Abstract

It is shown theoretically that synchronization between two chaotic self-pulsating laser diodes can be achieved by use of optical feedback levels of a few percent. The sensitivity of the synchronization to parameter changes is examined. A synchronization scheme that utilizes self-pulsating compact disc laser diodes could produce low-cost stand-alone transmitters and receivers for private communication systems.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ott, C. Greboggi, and J. A. Yorke, “Controlling chaos,” Phys. Rev. Lett. 64, 1196–1199 (1990).
    [CrossRef] [PubMed]
  2. R. Roy, T. W. Murphy, T. D. Maier, Z. Gills, and E. R. Hunt, “Dynamical control of a chaotic laser—experimental stabilization of a globally coupled system,” Phys. Rev. Lett. 68, 1259–1261 (1992).
    [CrossRef] [PubMed]
  3. S. Bielawski, M. Bouazaoui, D. Derosier, and P. Glorieux, “Stabilization and characterization of unstable steady states in a laser,” Phys. Rev. A 47, 3276–3279 (1993).
    [CrossRef] [PubMed]
  4. S. Bielawski, M. Bouazaoui, D. Derosier, and P. Glorieux, “Controlling unstable periodic orbits by delayed continuous feedback,” Phys. Rev. E 49, 971–973 (1994).
    [CrossRef]
  5. S. Hayes, C. Greboggi, and E. Ott, “Communicating with chaos,” Phys. Rev. Lett. 70, 3031–3034 (1993).
    [CrossRef] [PubMed]
  6. R. Roy and K. S. Thornburg, “Experimental synchronization of chaotic lasers,” Phys. Rev. Lett. 72, 2009–2012 (1994).
    [CrossRef] [PubMed]
  7. N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, and H. D. I. Abarbanel, “Generalized synchronization of chaos in directionally coupled chaotic systems,” Phys. Rev. E 51, 980–994 (1995).
    [CrossRef]
  8. H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, “Generalized synchronization of chaos: the auxiliary system approach,” Phys. Rev. E 53, 4528–4535 (1996).
    [CrossRef]
  9. D. Y. Tang, R. Dykstra, M. W. Hamilton, and N. R. Heckenberg, “Observation of generalized synchronization of chaos in a driven chaotic system,” Phys. Rev. E 57, 5247–5251 (1998).
    [CrossRef]
  10. P. S. Spencer, C. R. Mirasso, P. Colet, and K. A. Shore, “Modeling of optical synchronization of chaotic external-cavity VCSEL’s,” IEEE J. Quantum Electron. 34, 1673–1679 (1998).
    [CrossRef]
  11. S. Sivaprakasam and K. A. Shore, “Demonstration of optical synchronization of chaotic external-cavity laser diodes,” Opt. Lett. 24, 466–468 (1999).
    [CrossRef]
  12. G. D. Van Wiggeren and R. Roy, “Communication with chaotic lasers,” Science 279, 1198–1200 (1998).
    [CrossRef]
  13. J. P. Goedgebuer, L. Larger, and H. Porte, “Optical cryptosystem based on synchronization of hyperchaos generated by delayed feedback tunable laser diode,” Phys. Rev. Lett. 80, 2249–2252 (1998).
    [CrossRef]
  14. S. Sivaprakasam and K. A. Shore, “Signal masking for chaotic optical communication using external-cavity diode lasers,” Opt. Lett. 24, 1200–1202 (1999).
    [CrossRef]
  15. S. Sivaprakasam and K. A. Shore, “Message encoding and decoding using chaotic external-cavity diode lasers,” IEEE J. Quantum Electron. 36, 35–39 (2000).
    [CrossRef]
  16. V. Annovazzi-Lodi, S. Donati, and A. Scire, “Synchronization of chaotic injected-laser systems and its application to optical cryptography,” IEEE J. Quantum Electron. 32, 953–959 (1996).
    [CrossRef]
  17. H. Kawaguchi, “Optical bistability and chaos in a semiconductor laser with a saturable absorber,” Appl. Phys. Lett. 45, 1264–1266 (1984).
    [CrossRef]
  18. C. Juang, M. R. Chen, and J. Juang, “Nonlinear dynamics of self-pulsating laser diodes under external drive,” Opt. Lett. 24, 1346–1348 (1999).
    [CrossRef]
  19. M. Yamada, “A theoretical analysis of self-sustained pulsation phenomena in narrow-stripe semiconductor lasers,” IEEE J. Quantum Electron. 29, 1330–1336 (1993).
    [CrossRef]
  20. C. Juang, T. M. Hwang, J. Juang, and W. W. Lin, “A synchronization scheme using self-pulsating laser diodes in optical chaotic communication,” IEEE J. Quantum Electron. 36, 300–304 (2000).
    [CrossRef]
  21. N. Schunk and K. Petermann, “Noise analysis on injection-locked semiconductor lasers,” IEEE J. Quantum Electron. 22, 642–650 (1986).
    [CrossRef]

2000 (2)

S. Sivaprakasam and K. A. Shore, “Message encoding and decoding using chaotic external-cavity diode lasers,” IEEE J. Quantum Electron. 36, 35–39 (2000).
[CrossRef]

C. Juang, T. M. Hwang, J. Juang, and W. W. Lin, “A synchronization scheme using self-pulsating laser diodes in optical chaotic communication,” IEEE J. Quantum Electron. 36, 300–304 (2000).
[CrossRef]

1999 (3)

1998 (4)

G. D. Van Wiggeren and R. Roy, “Communication with chaotic lasers,” Science 279, 1198–1200 (1998).
[CrossRef]

J. P. Goedgebuer, L. Larger, and H. Porte, “Optical cryptosystem based on synchronization of hyperchaos generated by delayed feedback tunable laser diode,” Phys. Rev. Lett. 80, 2249–2252 (1998).
[CrossRef]

D. Y. Tang, R. Dykstra, M. W. Hamilton, and N. R. Heckenberg, “Observation of generalized synchronization of chaos in a driven chaotic system,” Phys. Rev. E 57, 5247–5251 (1998).
[CrossRef]

P. S. Spencer, C. R. Mirasso, P. Colet, and K. A. Shore, “Modeling of optical synchronization of chaotic external-cavity VCSEL’s,” IEEE J. Quantum Electron. 34, 1673–1679 (1998).
[CrossRef]

1996 (2)

V. Annovazzi-Lodi, S. Donati, and A. Scire, “Synchronization of chaotic injected-laser systems and its application to optical cryptography,” IEEE J. Quantum Electron. 32, 953–959 (1996).
[CrossRef]

H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, “Generalized synchronization of chaos: the auxiliary system approach,” Phys. Rev. E 53, 4528–4535 (1996).
[CrossRef]

1995 (1)

N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, and H. D. I. Abarbanel, “Generalized synchronization of chaos in directionally coupled chaotic systems,” Phys. Rev. E 51, 980–994 (1995).
[CrossRef]

1994 (2)

R. Roy and K. S. Thornburg, “Experimental synchronization of chaotic lasers,” Phys. Rev. Lett. 72, 2009–2012 (1994).
[CrossRef] [PubMed]

S. Bielawski, M. Bouazaoui, D. Derosier, and P. Glorieux, “Controlling unstable periodic orbits by delayed continuous feedback,” Phys. Rev. E 49, 971–973 (1994).
[CrossRef]

1993 (3)

S. Hayes, C. Greboggi, and E. Ott, “Communicating with chaos,” Phys. Rev. Lett. 70, 3031–3034 (1993).
[CrossRef] [PubMed]

S. Bielawski, M. Bouazaoui, D. Derosier, and P. Glorieux, “Stabilization and characterization of unstable steady states in a laser,” Phys. Rev. A 47, 3276–3279 (1993).
[CrossRef] [PubMed]

M. Yamada, “A theoretical analysis of self-sustained pulsation phenomena in narrow-stripe semiconductor lasers,” IEEE J. Quantum Electron. 29, 1330–1336 (1993).
[CrossRef]

1992 (1)

R. Roy, T. W. Murphy, T. D. Maier, Z. Gills, and E. R. Hunt, “Dynamical control of a chaotic laser—experimental stabilization of a globally coupled system,” Phys. Rev. Lett. 68, 1259–1261 (1992).
[CrossRef] [PubMed]

1990 (1)

E. Ott, C. Greboggi, and J. A. Yorke, “Controlling chaos,” Phys. Rev. Lett. 64, 1196–1199 (1990).
[CrossRef] [PubMed]

1986 (1)

N. Schunk and K. Petermann, “Noise analysis on injection-locked semiconductor lasers,” IEEE J. Quantum Electron. 22, 642–650 (1986).
[CrossRef]

1984 (1)

H. Kawaguchi, “Optical bistability and chaos in a semiconductor laser with a saturable absorber,” Appl. Phys. Lett. 45, 1264–1266 (1984).
[CrossRef]

Abarbanel, H. D. I.

H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, “Generalized synchronization of chaos: the auxiliary system approach,” Phys. Rev. E 53, 4528–4535 (1996).
[CrossRef]

N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, and H. D. I. Abarbanel, “Generalized synchronization of chaos in directionally coupled chaotic systems,” Phys. Rev. E 51, 980–994 (1995).
[CrossRef]

Annovazzi-Lodi, V.

V. Annovazzi-Lodi, S. Donati, and A. Scire, “Synchronization of chaotic injected-laser systems and its application to optical cryptography,” IEEE J. Quantum Electron. 32, 953–959 (1996).
[CrossRef]

Bielawski, S.

S. Bielawski, M. Bouazaoui, D. Derosier, and P. Glorieux, “Controlling unstable periodic orbits by delayed continuous feedback,” Phys. Rev. E 49, 971–973 (1994).
[CrossRef]

S. Bielawski, M. Bouazaoui, D. Derosier, and P. Glorieux, “Stabilization and characterization of unstable steady states in a laser,” Phys. Rev. A 47, 3276–3279 (1993).
[CrossRef] [PubMed]

Bouazaoui, M.

S. Bielawski, M. Bouazaoui, D. Derosier, and P. Glorieux, “Controlling unstable periodic orbits by delayed continuous feedback,” Phys. Rev. E 49, 971–973 (1994).
[CrossRef]

S. Bielawski, M. Bouazaoui, D. Derosier, and P. Glorieux, “Stabilization and characterization of unstable steady states in a laser,” Phys. Rev. A 47, 3276–3279 (1993).
[CrossRef] [PubMed]

Chen, M. R.

Colet, P.

P. S. Spencer, C. R. Mirasso, P. Colet, and K. A. Shore, “Modeling of optical synchronization of chaotic external-cavity VCSEL’s,” IEEE J. Quantum Electron. 34, 1673–1679 (1998).
[CrossRef]

Derosier, D.

S. Bielawski, M. Bouazaoui, D. Derosier, and P. Glorieux, “Controlling unstable periodic orbits by delayed continuous feedback,” Phys. Rev. E 49, 971–973 (1994).
[CrossRef]

S. Bielawski, M. Bouazaoui, D. Derosier, and P. Glorieux, “Stabilization and characterization of unstable steady states in a laser,” Phys. Rev. A 47, 3276–3279 (1993).
[CrossRef] [PubMed]

Donati, S.

V. Annovazzi-Lodi, S. Donati, and A. Scire, “Synchronization of chaotic injected-laser systems and its application to optical cryptography,” IEEE J. Quantum Electron. 32, 953–959 (1996).
[CrossRef]

Dykstra, R.

D. Y. Tang, R. Dykstra, M. W. Hamilton, and N. R. Heckenberg, “Observation of generalized synchronization of chaos in a driven chaotic system,” Phys. Rev. E 57, 5247–5251 (1998).
[CrossRef]

Gills, Z.

R. Roy, T. W. Murphy, T. D. Maier, Z. Gills, and E. R. Hunt, “Dynamical control of a chaotic laser—experimental stabilization of a globally coupled system,” Phys. Rev. Lett. 68, 1259–1261 (1992).
[CrossRef] [PubMed]

Glorieux, P.

S. Bielawski, M. Bouazaoui, D. Derosier, and P. Glorieux, “Controlling unstable periodic orbits by delayed continuous feedback,” Phys. Rev. E 49, 971–973 (1994).
[CrossRef]

S. Bielawski, M. Bouazaoui, D. Derosier, and P. Glorieux, “Stabilization and characterization of unstable steady states in a laser,” Phys. Rev. A 47, 3276–3279 (1993).
[CrossRef] [PubMed]

Goedgebuer, J. P.

J. P. Goedgebuer, L. Larger, and H. Porte, “Optical cryptosystem based on synchronization of hyperchaos generated by delayed feedback tunable laser diode,” Phys. Rev. Lett. 80, 2249–2252 (1998).
[CrossRef]

Greboggi, C.

S. Hayes, C. Greboggi, and E. Ott, “Communicating with chaos,” Phys. Rev. Lett. 70, 3031–3034 (1993).
[CrossRef] [PubMed]

E. Ott, C. Greboggi, and J. A. Yorke, “Controlling chaos,” Phys. Rev. Lett. 64, 1196–1199 (1990).
[CrossRef] [PubMed]

Hamilton, M. W.

D. Y. Tang, R. Dykstra, M. W. Hamilton, and N. R. Heckenberg, “Observation of generalized synchronization of chaos in a driven chaotic system,” Phys. Rev. E 57, 5247–5251 (1998).
[CrossRef]

Hayes, S.

S. Hayes, C. Greboggi, and E. Ott, “Communicating with chaos,” Phys. Rev. Lett. 70, 3031–3034 (1993).
[CrossRef] [PubMed]

Heckenberg, N. R.

D. Y. Tang, R. Dykstra, M. W. Hamilton, and N. R. Heckenberg, “Observation of generalized synchronization of chaos in a driven chaotic system,” Phys. Rev. E 57, 5247–5251 (1998).
[CrossRef]

Hunt, E. R.

R. Roy, T. W. Murphy, T. D. Maier, Z. Gills, and E. R. Hunt, “Dynamical control of a chaotic laser—experimental stabilization of a globally coupled system,” Phys. Rev. Lett. 68, 1259–1261 (1992).
[CrossRef] [PubMed]

Hwang, T. M.

C. Juang, T. M. Hwang, J. Juang, and W. W. Lin, “A synchronization scheme using self-pulsating laser diodes in optical chaotic communication,” IEEE J. Quantum Electron. 36, 300–304 (2000).
[CrossRef]

Juang, C.

C. Juang, T. M. Hwang, J. Juang, and W. W. Lin, “A synchronization scheme using self-pulsating laser diodes in optical chaotic communication,” IEEE J. Quantum Electron. 36, 300–304 (2000).
[CrossRef]

C. Juang, M. R. Chen, and J. Juang, “Nonlinear dynamics of self-pulsating laser diodes under external drive,” Opt. Lett. 24, 1346–1348 (1999).
[CrossRef]

Juang, J.

C. Juang, T. M. Hwang, J. Juang, and W. W. Lin, “A synchronization scheme using self-pulsating laser diodes in optical chaotic communication,” IEEE J. Quantum Electron. 36, 300–304 (2000).
[CrossRef]

C. Juang, M. R. Chen, and J. Juang, “Nonlinear dynamics of self-pulsating laser diodes under external drive,” Opt. Lett. 24, 1346–1348 (1999).
[CrossRef]

Kawaguchi, H.

H. Kawaguchi, “Optical bistability and chaos in a semiconductor laser with a saturable absorber,” Appl. Phys. Lett. 45, 1264–1266 (1984).
[CrossRef]

Larger, L.

J. P. Goedgebuer, L. Larger, and H. Porte, “Optical cryptosystem based on synchronization of hyperchaos generated by delayed feedback tunable laser diode,” Phys. Rev. Lett. 80, 2249–2252 (1998).
[CrossRef]

Lin, W. W.

C. Juang, T. M. Hwang, J. Juang, and W. W. Lin, “A synchronization scheme using self-pulsating laser diodes in optical chaotic communication,” IEEE J. Quantum Electron. 36, 300–304 (2000).
[CrossRef]

Maier, T. D.

R. Roy, T. W. Murphy, T. D. Maier, Z. Gills, and E. R. Hunt, “Dynamical control of a chaotic laser—experimental stabilization of a globally coupled system,” Phys. Rev. Lett. 68, 1259–1261 (1992).
[CrossRef] [PubMed]

Mirasso, C. R.

P. S. Spencer, C. R. Mirasso, P. Colet, and K. A. Shore, “Modeling of optical synchronization of chaotic external-cavity VCSEL’s,” IEEE J. Quantum Electron. 34, 1673–1679 (1998).
[CrossRef]

Murphy, T. W.

R. Roy, T. W. Murphy, T. D. Maier, Z. Gills, and E. R. Hunt, “Dynamical control of a chaotic laser—experimental stabilization of a globally coupled system,” Phys. Rev. Lett. 68, 1259–1261 (1992).
[CrossRef] [PubMed]

Ott, E.

S. Hayes, C. Greboggi, and E. Ott, “Communicating with chaos,” Phys. Rev. Lett. 70, 3031–3034 (1993).
[CrossRef] [PubMed]

E. Ott, C. Greboggi, and J. A. Yorke, “Controlling chaos,” Phys. Rev. Lett. 64, 1196–1199 (1990).
[CrossRef] [PubMed]

Petermann, K.

N. Schunk and K. Petermann, “Noise analysis on injection-locked semiconductor lasers,” IEEE J. Quantum Electron. 22, 642–650 (1986).
[CrossRef]

Porte, H.

J. P. Goedgebuer, L. Larger, and H. Porte, “Optical cryptosystem based on synchronization of hyperchaos generated by delayed feedback tunable laser diode,” Phys. Rev. Lett. 80, 2249–2252 (1998).
[CrossRef]

Roy, R.

G. D. Van Wiggeren and R. Roy, “Communication with chaotic lasers,” Science 279, 1198–1200 (1998).
[CrossRef]

R. Roy and K. S. Thornburg, “Experimental synchronization of chaotic lasers,” Phys. Rev. Lett. 72, 2009–2012 (1994).
[CrossRef] [PubMed]

R. Roy, T. W. Murphy, T. D. Maier, Z. Gills, and E. R. Hunt, “Dynamical control of a chaotic laser—experimental stabilization of a globally coupled system,” Phys. Rev. Lett. 68, 1259–1261 (1992).
[CrossRef] [PubMed]

Rulkov, N. F.

H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, “Generalized synchronization of chaos: the auxiliary system approach,” Phys. Rev. E 53, 4528–4535 (1996).
[CrossRef]

N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, and H. D. I. Abarbanel, “Generalized synchronization of chaos in directionally coupled chaotic systems,” Phys. Rev. E 51, 980–994 (1995).
[CrossRef]

Schunk, N.

N. Schunk and K. Petermann, “Noise analysis on injection-locked semiconductor lasers,” IEEE J. Quantum Electron. 22, 642–650 (1986).
[CrossRef]

Scire, A.

V. Annovazzi-Lodi, S. Donati, and A. Scire, “Synchronization of chaotic injected-laser systems and its application to optical cryptography,” IEEE J. Quantum Electron. 32, 953–959 (1996).
[CrossRef]

Shore, K. A.

S. Sivaprakasam and K. A. Shore, “Message encoding and decoding using chaotic external-cavity diode lasers,” IEEE J. Quantum Electron. 36, 35–39 (2000).
[CrossRef]

S. Sivaprakasam and K. A. Shore, “Signal masking for chaotic optical communication using external-cavity diode lasers,” Opt. Lett. 24, 1200–1202 (1999).
[CrossRef]

S. Sivaprakasam and K. A. Shore, “Demonstration of optical synchronization of chaotic external-cavity laser diodes,” Opt. Lett. 24, 466–468 (1999).
[CrossRef]

P. S. Spencer, C. R. Mirasso, P. Colet, and K. A. Shore, “Modeling of optical synchronization of chaotic external-cavity VCSEL’s,” IEEE J. Quantum Electron. 34, 1673–1679 (1998).
[CrossRef]

Sivaprakasam, S.

Spencer, P. S.

P. S. Spencer, C. R. Mirasso, P. Colet, and K. A. Shore, “Modeling of optical synchronization of chaotic external-cavity VCSEL’s,” IEEE J. Quantum Electron. 34, 1673–1679 (1998).
[CrossRef]

Sushchik, M. M.

H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, “Generalized synchronization of chaos: the auxiliary system approach,” Phys. Rev. E 53, 4528–4535 (1996).
[CrossRef]

N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, and H. D. I. Abarbanel, “Generalized synchronization of chaos in directionally coupled chaotic systems,” Phys. Rev. E 51, 980–994 (1995).
[CrossRef]

Tang, D. Y.

D. Y. Tang, R. Dykstra, M. W. Hamilton, and N. R. Heckenberg, “Observation of generalized synchronization of chaos in a driven chaotic system,” Phys. Rev. E 57, 5247–5251 (1998).
[CrossRef]

Thornburg, K. S.

R. Roy and K. S. Thornburg, “Experimental synchronization of chaotic lasers,” Phys. Rev. Lett. 72, 2009–2012 (1994).
[CrossRef] [PubMed]

Tsimring, L. S.

N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, and H. D. I. Abarbanel, “Generalized synchronization of chaos in directionally coupled chaotic systems,” Phys. Rev. E 51, 980–994 (1995).
[CrossRef]

Van Wiggeren, G. D.

G. D. Van Wiggeren and R. Roy, “Communication with chaotic lasers,” Science 279, 1198–1200 (1998).
[CrossRef]

Yamada, M.

M. Yamada, “A theoretical analysis of self-sustained pulsation phenomena in narrow-stripe semiconductor lasers,” IEEE J. Quantum Electron. 29, 1330–1336 (1993).
[CrossRef]

Yorke, J. A.

E. Ott, C. Greboggi, and J. A. Yorke, “Controlling chaos,” Phys. Rev. Lett. 64, 1196–1199 (1990).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

H. Kawaguchi, “Optical bistability and chaos in a semiconductor laser with a saturable absorber,” Appl. Phys. Lett. 45, 1264–1266 (1984).
[CrossRef]

IEEE J. Quantum Electron. (6)

P. S. Spencer, C. R. Mirasso, P. Colet, and K. A. Shore, “Modeling of optical synchronization of chaotic external-cavity VCSEL’s,” IEEE J. Quantum Electron. 34, 1673–1679 (1998).
[CrossRef]

S. Sivaprakasam and K. A. Shore, “Message encoding and decoding using chaotic external-cavity diode lasers,” IEEE J. Quantum Electron. 36, 35–39 (2000).
[CrossRef]

V. Annovazzi-Lodi, S. Donati, and A. Scire, “Synchronization of chaotic injected-laser systems and its application to optical cryptography,” IEEE J. Quantum Electron. 32, 953–959 (1996).
[CrossRef]

M. Yamada, “A theoretical analysis of self-sustained pulsation phenomena in narrow-stripe semiconductor lasers,” IEEE J. Quantum Electron. 29, 1330–1336 (1993).
[CrossRef]

C. Juang, T. M. Hwang, J. Juang, and W. W. Lin, “A synchronization scheme using self-pulsating laser diodes in optical chaotic communication,” IEEE J. Quantum Electron. 36, 300–304 (2000).
[CrossRef]

N. Schunk and K. Petermann, “Noise analysis on injection-locked semiconductor lasers,” IEEE J. Quantum Electron. 22, 642–650 (1986).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (1)

S. Bielawski, M. Bouazaoui, D. Derosier, and P. Glorieux, “Stabilization and characterization of unstable steady states in a laser,” Phys. Rev. A 47, 3276–3279 (1993).
[CrossRef] [PubMed]

Phys. Rev. E (4)

S. Bielawski, M. Bouazaoui, D. Derosier, and P. Glorieux, “Controlling unstable periodic orbits by delayed continuous feedback,” Phys. Rev. E 49, 971–973 (1994).
[CrossRef]

N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, and H. D. I. Abarbanel, “Generalized synchronization of chaos in directionally coupled chaotic systems,” Phys. Rev. E 51, 980–994 (1995).
[CrossRef]

H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, “Generalized synchronization of chaos: the auxiliary system approach,” Phys. Rev. E 53, 4528–4535 (1996).
[CrossRef]

D. Y. Tang, R. Dykstra, M. W. Hamilton, and N. R. Heckenberg, “Observation of generalized synchronization of chaos in a driven chaotic system,” Phys. Rev. E 57, 5247–5251 (1998).
[CrossRef]

Phys. Rev. Lett. (5)

E. Ott, C. Greboggi, and J. A. Yorke, “Controlling chaos,” Phys. Rev. Lett. 64, 1196–1199 (1990).
[CrossRef] [PubMed]

R. Roy, T. W. Murphy, T. D. Maier, Z. Gills, and E. R. Hunt, “Dynamical control of a chaotic laser—experimental stabilization of a globally coupled system,” Phys. Rev. Lett. 68, 1259–1261 (1992).
[CrossRef] [PubMed]

S. Hayes, C. Greboggi, and E. Ott, “Communicating with chaos,” Phys. Rev. Lett. 70, 3031–3034 (1993).
[CrossRef] [PubMed]

R. Roy and K. S. Thornburg, “Experimental synchronization of chaotic lasers,” Phys. Rev. Lett. 72, 2009–2012 (1994).
[CrossRef] [PubMed]

J. P. Goedgebuer, L. Larger, and H. Porte, “Optical cryptosystem based on synchronization of hyperchaos generated by delayed feedback tunable laser diode,” Phys. Rev. Lett. 80, 2249–2252 (1998).
[CrossRef]

Science (1)

G. D. Van Wiggeren and R. Roy, “Communication with chaotic lasers,” Science 279, 1198–1200 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Bifurcation diagram of the laser output power versus modulation depth for a modulation frequency of 3.4 GHz. Drive current of the laser is 1.52Ith.

Fig. 2
Fig. 2

Bifurcation diagram of the laser output power versus modulation frequency for a modulation depth of 30%. Drive current of the laser is 1.52Ith.

Fig. 3
Fig. 3

Transmitter output power versus receiver output power for coupling levels (a) zero, (b) 1%, (c) 2%, and (d) 3%. Parameter values of both lasers are identical.

Fig. 4
Fig. 4

Time evolution of (a) transmitter output power and (b) receiver output power for the case of 3% coupling, as in Fig. 3(d). Chaotic fluctuations in the output power are evident.

Fig. 5
Fig. 5

Standard deviation versus % coupling for identical laser parameters.

Fig. 6
Fig. 6

Standard deviation versus % coupling for differing receiver-laser drive currents. Transmitter-laser drive current is kept constant at 1.52Ith. All other laser parameters are identical.

Fig. 7
Fig. 7

Transmitter output power versus receiver output power for differing receiver laser drive currents: (a) 1.52Ith, (b) 1.51Ith, (c) 1.50Ith, and (d) 1.49Ith. Transmitter-laser drive current is kept constant at 1.52Ith. All other laser parameters are identical.

Fig. 8
Fig. 8

Standard deviation versus percent coupling for differing receiver-laser modulation depths. Transmitter-laser modulation depth is kept constant at 30%. All other laser parameters are identical (both lasers are at 1.52Ith).

Fig. 9
Fig. 9

Transmitter output power versus receiver output power for differing receiver modulation depths of (a) 30%, (b) 29%, (c) 28%, and (d) 27%. Transmitter-laser modulation depth is kept constant at 30%. All other laser parameters are identical (both lasers are at 1.52Ith).

Tables (1)

Tables Icon

Table 1 Description and Values of Laser Parameters

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

dn1(t)dt=I(t)eV1-n1(t)τs-[n1(t)-n2(t)]T12-a1ξ1V1[n1(t)-ng1]S(t),
dn2(t)dt=-n2(t)τs-[n2(t)-n1(t)]T21-a2ξ2V2[n2(t)-ng2]S(t),
dS(t)dt={a1ξ1[n1(t)-ng1]+a2ξ2[n2(t)-ng2]-Gth}S(t)+CV1n1(t)τr+κS(t)trans,
I(t)=Idc+mIdc sin(2πft),
κ=x (1-R1)τinR1,

Metrics