CrossRef]

A. Castaldini, A. Cavallini, B. Fraboni, L. Polenta, P. Fernandez, and J. Piqueras, “Cathodoluminescence and photoinduced current spectroscopy studies of defects in Cd0.8Zn0.2Te,” Phys. Rev. B 54, 7622–7625 (1996).
[CrossRef]

Fiederle, M.

M. Fiederle, C. Eiche, M. Salk, R. Schwarz, K. W. Benz, “Modified compensation model of CdTe,” J. Appl. Phys. 84, 6689–6692 (1998).
[CrossRef]

Fourgeres, P.

P. Fourgeres, M. Hage-Ali, J. M. Koebel, P. Siffert, S. Hassan, A. Lusson, R. Triboulet, G. Marrakchi, A. Zerrai, K. Cherkaoui, R. Adhiri, G. Bremond, O. Kaitasov, M. O. Ruault, and J. Crestou, “Properties of Cd1−xZnxTe crystals grown by high-pressure Bridgman for nuclear detection,” J. Cryst. Growth 184/185, 1313–1318 (1998).
[CrossRef]

Fraboni, B.

A. Castaldini, A. Cavallini, B. Fraboni, P. Fernandez, and J. Piqueras, “Deep energy levels in CdTe and CdZnTe,” J. Appl. Phys. 83, 2121–2126 (1998).
[CrossRef]

A. Castaldini, A. Cavallini, B. Fraboni, P. Fernandez, and J. Piqueras, “Midgap traps related to compensation processes in CdTe alloys,” Phys. Rev. B 56, 14897–14900 (1997).
[CrossRef]

A. Castaldini, A. Cavallini, B. Fraboni, L. Polenta, P. Fernandez, and J. Piqueras, “Cathodoluminescence and photoinduced current spectroscopy studies of defects in Cd0.8Zn0.2Te,” Phys. Rev. B 54, 7622–7625 (1996).
[CrossRef]

Ghislotti, G.

G. Ghislotti, D. Ielmini, E. Riedo, and M. Martinelli, “Picosecond time-resolved studies of defect-related recombination in high resistivity CdTe, CdZnTe,” Proc. Symp. MRS 510, 601–605 (1998).
[CrossRef]

Hage-Ali, M.

P. Fourgeres, M. Hage-Ali, J. M. Koebel, P. Siffert, S. Hassan, A. Lusson, R. Triboulet, G. Marrakchi, A. Zerrai, K. Cherkaoui, R. Adhiri, G. Bremond, O. Kaitasov, M. O. Ruault, and J. Crestou, “Properties of Cd1−xZnxTe crystals grown by high-pressure Bridgman for nuclear detection,” J. Cryst. Growth 184/185, 1313–1318 (1998).
[CrossRef]

Hassan, S.

P. Fourgeres, M. Hage-Ali, J. M. Koebel, P. Siffert, S. Hassan, A. Lusson, R. Triboulet, G. Marrakchi, A. Zerrai, K. Cherkaoui, R. Adhiri, G. Bremond, O. Kaitasov, M. O. Ruault, and J. Crestou, “Properties of Cd1−xZnxTe crystals grown by high-pressure Bridgman for nuclear detection,” J. Cryst. Growth 184/185, 1313–1318 (1998).
[CrossRef]

Hoffmann, D. M.

W. Stadler, D. M. Hoffmann, H. C. Alt, T. Muschik, B. K. Meyer, E. Weigel, G. Müller-Vogt, M. Salk, E. Rupp, and K. W. Benz, “Optical investigation of defects in Cd1−xZnxTe,” Phys. Rev. B 51, 10619–10630 (1995).
[CrossRef]

Ielmini, D.

G. Ghislotti, D. Ielmini, E. Riedo, and M. Martinelli, “Picosecond time-resolved studies of defect-related recombination in high resistivity CdTe, CdZnTe,” Proc. Symp. MRS 510, 601–605 (1998).
[CrossRef]

Johnson, S. M.

S. M. Johnson, S. Sen, W. Konkel, and M. H. Kalisher, “Optical techniques for composition measurement of bulk and thin-film Cd1−yZnyTe,” J. Vac. Sci. Technol. B 9, 1897–1901 (1991).
[CrossRef]

Kaitasov, O.

P. Fourgeres, M. Hage-Ali, J. M. Koebel, P. Siffert, S. Hassan, A. Lusson, R. Triboulet, G. Marrakchi, A. Zerrai, K. Cherkaoui, R. Adhiri, G. Bremond, O. Kaitasov, M. O. Ruault, and J. Crestou, “Properties of Cd1−xZnxTe crystals grown by high-pressure Bridgman for nuclear detection,” J. Cryst. Growth 184/185, 1313–1318 (1998).
[CrossRef]

Kalisher, M. H.

S. M. Johnson, S. Sen, W. Konkel, and M. H. Kalisher, “Optical techniques for composition measurement of bulk and thin-film Cd1−yZnyTe,” J. Vac. Sci. Technol. B 9, 1897–1901 (1991).
[CrossRef]

Kimura, T.

S. Adachi and T. Kimura, “Refractive-index dispersion in Zn1−xCdxTe ternary alloys,” Jpn. J. Appl. Phys., Part 1 32, 3866–3867 (1993).
[CrossRef]

Koebel, J. M.

P. Fourgeres, M. Hage-Ali, J. M. Koebel, P. Siffert, S. Hassan, A. Lusson, R. Triboulet, G. Marrakchi, A. Zerrai, K. Cherkaoui, R. Adhiri, G. Bremond, O. Kaitasov, M. O. Ruault, and J. Crestou, “Properties of Cd1−xZnxTe crystals grown by high-pressure Bridgman for nuclear detection,” J. Cryst. Growth 184/185, 1313–1318 (1998).
[CrossRef]

Konkel, W.

S. M. Johnson, S. Sen, W. Konkel, and M. H. Kalisher, “Optical techniques for composition measurement of bulk and thin-film Cd1−yZnyTe,” J. Vac. Sci. Technol. B 9, 1897–1901 (1991).
[CrossRef]

Kumar, J.

Levine, R. L. S.

Lusson, A.

P. Fourgeres, M. Hage-Ali, J. M. Koebel, P. Siffert, S. Hassan, A. Lusson, R. Triboulet, G. Marrakchi, A. Zerrai, K. Cherkaoui, R. Adhiri, G. Bremond, O. Kaitasov, M. O. Ruault, and J. Crestou, “Properties of Cd1−xZnxTe crystals grown by high-pressure Bridgman for nuclear detection,” J. Cryst. Growth 184/185, 1313–1318 (1998).
[CrossRef]

Manissadijan, A.

P. Tribolet, J. P. Chatard, P. Costa, and A. Manissadijan, “Progress in HgCdTe homojunction infrared detectors,” J. Cryst. Growth 184/185, 1262–1271 (1998).
[CrossRef]

Marrakchi, G.

P. Fourgeres, M. Hage-Ali, J. M. Koebel, P. Siffert, S. Hassan, A. Lusson, R. Triboulet, G. Marrakchi, A. Zerrai, K. Cherkaoui, R. Adhiri, G. Bremond, O. Kaitasov, M. O. Ruault, and J. Crestou, “Properties of Cd1−xZnxTe crystals grown by high-pressure Bridgman for nuclear detection,” J. Cryst. Growth 184/185, 1313–1318 (1998).
[CrossRef]

Martinelli, M.

G. Ghislotti, D. Ielmini, E. Riedo, and M. Martinelli, “Picosecond time-resolved studies of defect-related recombination in high resistivity CdTe, CdZnTe,” Proc. Symp. MRS 510, 601–605 (1998).
[CrossRef]

S. Pietralunga, P. Boffi, and M. Martinelli, “CdTe:In monocrystal modules for all-optical processing,” J. Nonlinear Opt. Phys. Mater. 5, 247–268 (1996).
[CrossRef]

P. Boffi, S. Pietralunga, and M. Martinelli, “Optical time-to-space converter,” Opt. Commun. 123, 473–476 (1996).
[CrossRef]

P. Boffi and M. Martinelli, “Photonic sampler for 1550-nm signals,” Opt. Lett. 20, 641–643 (1995).
[CrossRef] [PubMed]

Meyer, B. K.

W. Stadler, D. M. Hoffmann, H. C. Alt, T. Muschik, B. K. Meyer, E. Weigel, G. Müller-Vogt, M. Salk, E. Rupp, and K. W. Benz, “Optical investigation of defects in Cd1−xZnxTe,” Phys. Rev. B 51, 10619–10630 (1995).
[CrossRef]

Müller-Vogt, G.

W. Stadler, D. M. Hoffmann, H. C. Alt, T. Muschik, B. K. Meyer, E. Weigel, G. Müller-Vogt, M. Salk, E. Rupp, and K. W. Benz, “Optical investigation of defects in Cd1−xZnxTe,” Phys. Rev. B 51, 10619–10630 (1995).
[CrossRef]

Muschik, T.

W. Stadler, D. M. Hoffmann, H. C. Alt, T. Muschik, B. K. Meyer, E. Weigel, G. Müller-Vogt, M. Salk, E. Rupp, and K. W. Benz, “Optical investigation of defects in Cd1−xZnxTe,” Phys. Rev. B 51, 10619–10630 (1995).
[CrossRef]

Pietralunga, S.

S. Pietralunga, P. Boffi, and M. Martinelli, “CdTe:In monocrystal modules for all-optical processing,” J. Nonlinear Opt. Phys. Mater. 5, 247–268 (1996).
[CrossRef]

P. Boffi, S. Pietralunga, and M. Martinelli, “Optical time-to-space converter,” Opt. Commun. 123, 473–476 (1996).
[CrossRef]

Piqueras, J.

A. Castaldini, A. Cavallini, B. Fraboni, P. Fernandez, and J. Piqueras, “Deep energy levels in CdTe and CdZnTe,” J. Appl. Phys. 83, 2121–2126 (1998).
[CrossRef]

A. Castaldini, A. Cavallini, B. Fraboni, P. Fernandez, and J. Piqueras, “Midgap traps related to compensation processes in CdTe alloys,” Phys. Rev. B 56, 14897–14900 (1997).
[CrossRef]

A. Castaldini, A. Cavallini, B. Fraboni, L. Polenta, P. Fernandez, and J. Piqueras, “Cathodoluminescence and photoinduced current spectroscopy studies of defects in Cd0.8Zn0.2Te,” Phys. Rev. B 54, 7622–7625 (1996).
[CrossRef]

Polenta, L.

A. Castaldini, A. Cavallini, B. Fraboni, L. Polenta, P. Fernandez, and J. Piqueras, “Cathodoluminescence and photoinduced current spectroscopy studies of defects in Cd0.8Zn0.2Te,” Phys. Rev. B 54, 7622–7625 (1996).
[CrossRef]

Riedo, E.

G. Ghislotti, D. Ielmini, E. Riedo, and M. Martinelli, “Picosecond time-resolved studies of defect-related recombination in high resistivity CdTe, CdZnTe,” Proc. Symp. MRS 510, 601–605 (1998).
[CrossRef]

Ruault, M. O.

P. Fourgeres, M. Hage-Ali, J. M. Koebel, P. Siffert, S. Hassan, A. Lusson, R. Triboulet, G. Marrakchi, A. Zerrai, K. Cherkaoui, R. Adhiri, G. Bremond, O. Kaitasov, M. O. Ruault, and J. Crestou, “Properties of Cd1−xZnxTe crystals grown by high-pressure Bridgman for nuclear detection,” J. Cryst. Growth 184/185, 1313–1318 (1998).
[CrossRef]

Rupp, E.

W. Stadler, D. M. Hoffmann, H. C. Alt, T. Muschik, B. K. Meyer, E. Weigel, G. Müller-Vogt, M. Salk, E. Rupp, and K. W. Benz, “Optical investigation of defects in Cd1−xZnxTe,” Phys. Rev. B 51, 10619–10630 (1995).
[CrossRef]

Salk, M.

M. Fiederle, C. Eiche, M. Salk, R. Schwarz, K. W. Benz, “Modified compensation model of CdTe,” J. Appl. Phys. 84, 6689–6692 (1998).
[CrossRef]

W. Stadler, D. M. Hoffmann, H. C. Alt, T. Muschik, B. K. Meyer, E. Weigel, G. Müller-Vogt, M. Salk, E. Rupp, and K. W. Benz, “Optical investigation of defects in Cd1−xZnxTe,” Phys. Rev. B 51, 10619–10630 (1995).
[CrossRef]

Schwarz, R.

M. Fiederle, C. Eiche, M. Salk, R. Schwarz, K. W. Benz, “Modified compensation model of CdTe,” J. Appl. Phys. 84, 6689–6692 (1998).
[CrossRef]

Sen, S.

S. M. Johnson, S. Sen, W. Konkel, and M. H. Kalisher, “Optical techniques for composition measurement of bulk and thin-film Cd1−yZnyTe,” J. Vac. Sci. Technol. B 9, 1897–1901 (1991).
[CrossRef]

Shor, A.

Y. Eisen and A. Shor, “CdTe and CdZnTe materials for room-temperature X-ray and gamma-ray detectors,” J. Cryst. Growth 184/185, 1302–1312 (1998).
[CrossRef]

Siffert, P.

P. Fourgeres, M. Hage-Ali, J. M. Koebel, P. Siffert, S. Hassan, A. Lusson, R. Triboulet, G. Marrakchi, A. Zerrai, K. Cherkaoui, R. Adhiri, G. Bremond, O. Kaitasov, M. O. Ruault, and J. Crestou, “Properties of Cd1−xZnxTe crystals grown by high-pressure Bridgman for nuclear detection,” J. Cryst. Growth 184/185, 1313–1318 (1998).
[CrossRef]

Stadler, W.

W. Stadler, D. M. Hoffmann, H. C. Alt, T. Muschik, B. K. Meyer, E. Weigel, G. Müller-Vogt, M. Salk, E. Rupp, and K. W. Benz, “Optical investigation of defects in Cd1−xZnxTe,” Phys. Rev. B 51, 10619–10630 (1995).
[CrossRef]

Steier, W.

Steier, W. H.

Tribolet, P.

P. Tribolet, J. P. Chatard, P. Costa, and A. Manissadijan, “Progress in HgCdTe homojunction infrared detectors,” J. Cryst. Growth 184/185, 1262–1271 (1998).
[CrossRef]

Triboulet, R.

P. Fourgeres, M. Hage-Ali, J. M. Koebel, P. Siffert, S. Hassan, A. Lusson, R. Triboulet, G. Marrakchi, A. Zerrai, K. Cherkaoui, R. Adhiri, G. Bremond, O. Kaitasov, M. O. Ruault, and J. Crestou, “Properties of Cd1−xZnxTe crystals grown by high-pressure Bridgman for nuclear detection,” J. Cryst. Growth 184/185, 1313–1318 (1998).
[CrossRef]

Weigel, E.

W. Stadler, D. M. Hoffmann, H. C. Alt, T. Muschik, B. K. Meyer, E. Weigel, G. Müller-Vogt, M. Salk, E. Rupp, and K. W. Benz, “Optical investigation of defects in Cd1−xZnxTe,” Phys. Rev. B 51, 10619–10630 (1995).
[CrossRef]

Zerrai, A.

P. Fourgeres, M. Hage-Ali, J. M. Koebel, P. Siffert, S. Hassan, A. Lusson, R. Triboulet, G. Marrakchi, A. Zerrai, K. Cherkaoui, R. Adhiri, G. Bremond, O. Kaitasov, M. O. Ruault, and J. Crestou, “Properties of Cd1−xZnxTe crystals grown by high-pressure Bridgman for nuclear detection,” J. Cryst. Growth 184/185, 1313–1318 (1998).
[CrossRef]

Ziari, M.

Appl. Opt.

J. Appl. Phys.

M. Fiederle, C. Eiche, M. Salk, R. Schwarz, K. W. Benz, “Modified compensation model of CdTe,” J. Appl. Phys. 84, 6689–6692 (1998).
[CrossRef]

A. Castaldini, A. Cavallini, B. Fraboni, P. Fernandez, and J. Piqueras, “Deep energy levels in CdTe and CdZnTe,” J. Appl. Phys. 83, 2121–2126 (1998).
[CrossRef]

J. Cryst. Growth

Y. Eisen and A. Shor, “CdTe and CdZnTe materials for room-temperature X-ray and gamma-ray detectors,” J. Cryst. Growth 184/185, 1302–1312 (1998).
[CrossRef]

P. Fourgeres, M. Hage-Ali, J. M. Koebel, P. Siffert, S. Hassan, A. Lusson, R. Triboulet, G. Marrakchi, A. Zerrai, K. Cherkaoui, R. Adhiri, G. Bremond, O. Kaitasov, M. O. Ruault, and J. Crestou, “Properties of Cd1−xZnxTe crystals grown by high-pressure Bridgman for nuclear detection,” J. Cryst. Growth 184/185, 1313–1318 (1998).
[CrossRef]

P. Tribolet, J. P. Chatard, P. Costa, and A. Manissadijan, “Progress in HgCdTe homojunction infrared detectors,” J. Cryst. Growth 184/185, 1262–1271 (1998).
[CrossRef]

J. Nonlinear Opt. Phys. Mater.

S. Pietralunga, P. Boffi, and M. Martinelli, “CdTe:In monocrystal modules for all-optical processing,” J. Nonlinear Opt. Phys. Mater. 5, 247–268 (1996).
[CrossRef]

J. Vac. Sci. Technol. B

S. M. Johnson, S. Sen, W. Konkel, and M. H. Kalisher, “Optical techniques for composition measurement of bulk and thin-film Cd1−yZnyTe,” J. Vac. Sci. Technol. B 9, 1897–1901 (1991).
[CrossRef]

Jpn. J. Appl. Phys., Part 1

S. Adachi and T. Kimura, “Refractive-index dispersion in Zn1−xCdxTe ternary alloys,” Jpn. J. Appl. Phys., Part 1 32, 3866–3867 (1993).
[CrossRef]

Opt. Commun.

P. Boffi, S. Pietralunga, and M. Martinelli, “Optical time-to-space converter,” Opt. Commun. 123, 473–476 (1996).
[CrossRef]

Opt. Lett.

Phys. Rev. B

A. Castaldini, A. Cavallini, B. Fraboni, L. Polenta, P. Fernandez, and J. Piqueras, “Cathodoluminescence and photoinduced current spectroscopy studies of defects in Cd0.8Zn0.2Te,” Phys. Rev. B 54, 7622–7625 (1996).
[CrossRef]

A. Castaldini, A. Cavallini, B. Fraboni, P. Fernandez, and J. Piqueras, “Midgap traps related to compensation processes in CdTe alloys,” Phys. Rev. B 56, 14897–14900 (1997).
[CrossRef]

W. Stadler, D. M. Hoffmann, H. C. Alt, T. Muschik, B. K. Meyer, E. Weigel, G. Müller-Vogt, M. Salk, E. Rupp, and K. W. Benz, “Optical investigation of defects in Cd1−xZnxTe,” Phys. Rev. B 51, 10619–10630 (1995).
[CrossRef]

Proc. Symp. MRS

G. Ghislotti, D. Ielmini, E. Riedo, and M. Martinelli, “Picosecond time-resolved studies of defect-related recombination in high resistivity CdTe, CdZnTe,” Proc. Symp. MRS 510, 601–605 (1998).
[CrossRef]

Other

D. Mottarella, D. Piccinin, P. Boffi, and M. Martinelli, “Free-space architecture for digital signal processing at 1.55mm,” presented at the European Conference on Lasers and Electro-Optics of the Optical Society of America, Hünchen, Germany, June 14–16, 1999, paper LTuB3.

S. M. Pietralunga, “Sviluppo e realizzazione di commutatori ottici in materiali semiconduttori,” Ph.D. dissertation (Politecnico di Milano, Italy, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Absorption spectrum of CdZnTe.

Fig. 2
Fig. 2

Schematic representation of the switching mechanism in CdZnTe. Pockels linear effect and below-bandgap photoconduction are jointly exploited. In the insert, the cut and orientation of the crystal sample are given, together with the direction of the biasing electric field and the state of polarization of the probe optical beam.

Fig. 3
Fig. 3

Experimental setup for single-pulse optical switching characterization.

Fig. 4
Fig. 4

All-optical switching of a λ=1.55 µm signal beam, controlled by a pump beam at λ=1.064 µm, of FWHM10 ns, at different pump-beam energies. Threshold energy corresponds to the minimum amount leading to complete transmission switching; in this case E5 µJ.

Fig. 5
Fig. 5

Dependence of switching characteristic times on the activating energy: (a) duration of the gating window τop, measured at constant transmission; (b) recovery-time constant of the optically generated electric field distribution, obtained from single-exponential fitting of the switching-off transient.

Fig. 6
Fig. 6

Threshold values of control photonic flux for complete transmission switching at different activating wavelengths.

Fig. 7
Fig. 7

Temporal evolution of the transmitted probe beam, for subpicosecond control pulses. Incident pulse energy is ∼2 nJ.

Fig. 8
Fig. 8

Experimental setup for characterization of the switching response to the cascade of two activating pulses, delayed by 170 ns.

Fig. 9
Fig. 9

All-optical switching response to the cascade of two activating pulses at λ=1.064, 170-ns delayed: (a) low activating energy such that τop-cell>τr=(τop+τoff); (b) higher activating energy τop-cell<τr=(τop+τoff).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T=IoutIin=sin2πλn03r41LE.
Eπ=Vπd=12 λL(n03r41)-1

Metrics